


Learn the most effective ways to teach elementary math, no matter how much 
experience you have with the subject. In this book, Fuchang Liu takes you 
through many common mistakes in math instruction and explains the mis-
understandings behind them. He points out practices that should be avoided, 
helping you to adjust your lessons so that all students can achieve success.

You’ll discover how to. . .

◆◆ Increase your confidence with core math principles and reasoning
◆◆ Set your students on the path toward eventually developing more 

complex math skills
◆◆ Improve student achievement by approaching problems in logical 

yet creative ways
◆◆ Overcome common challenges faced by students and teachers
◆◆ Teach problem solving for different learning styles

Every chapter reconsiders well-established ways of teaching all areas of ele-
mentary math, from addition and subtraction to statistics and graphs. Help-
ful examples and tips are scattered throughout the book, offering revisions 
to the way these topics are often presented in the classroom. Also included 
are group study ideas for principals and instructional coaches so your school 
or district can work on the book together. With this practical guide, you’ll be 
ready to help students truly develop their math understanding.

Fuchang Liu is Associate Professor of Mathematics Education at Wichita State 
University. Previously, he taught high school math in Louisiana and Texas.
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Jane Smith has been teaching elementary school for a few years now. She 
loves her children and has been doing a fantastic job teaching them knowl-
edge and skills they’ll need for years to come. Nevertheless, like most elemen-
tary teachers across the United States, she didn’t undergo formal, specialized 
training in any of the basic subject areas taught in elementary schools: math, 
language arts, science, and social studies. Rather, her training was elementary 
education, a major that mainly focuses on methods, the courses that discuss 
instructional strategies, assessment, and management of those subject areas. 
Jane has a strong love for the English language and can handle teaching lan-
guage arts with high proficiency. Science and social studies also come natu-
rally to her. Deep down, though, she sometimes feels a bit unsure about the 
math topics she teaches. Of course, most of the time she has no difficulty at 
all. It’s just a few minute details that sometimes she’s not quite certain about. 
For example, she’s always telling her children that a rectangle has two longer 
sides and two shorter sides. To her, this feature is what distinguishes a rect-
angle from a square. But just recently she heard a colleague mention that it 
wasn’t quite correct to explain it that way; that is, the two pairs of sides of a 
rectangle don’t have to be different. Jane knows for certain that a few other 
teachers in her building teach the same thing concerning rectangles as she 
does, and now she’s not sure if she herself is right or if her colleague is right.

If you are an elementary school teacher like Jane, this book is for you. 
Written in plain language without using much mathematical jargon, this book 
examines about 100 common mistakes in teaching elementary school math by 
analyzing the misunderstanding behind them and then offers advice on how 
to correct or how not to make them based on the underlying mathematical 
principles and reasoning.

These mistakes are arranged by topic, such as counting, addition, geome-
try, and fractions, to name a few, and they’re all made by our fictitious teacher 
Jane Smith. Certainly no one would make this many mistakes, but to make 
their analysis and discussion easier, this book has to have someone play this 
bad-guy role. For each mistake, first Jane is quoted as saying something prob-
lematic, followed by analysis of what she says, often with the aid of figures 
or text examples, and then some advice is offered. To help with the flow of 
the narration, the part about how to avoid making the mistake just discussed 
is often addressed directly to the reader by using the second person, such as 

Preface



xiv ◆ Preface

“You may want to do this or that.” Additionally, as the mistakes discussed in 
this book cover all possible elementary grades, the particular grade level of 
Jane’s children is not specified.

For easy narration, several other fictitious characters are occasionally used 
in this book. Two of them, Tom and Megan, are children from Jane’s class. A 
Mr. Williams is Jane’s colleague, teaching in the room right next to hers.

Despite the book’s organization by topic, all chapters—and, in fact, all sec-
tions within each chapter—are independent of each other. This meets nicely 
the needs of the busy, overwhelmed elementary teacher. The reader may read 
any chapter or section, in any order, without worrying about any other chap-
ter or section. This is particularly useful for the reader at the lesson planning 
stage when this book may be used as a reference guide.



Counting Shouldn’t Start at 0

“Boys and girls, let’s have a little practice on counting. Now, count after me. 
Zero! One! Two! Three! Four!” This is what Jane, the fictitious elementary 
school teacher in this book, directed her children to do in class one day. On a 
different occasion, as she found her hundred chart didn’t have a 0, she added 
it there herself, right above the number 10.

While 0 is indeed immediately before 1 in terms of the relative positions 
for whole numbers, having children count starting at 0 is problematic. Before 
we embark on further discussion of this issue, let’s look at two common kinds 
of numbers: natural numbers and whole numbers.

Natural numbers are just 1, 2, 3, 4. . . . Why do we call them natural numbers? 
It’s because such numbers came into being in the most natural manner. Many 
things in our lives are considered natural, for example, “natural languages” that 
came into existence with early human beings, as opposed to “artificial languages” 
created for a specific purpose. Within natural languages, some  phonemes are 
more natural than others. For example, babies start to pronounce more natural 
sounds, such as /mɑ:/ before less natural sounds such as those containing /r/ 
or /l/. It’s probably not a coincidence that /mɑ:/, meaning mother, is among the 
very first few words babies acquire and is found in many languages around the 
world. Similarly, we can imagine that our ancient ancestors, when the need for 
numbers started to arise, invented means to represent 1, 2, 3. . . . Henceforth they 
have become known as natural numbers.

Counting

1



2 ◆ Counting

The number 0, in contrast, came into the picture very late. Its concept as 
used in modern times originated in the 7th century, and this number was 
introduced into the decimal system as late as in the 13th century (the Roman 
numeration system, the numerals often used on the face of analog clocks 
and opening pages of books, still doesn’t have a means for expressing 0). 
This indicates that the representation of 0 is for its “nothingness” instead of 
counting.

If we add this 0 to the set of natural numbers, then we have whole num-
bers. That is, natural numbers are 1, 2, 3, 4. . . and whole numbers are 0, 1, 
2, 3, 4. . . . Unfortunately, the distinction between natural numbers and whole 
numbers is not unanimously agreed on. Sometimes 0 is included in the set of 
natural numbers. To avoid this confusion, numbers 1, 2, 3, 4. . . have come to 
acquire a new name: counting numbers.

It may become clear now. Counting numbers, as the term indicates, are 
numbers used for counting, and they start at 1. If you ask a child who has just 
learned the first 10 or 20 numbers to count, regardless of the language back-
ground that child is from, you will most likely hear “one, two, three, four . . .”, 
not “zero, one, two, three, four . . .”.

You may ask, “Are there detrimental consequences for counting starting 
at zero?”

There are two major problems with counting from 0. First, 0, with its 
meaning of “nothingness,” is very difficult for a young child just learning 
how to count (believe it or not, even for older children and adults retrieving 
multiplication facts, the reaction times are longer when a fact contains a 0, 
such as 3 × 0, than when a fact doesn’t, such as 3 × 4). Most young children 
learn their first numbers through a one-to-one correspondence between a 
number and the quantity of actual objects that number represents, as the 
number 1 and one toy soldier, the number 2 and two toy soldiers, and so on. 
Imagine, however, how you would teach a young child to call out 0 with no 
toy soldiers in sight.

Second, to determine the number of objects by counting, such as deter-
mining how many apples there are on the table, many children would touch 
or point to the first apple and say “one,” then move on to the second apple 
and say “two,” and continue in this manner until all the apples are counted 
(many adults do this too). If we start at 0, we would have to touch nothing 
and say “zero,” but then we would have to start touching apples and calling 
out “one, two, three,” and so on. This can be very confusing because there 
would be a need to stress when to touch (with a one-to-one correspondence) 
and when not to touch (without a one-to-one correspondence). If a child 
accidentally touches an apple while saying “zero,” then the total number of 
apples would be off by 1.
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As a matter of fact, you don’t even have to look far to see what sequence is 
actually used in counting. The next time you find yourself counting  anything—
be it a wad of dollar bills, a group of children, or a number of apples as you 
put them in a bag when you want to buy 10 at a supermarket—see whether 
you’re saying “one, two, three . . .” or “zero, one, two, three . . .”.

What Are Tally Marks for?

To help her children practice counting, Jane did a number of different activi-
ties. One of them was to survey her children’s favorite types of pizza. She first 
wrote the few most common types on the board: “Cheese,” “Mushroom,” and 
“Pepperoni.” Then she asked, “How many of you like cheese pizza best?” Some 
children raised their hands. Jane led the whole class in counting the number of 
hands, recorded it with tally marks, and moved on to the next type. After the 
survey was taken, she had such results on the board (see Figure 1.1).

Jane’s use of tally marks, however, was inappropriate for this situation. 
This is because tally marks aren’t nearly as efficient in recording quantities as 
numbers are. To explore this a little further, let’s first take a look at the most 
common use of tally marks.

Suppose you were doing the same survey, but in a different fashion. After 
you wrote all the three types of pizza on the board, you asked all your children 
to go to the board, one by one, and indicate his or her favorite type of pizza 
under the corresponding label. During this process, numbers would be a poor 
choice to use. If the first child who preferred pepperoni pizza wrote a 1 under 
that category, the next child who also liked pepperoni pizza best would have to 
erase the 1 and write a 2 over it. Similarly, all later children whose favorite type 
of pizza was pepperoni would erase the previous number and then write a new 
number over it. This is certainly not an efficient way of recording the survey 
results. Tally marks, in contrast, fit nicely here. Whoever liked pepperoni pizza 
best would simply need to put a tally mark under the “Pepperoni” category, 
and all later children who favored pepperoni would simply need to add another 
mark under that category. Similarly, those whose favorite pizza was mushroom 
would simply need to put a tally mark under the “Mushroom” category. No 
erasing and rewriting would be needed. This is the ideal situation for using tally 
marks, a situation that requires constantly updating a number.

Figure 1.1 Jane’s Survey of Her Children’s Favorite Types of Pizza
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Tally marks are essentially a one-to-one correspondence between the 
number of marks and that of actual objects or people (that is, the use of 
the number of marks representing as many real objects or people). The fact 
that four marks are drawn in one direction while the fifth is drawn in another 
is for easy counting at the end of tallying. With every fifth mark traversing 
the previous four to form a group of five, we can count by 5s instead of by 1s. 
That should be faster and less prone to error.

But can tally marks be used in place of numbers?
The answer is no. As the name indicates, tally marks are just for tallying, 

and usually for a small number at that. Outside this realm, they are almost 
useless due to their one-to-one nature, as opposed to the symbolic nature 
of Arabic numerals such as 4752 (imagine having to represent 4752 using 
tally marks, not to mention using tally marks to compute). Even for tallying 
purposes, they are inefficient. Suppose you had a large class and 48 children 
liked pepperoni pizza best. You would first have to count the tallies to find 
out. That is why people almost always write down the corresponding total 
number after tallying a count.

In the aforementioned survey where Jane’s children indicated their pref-
erences with a show of hands, the total number for each category was already 
available when she counted them. She simply needed to write down each 
number directly. There was no need to draw tally marks. Only when she had 
to constantly update the number did she need to use tally marks.

It May Not Be Fast—the Purpose of Skip-Counting

“Skip-counting is for counting up to a number faster than counting one by 
one,” Jane told her children one day while teaching the topic of skip-counting. 
She engaged them in an activity in which they would count out 100 cubes 
from a pile, first by 1s, then by 2s, and then by 5s. At the end, she showed 
them the time she had kept so they could see which method got them to 100 
the fastest.

First of all, we need to distinguish two types of counting: counting real 
objects in order to find out their quantity, and counting without any real objects 
in sight, usually for practicing purposes. Skip-counting is often used in the 
latter case for understanding the properties of certain numbers in a sequence.

When counting real objects, people may do it by different quantities at a 
time, such as by 1s, by 2s, and by 5s. You might be tempted to think that as 
the size to count by increases, the faster it’ll be to finish the counting task. 
This may be true for only a few sizes. Let’s suppose we want to count out 
100 objects by 1s, 2s, 5s, and 10s to see if some methods are faster than others. 
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Obviously, counting out objects by 2s is faster than by 1s. Other than that, 
however, counting by larger numbers probably won’t give you an edge, as 
counting out objects by 5s won’t necessarily be faster than by 2s, and count-
ing out objects by 10s won’t necessarily be faster than by 5s. The reason is 
this: Counting objects by 2s doesn’t exactly involve counting out two objects 
sequentially and separately but rather the two objects are counted out at the 
same time. That is, for two objects, we don’t actually count them—we just 
immediately realize that there’re two such objects (this is known as subitizing, 
the perception of a small quantity of 1, 2, or 3 in a very fast manner without 
actually counting). Therefore, compared with counting by 1s, the number of 
objects counted out by counting by 2s at each round is doubled (“Two, four, 
six. . .”). But for numbers 5 and up, the counting can’t be skipped. You can eas-
ily imagine that counting by 10s won’t necessarily be faster than counting by 
2s, because for each group of 10, you still need to count them out by a smaller 
number, such as by 1s or by 2s.

Numbers larger than 10 are rarely used as a group to count real objects by. 
(Have you ever tried counting real objects by 15s or by 40s?) Still, sometimes 
it’s a good idea to count out objects by a larger number, such as by 5s or by 
10s, and leave them in separate piles. The purpose isn’t so much for speed as 
for breaking the whole counting process into several smaller chunks so that 
if you ever mess up one chunk, you don’t have to go all the way back to the 
beginning and start over again. Instead, all you need to do is recount that 
particular chunk and go on with the rest of the objects.

The other type of counting—namely, counting without real objects 
involved—is often used with young children, usually for the purpose of 
teaching them some sequences of natural numbers and their properties. It’s 
here that skip-counting is used. The following Math in Action box lists the 
three most common skip-counting sequences. As for skip-counting by 10s, 
it’s not very different from counting by 1s in that we just need to attach a 0 to 
each number in the sequence of natural numbers: 10, 20, 30 . . . .

Math in Action: The Three Most Common  
Skip-Counting Sequences

1. Skip-counting by 2s starting from 2. This will produce a series of even 
numbers: 2, 4, 6, 8, . . . .

2. Skip-counting by 2s starting from 1. This will produce a series of odd 
numbers: 1, 3, 5, 7, . . . .

3. Skip-counting by 5s starting from 5. Such numbers are multiples of 5, 
and they end in either 5 or 0: 5, 10, 15, 20, . . . .
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Speed in this second type of counting usually isn’t a factor to consider. If 
speed were important, then counting up to 100 could take only two numbers 
if you counted by 50s: 50, 100. This certainly wouldn’t serve any useful pur-
pose at all. Just like counting real objects, numbers larger than 10 aren’t often 
used as a group in counting without using real objects, either. For example, 
we normally wouldn’t ask our children to skip-count by 37s, or by 289s.

Our Number System Is Base-10, Not Base-12

“Boys and girls, let’s have a little practice on counting before we learn our 
lesson today. Now count with me: One! Two! Three! Four! Five! Six! Seven! 
Eight! Nine! Ten! Eleven! Twelve! Great! Let’s start over again.” This is how 
Jane started her lesson one day having her children practice on the first 12 
counting numbers.

Counting numbers are 1, 2, 3, 4. . . and they go on and on. For obvious 
reasons, we don’t throw a long sequence of these numbers at young learners 
all at once. Instead, we introduce such numbers in chunks. We teach them 
several numbers at one time, then move on to the next several at another time, 
and this cycle is repeated until they can count up to a fairly large number. 
Typically, by the time children can count up to 100 and a little bit beyond, 
most of them can see the pattern in this counting sequence, and teaching them 
how to count after that isn’t quite necessary.

But for the beginning numbers, some consideration needs to be given to 
how much a chunk should contain. The English number words have some 
influence on us in this respect, that is, the first 12 words are each completely 
unique (one, two, three . . . ten, eleven, twelve) and then there is a series of 
teen-words (thirteen, fourteen, fifteen . . . nineteen). Moreover, there is a spe-
cial word in English for 12: dozen. Reflected in real life, some merchandise is 
grouped in dozens, such as cartons of eggs and boxes of donuts sold in super-
markets. Due to such influence, Jane used 1 through 12 as the first chunk to 
teach. However, this isn’t ideal. To explore this issue, let’s look at the numera-
tion system of the counting numbers we have today.

The numeration system used by most peoples over the world today is the 
Hindu-Arabic system. This system is what we commonly call the base-10 sys-
tem, or the decimal system (deci means “ten”). In this system, 10 ones form a 
ten, 10 tens form a hundred, 10 hundreds form a thousand, and so on. In other 
words, in numbers written out in this system, each place has a value 10 times 
that of the place to its right. For example, the number 528 means 5 × 100 + 
2 × 10 + 8 × 1. Put in another way, the place held by digit 5 is 10 times that held 
by digit 2, which in turn is 10 times that held by digit 8.
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However, there is a huge obstacle to English-speaking children grasping 
this concept: the incongruity between Arabic number marks and the corre-
sponding words in English. This is especially true for 2-digit numbers. This 
issue is reflected in several outstanding aspects. First, the number 11 means 
1 ten and 1 one, but the corresponding English word eleven doesn’t have that 
indication (at least to people without training in etymology). Similarly, the 
indication of “two” in twelve is too minimal for any child to see.

Second, the English teen-words are in reverse order compared with their 
corresponding number marks. That is, in “16” the two digits mean 1 ten and 
6 ones from left to right, but in the corresponding English word sixteen, the 
part meaning 6 ones is on the left and the part meaning 1 ten is on the right 
(this is why Jane has often seen her young English-speaking children write 
“61” when they hear sixteen). Moreover, because of this reversion, sixteen and 
sixty mean very different things despite their similar lexical structures. Six-
teen means “six plus ten” whereas sixty means “six times ten” (Jane figured 
out that both -teen and -ty mean “ten” after she finished her own elementary 
education).

Third, our numeration system is base-10, and yet the word ten appears 
only once when a child counts from 1 to 100. This delays English-speaking 
children’s understanding that “ten” is a key unit within the base-10 system.

Now, with the English number words posing enough challenges for young 
learners, Jane was making it a little more difficult when she taught numbers 
1 through 12 as a chunk. This further delayed her children’s understanding 
that our numeration system is base-10 and that “ten,” as just mentioned, is a 
key unit within this numeration system.

The way to avoid this problem is to choose the first few chunks based on 
our base-10 numeration system. As 10 is the key, fundamental unit in this 
system, it should be treated differently from the other early numbers. Making 
children pause at 10 is one way of giving it some special treatment. This pause 
will instill in them the intuition that 1 through 10 is a cycle and after that a 
new cycle will begin.

If you feel a chunk of 10 numbers is too much to teach at one time, you 
may want to break it into two smaller chunks: 1 through 5 and then 6 through 
10. Two smaller chunks of five numbers each correspond nicely with a human 
being’s two hands of five fingers each. Also, you probably use the ten-frame 
cards very often at this stage. There is a close correspondence between the two 
smaller chunks of numbers and the two rows of five dots on a ten-frame card.



A Red Marble Isn’t More Than a Blue One

After she felt her children had become proficient with 1-digit numbers, Jane 
wanted to expose them to 2-digit numbers. The first skill she wanted to teach 
them was how to write 2-digit numbers. She designed two activities to accom-
plish this task.

Her first activity made use of dominoes. She had Tom, one of her children, 
come to the front to randomly pick a domino from a box. She then directed 
him to lay it down horizontally, with the dots facing the whole class. This is 
what all her children saw (see Figure 2.1):

Jane then drew two short horizontal bars on the board and asked her 
class, “Now let’s look at the domino here. How many dots are there on the 
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Figure 2.1 The Domino Jane Used to Represent a Supposed 2-Digit Number, 52
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right? Yes, there are two. And that’s our ones digit. It means how many 
ones we have.” She wrote a 2 above the bar on the right. She went on to 
ask, “How many dots are there on the left? Correct. That’s our tens digit. It 
means how many tens we have.” She wrote a 5 above the other bar. Now her 
number on the board looked as is shown in Figure 2.2, mirroring the dots 
on the domino.

Since the highest number of dots on either end of a domino is only 6 
and Jane wanted her children to be able to write 2-digit numbers with either 
digit anywhere between 1 and 9 such as 27, 83, or 99, she had her children do 
another activity. She put nine blue marbles in a jar and nine red marbles in 
another jar, then put the two jars side by side, with the jar of blue marbles on 
the right and the one with red marbles on the left (of her children). She said, 
“Now let’s do another activity. When you see blue marbles, their number is 
just the way you call them. But when you see a red one, it equals ten blue ones. 
So the blue ones represent our ones digit, and the red ones represent our tens 
digit.” Then she asked Megan to pick some blue and some red marbles, then 
lay them in front of the jars. Megan picked eight blue and two red marbles. 
Jane said, “We have eight blue marbles. So that’s eight. And we have two red 
marbles. That’s the number of tens. So we have two tens and eight ones. We 
have twenty-eight altogether.”

Both mechanisms for representing 2-digit numbers are somewhat prob-
lematic. By how people play dominoes, five dots on the left end of a horizon-
tally laid domino are not intrinsically different from five dots on the right end 
(for a discussion of using playing cards and dice to represent 2-digit numbers, 
see the next section). Similarly, a red marble is not intrinsically 10 times a blue 
marble: One marble is just one marble, regardless of its color. Simply desig-
nating an arbitrary color or one end of a domino as a higher-value number 
won’t help children develop their base-10 and place-value understanding. 
Instead, it can create much confusion. Jane’s children will be forced to regard 
two single marbles as 20 ones, which runs against their intuitive perception 
of the objects they see. Consider, for example, an open box containing two red 
and three blue marbles. Show this box to one of her children after class and 
ask that child how many marbles there are in the box, and you’re likely to hear 
“five” instead of “twenty-three.”

To make the composition of a 2-digit number meaningful to her chil-
dren, Jane will need to use manipulatives by which a higher-value portion is 

Figure 2.2 Jane’s Numeric Representation of the Dots on the Domino
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physically and intrinsically of a higher value than a lower-value portion. For 
example, base-10 blocks can do a good job representing ones, tens, hundreds, 
and thousands (see Figure 2.3). Unit blocks (ones) are each one cubic centime-
ter in volume, that is, each has a dimension of 1 cm × 1 cm × 1 cm. When 10 
such unit cubes are fused together, they become a rod. This rod, representing 
a 10, is 10 cubic centimeters. Children can see with their own eyes that a rod 
is made up of 10 unit cubes. In other words, a rod is physically 10 times the 
unit cube. Similarly, a flat (100) is made up of 10 rods (10 × 10), and a thousand 
cube (1000) is made up of 10 flats (10 × 100). But usually by the time children 
start dealing with 3- or 4-digit numbers, their place-value understanding has 
developed considerably, and flats and thousand cubes aren’t as frequently 
used as unit cubes and rods are.

If Jane represents 28 with 2 rods and 8 unit cubes, her children can make 
a connection between 2 rods with the 2 at the tens place. This is a good start-
ing point in understanding that the 2 in 28 means 20 (2 tens or rods) instead 
of 2 single unit cubes (see Figure 2.4). In contrast, two red marbles don’t have 
this property. On the contrary, different colors representing different value 

Figure 2.3 Base-10 Blocks Are a Great Tool for Representing Multidigit Numbers
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schemes only reinforces the misconception children often have that a double-
digit number is simply two single-digit numbers.

Besides base-10 blocks, bundles of sticks are another great tool for repre-
senting multidigit numbers. With all sticks being the same size and shape, a 
bundle can be made by banding 10 single sticks together with a rubber band. 
Although available commercially, such bundles can be easily made with pop-
sicle sticks, straws, pencils, or some other stick-like objects. Figure 2.5 shows 
the number 28 represented by bundles made of popsicle sticks, and Figure 2.6 
shows the same number represented by bundles made of pencils. Although 
bundles of sticks and base-10 blocks look rather different, they essentially 
have the same property: A higher-value unit is physically and intrinsically 
10 times its next lower-value unit. Very importantly, children’s development 
of place-value understanding needs to occur when they encounter 2-digit 
numbers. Even though it’s not common to see 10 bundles banded together 
to form 100, not to mention banding 10 such 100-piece bundles to form 1000, 
bundles of 10 and some loose ones are usually sufficient in teaching children’s 
understanding of place value.

Figure 2.4 The Number 28 Represented by Base-10 Blocks



Figure 2.5 Bundles Made of Popsicle Sticks, Representing the Number 28

Figure 2.6 Bundles Made of Pencils, Representing the Number 28
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Playing Cards and Dice Aren’t Ideal Things to Make  
Multidigit Numbers With

In engaging her children in a variety of activities and games, Jane often finds 
herself asking them to make some 2- or even 3-digit numbers. Playing cards 
are something she frequently uses. She would ask her children to draw one 
from a deck and lay it down on their desks, then draw another one and put it 
beside the first one drawn: Now they would have a 2-digit number such as 36. 
Jane certainly has considered the irregular cards such as aces, jokers, and face 
cards. She has established the rule that an ace is regarded as a 1, a face card 
is regarded as a 0, and jokers are not used. So one such number her children 
made looks like Figure 2.7.

Jane sometimes also uses dice. Because a regular six-sided dice doesn’t 
have digits 7, 8, 9, or 0, she especially likes those 10-sided dice with all 10 
digits available. A roll of two such dice can also generate a number like 52 
(see Figure 2.8).

Before we discuss the potential problem with using playing cards and 
dice to make multidigit numbers, let’s first take a look at one of the greatest 

Figure 2.7 Two Cards Drawn to Make a Supposed 2-Digit Number, 52
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hurdles children face in their learning of elementary math: place value. At 
the beginning stage, many children have a single-digit concept of multidigit 
numbers. They often view 2 in 283 just as a 2 instead of 200. Some cultural and 
linguistic barriers contribute to this difficulty, troubling many children. For 
example, English number words expressing 2-digit numbers don’t explicitly 
convey the composition of tens and ones (e.g., “twelve” in English as opposed 
to “ten-two” in some East Asian languages).

Now let’s return to the issue of making 2-digit numbers with playing 
cards. Let’s say that Jane handed out a deck of cards to each of her children 
one day and told them to make a 2-digit number by drawing two cards out 
of it. Suppose Tom first drew a 5 and then a 2. He might hold one card in his 
left hand and the other in his right hand. Or he might lay the two cards on his 
desk with a large space between them. Or he might lay down one card in an 
up-and-down manner and the other in a left-and-right manner. Or one of the 
two cards might be red while the other one was black. In all such scenarios, 
what lies in front of the child doesn’t quite look like a 2-digit number.

Using dice may be even worse. Sometimes the two dice rolled may be too 
far from each other to resemble a 2-digit number, and they may be pointing 

Figure 2.8 Two Dice Rolled to Make a Supposed 2-Digit Number, 52
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to opposite directions. On some double dice the digit on the outside is much 
larger than the one inside it. For a number made with two 10-sided dice, such 
as the one shown in Figure 2.8, at any given angle one or two other digits are 
also visible, forming a serious distraction.

Now it is probably easier to see why it’s not a good idea to make 2-digit 
numbers using playing cards or dice. All the situations described here have 
one thing in common: The 5 and 7 shown on the cards or dice don’t quite 
resemble how a 57 is ordinarily written. They are just two separate, 1-digit 
numbers. They simply give children the misconception that a 2-digit number 
is no different from two single-digit numbers. That’s certainly not something 
Jane is wanting to instill in her children.

A way to solve this problem is to make your own cards, with each card 
showing one bona fide, normally written, 2-digit numbers. When a child 
draws such a card, it will show 57 just the way it’s usually written instead of 
a 5 and a 7 some distance away or pointing to different directions.

It’s Odd Not to Consider 0 as Even

Although not many people will consider 0 as odd, Jane was one of those ele-
mentary teachers who sometimes teach children this misconception: 0 is nei-
ther odd nor even. This misconception is reflected in the confusion during the 
oil crisis in the 1970s when some states implemented an odd-even rationing 
for gasoline, that is, only people with an odd-numbered license plate could 
purchase gasoline on an odd-numbered day, and only people with an even-
numbered license plate could purchase gasoline on an even-numbered day. 
Story goes that during the first few days of implementing this policy, depart-
ments of motor vehicles in those states were flooded with calls from motorists 
with license plate numbers ending in 0, not knowing whether their numbers 
were odd or even.

Jane probably got this misconception from the property she had learned 
that 0 is neither positive nor negative. That property is completely true. For 
the current issue, however, it’s odd not to consider 0 as even. There’re several 
simple things we can do to confirm this.

1. By definition, an integer is even when it is divisible by 2 (that is, it 
can be evenly divided by 2 with a remainder 0): 0 fits this definition.

2. As we know, odd and even integers alternate on the number line. 
An odd integer is between two even integers, and likewise, an even 
integer is between two odd integers. 0 is between two odd integers 
(−1 and 1).
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3. When we count up or down by 2s from an even integer, we will get 
a sequence of even integers: 0 will be included in this sequence, such 
as 8, 6, 4, 2, 0 . . . .

4. Using number theory, the following can be proven:
a) Odd + odd = even, such as 3 + 1 = 4. In 3 + (−3) = 0, 0 fits as an 

even integer.
b) Odd + even = odd, such as 3 + 2 = 5. In 3 + 0 = 3, 0 fits in the 

expression as an even integer.
c) Even + even = even, such as 4 + 2 = 6. In 4 + 0 = 4, 0 again fits in 

the expression as an even integer.

Therefore, we can safely conclude that 0 is even.

14 and 37 Don’t Belong in the Same List

After discussing multiples, Jane involved her children in a “Butz” game. She 
put them in a circle. Starting from one child in the circle, all children would 
take turns to count up, starting from 1. Jane gave these directions: “If anyone is 
to count a multiple of 7 or a number that contains the digit 7, you call out ‘Butz’ 
in place of that number and sit down. Then the person next to you continues. 
This goes on until only one person remains standing, and that person will be 
the winner of this game.” After a round of the game, Jane asked all those chil-
dren who had called out “Butz” to recall the number they had to skip. She then 
wrote all those numbers on the board: 7, 14, 17, 21, 27, 28, 35, 37, . . . .

This game may have an ill effect on Jane’s children’s learning of multiples. 
Simply put, her sequence is actually composed of two different lists mixed 
together: a list of multiples of 7 (7, 14, 21, 28, 35, and so on) and a list of num-
bers that contain the digit 7 (7, 17, 27, 37, and so on). These two lists have very 
little in common and putting them together may confuse children when they 
need one of them, especially when they need the first. Let’s see how.

Suppose Jane’s children are now practicing simplifying fractions. Basi-
cally, to simplify a fraction means to find a common factor of both the denomi-
nator and numerator of the fraction and divide these two numbers by this 
common factor. If these two numbers have a common factor, it means both of 

them are multiples of that common factor. For example, 
14
35

 can be simplified 

to 2
5

 because both 14 and 35 have a common factor of 7. In other words, 14 

and 35 are multiples of 7.
Now, let’s see what happens if Jane gives her children a list of fractions 

and asks them to simplify them, if possible. One of the fractions is 14
37

. We 
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know 14 and 37 don’t have a common factor, and therefore this fraction can’t 
be simplified. However, Jane’s children may not think this way. After several 
days of playing the Butz game, they have gained an inadvertent mastery 
of that combined list mentioned above: 7, 14, 17, 21, 27, 28, 35, 37, . . . The 
moment they see this fraction, they would remember that both 14 and 37 are 
in that “Butz” list and assume that both can be divided by 7. This, of course, 
is a mistake.

The way to correct this mistake is rather simple: Simply separate the 
sequence into two lists. As a matter of fact, the list of multiples of 7 may have 
a wider use in elementary math than the list of numbers containing the digit 
7 and therefore should be practiced more. For example, lists of multiples may 
be used in skip-counting, simplifying fractions, determining if a number is a 
factor of another number, determining if a number is a multiple of another 
number, determining if a number is a prime or a composite, and so on.



4 + 4 Isn’t Simply 8 Bars Put Together

Jane was teaching “doubles facts,” using the example of 4 + 4. She drew four 
bars on the board, confirmed with her children on that number, and then 
drew another four bars beside those previously drawn. After that she had 
her children count the total number of bars she had drawn. Then she wrote 
out the mathematical expression for the problem: 4 + 4 = 8. Her picture now 
looked like Figure 3.1.

While Jane’s drawing did show the correct answer to 4 + 4, the representa-
tion itself was not quite meaningful. First of all, this representation wouldn’t 
help her children make a direct connection with the doubles fact that she 
wanted them to learn. What they saw was simply a group of 8 bars without 
being able to see its composition. It’s as if she told them the fact without the 
benefit of a picture at all. Next time they saw 8 bars put together, they prob-
ably wouldn’t recall the fact she had just taught them. Rather, they might 
need to count all the bars in order to know the total. Second, what Jane’s pic-
ture (Figure 3.1) represents is the result of 4 + 4, which is 8. Even with whole 
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Figure 3.1 The 8 Bars Jane Drew to Represent 4 + 4
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numbers alone, 8 can be the sum of 1 + 7, 2 + 6, 3 + 5, and so on, and Jane’s 
picture doesn’t provide a link to the specific components of 4 + 4.

What’s more meaningful to a child is a representation that illustrates the 
process as well as the result, not simply the result. Although the process for 
this particular problem, and for most primary-grade math facts at that, isn’t 
an involved one, still children need to see beneath the surface. To use an anal-
ogy, the result part of this problem, 8, is like the upper body of a duck visible 
above the water surface, whereas the process of the problem is like the duck’s 
feet hidden under the water. Our task is to expose the duck’s feet so that chil-
dren can see it’s these feet under the water that drive the duck forward.

To achieve the goal of seeing beneath the surface, Jane will need to 
demonstrate to her children the process that leads to the final result. For the 
problem at hand, she should leave a space between the two groups of marks 
(Figure 3.2) so that her children can make a direct connection between this 
representation and the doubles fact she wants them to learn. This revised 
representation will make much more sense because it will help Jane’s children 
recognize that the total number of bars is composed of two equal quantities of 
4, and that this total number is 8. If her children, on some other occasion, see 
two groups of 4 objects each and want to add them together, they can recall 
this doubles fact and retrieve the answer 8. In other words, the picture in 
Figure 3.2 represents the two components as well as the result of the problem 
4 + 4 = 8, whereas that in Figure 3.1 shows the result part only.

Make Pictorial Representations More Than a “Literal” Translation

After Jane had her children practice on 1-digit addition facts, she moved on 
to addition of 2-digit numbers. She started with one addend having a value 
in the lower 10s and made sure that the sum was less than 20. She created 
this word problem: “There are 12 birds on the tree. 6 more birds come and 
join them. How many birds are there on the tree in all?” During the problem 
solving process, Jane drew a picture on the board, with the corresponding 
mathematical expression for solving the problem under it (see Figure 3.3).

Jane’s pictorial representation of this problem was a huge improvement 
over the one where only the result was given, as shown in Figure 3.1. By 

Figure 3.2 An Improved Representation of 4 + 4
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leaving a space between the two groups of birds, the picture for the current 
problem clearly shows two quantities, 12 and 6, as well as the total number. 
But there is one problem with it: It seems a bit too “literal.” The use of this 
pictorial representation may be limited when the addends are larger than the 
few easily perceivable quantities such as 1, 2, and 3 (see subitizing discussed 
on page 5). In this particular example, all the three quantities involved—12, 6, 
and 18—can’t be easily perceived unless her children count them with their 
fingers. Jane had taught them counting by 5s and using ten-frame cards, but 
she wasn’t taking advantage of these strategies. Rather, she was forcing them 
to rely on the good old “counting one by one” technique.

Let’s see how to represent the same problem in a way that makes better 
sense to her children. First, let’s draw birds in rows of 5, so that the first quan-
tity, 12 birds, will look like Figure 3.4.

This is a much better representation than a row of 12 birds because Jane’s 
children are familiar with the ten-frame card, and the top two rows in this 
picture match a fully filled ten-frame card perfectly. So they can immediately 
recognize that those two rows represent 10 birds. With 2 additional birds, 
they’ll easily figure out the quantity involved: 10 + 2 = 12.

Next, let’s draw 6 more birds in a different color, or in a different orienta-
tion. Let’s make sure whenever a row is filled with 5 birds, we move on to the 
next row. Now, Figure 3.5 is what our new picture looks like.

Along the same line of referring to a ten-frame card, the third and fourth 
rows in Figure 3.5 also match such a card. With 2 squares on the bottom row 

Figure 3.3 Jane’s “Literal” Translation of a 2-Digit Addition Problem

Figure 3.4 The Quantity of 12 Drawn in Rows of 5
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empty, Jane’s children will likely recall that number: 8 (obtained by doing 
10 − 2). With 10 birds on the first “ten-frame card” and 8 birds on the second 
“ten-frame card,” the total number becomes obvious: 18.

The technique of counting by 5s can also be used to handle this situation. 
After Jane draws the two sets of birds together, she may lead her children in 
counting out by 5s: “five, ten, fifteen!” Then she needs to lead them in count-
ing the three additional ones: “sixteen, seventeen, eighteen!”

Usually a different color for the second quantity of birds would stand out 
better than the same color with a different orientation. For the picture shown 
in Figure 3.5, Jane may want to make the second quantity stand out a little 
more by circling it, as illustrated in Figure 3.6.

Figure 3.5 The New Quantity of 6 Added, Filling Up Rows of 5

Figure 3.6 The Two Quantities Are Made More Distinct With the Second Quantity Encircled
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In addition to helping children recognize the quantities of 12 or 18 easily, 
arranging pictorial representations in rows of 5 can help with their later learn-
ing as well. Although this is some practice on addition facts, Jane’s children 
have actually also been exposed to some multiplication facts, namely, 1 × 5 = 
5, 2 × 5 = 10, 3 × 5 = 15. This is something they will take up soon, and exposing 
them to such facts will pave the way for handling this later task.

Don’t Hop from Square One

As the number line is a very useful tool in handling many math topics, Jane 
decided to introduce it to her children by using it to model an addition prob-
lem. So she drew one on the smartboard, marking a hop to represent 7, and 
marking another hop to represent 6. Then she wrote the expression repre-
sented by this number line: 7 + 6 = 13 (see Figure 3.7).

But the problem is, the first hop Jane drew covered only 6 spaces, not the 
7 she had intended. This mistake would be more obvious if Jane had used 
addends of a smaller magnitude, such as 3 + 2 = 5, as shown in Figure 3.8.

Here, the hop representing 3 should be longer than the hop representing 
2, as 3 is greater than 2, but in Jane’s model the two hops are as long as each 
other. The correct way of modeling addition problems using the number line 
is to start the hop at 0, not 1, as shown in Figures 3.9 and 3.10, respectively, for 
the two problems mentioned here.

0 1 2 3 4 5 6 7 8 9 10 11 15 14 13 12 

Figure 3.7 Jane’s Model of 7 + 6 = 13

0 1 2 3 4 5 6 7 8 9 10 11 15 14 13 12 

Figure 3.8 Jane’s Model of 3 + 2 = 5

0 1 2 3 4 5 6 7 8 9 10 11 15 14 13 12 

Figure 3.9 The Correct Way of Modeling 7 + 6 = 13

0 1 2 3 4 5 6 7 8 9 10 11 15 14 13 12 

Figure 3.10 The Correct Way of Modeling 3 + 2 = 5
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Jane’s mistake of starting her first hop at 1 instead of 0 was probably 
caused by the principle that counting should start at 1, as discussed at the 
beginning of Chapter 1. These two principles, that counting should start at 1 
and that the first hop for an addition problem should start at 0 on the number 
line, actually don’t contradict each other. The perceived incongruity in fact is 
due to the different mechanisms of representing a number. On the one hand, 
children’s counting at the beginning stage usually involves concrete, discrete 
objects, such as the number of apples on the table or the number of people in a 
room. Such numbers can be readily represented by using discrete objects such 
as counters or blocks. For example, a teacher may use a pile of 7 counters and 
another pile of 6 counters to model the situation where 7 people in one room 
and 6 people in another room want to join each other. A number line, on the 
other hand, isn’t composed of a series of separate, discrete points. Rather, it 
expresses a number’s magnitude by specifying its corresponding “length,” as 
can be marked by the number of spaces on this number line. The number 1, 
for example, occupies 1 space, as shown in Figure 3.11.

If we want to mark this length of 1 with a hop, we have to start the hop 
at the beginning of this space, which is at 0, and end it at 1, as illustrated in 
Figure 3.12. If we start the hop at 1, we wouldn’t be able to mark off a space 
of 1 with the endpoint still falling on 1.

Therefore, while counting signifies the node corresponding to the end-
point of a space, drawing a hop on a number line has to cover the whole 
space, from the beginning point to the endpoint. That’s why counting starts 
at 1 whereas a hop starts at 0.

You Can’t Add Apples and Oranges Together

One of Jane’s lessons on addition called for teaching her children how to create 
story problems. For first graders whose writing abilities were quite limited, 

Figure 3.11 The Value of a Number Is the Number of Units It Occupies on the Number Line

Figure 3.12 A Hop Extends From the Beginning Point to the Ending Point of a Number’s Length, or 
the Number of Units Covered
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she wanted to keep such story problems as simple as possible. She came up 
with a template and wrote it on the board: “I have ______ and ______. How 
many do I have?” She first created one problem herself, “I have 2 cats and 
3 dogs. How many do I have?”, which led to her addition problem: 2 + 3 = 5. 
She then asked her children to create their own story problems following her 
template.

But the problem with the story she created immediately became appar-
ent if someone asked her, “How many what?” There may be terms that can 
describe both cats and dogs such as pets or animals, but Jane’s children can 
easily make up problems with things of very different categories, such as 
kites and pencils, toy soldiers and hamsters, picture books and fire engines, 
or whatever they see or whatever comes to their mind at the moment. Really, 
none of the pairs just mentioned go together easily. Even with cats and dogs 
where a higher hierarchical term exists, it may be a difficult task for young 
children to come up with such a term.

This mistake, of combining things of different categories, actually is not 
farfetched. A teacher may say, “I need 2 boys to come and stand on this side 
of our classroom, and I need 3 girls to come and stand on the other side. Now, 
class, which side has more?” This is the same mistake as Jane made. We can 
test by asking, “More of what?” A similar example is high school students, 
when learning how to combine like terms, combining different terms such as 
2 3 52x x x+ =  or 2 3 52 2x x x+ = , or worse, 2 3 52 3x x x+ = . When seeing such 
mistakes, their teachers would often say, “You can’t add apples and oranges 
together. Your x is an apple and your x 2 is an orange. How come you add two 
apples and three oranges together and get five apples?” or “How come you 
add two apples and three oranges together and get five oranges?”, or, with 
the previous worst case, “How come you add two apples and three oranges 
together and get five pears?” Such rhetorical questions drive home the illogi-
cality of adding together things of different categories.

With young children, it is important not to inadvertently give them infor-
mation with faulty reasoning in it. Although they would not detect the faulti-
ness in their teachers’ instruction at this stage, its detrimental effect in the long 
run can’t be overestimated. Many people can remember some faulty informa-
tion learned at school which troubled the young mind for years to come.

A simple way of fixing this “adding apples and oranges” problem is to use 
a common category of objects but owned by two different persons: “I have 
2 cats. You have 3 cats. How many cats do we have in all?” or “I have 2 dogs. 
My sister has 3 dogs. How many dogs do my sister and I have?” or “Tom has 
2 pencils. Megan has 3 pencils. How many pencils do Tom and Megan have if 
they put their pencils together?”



Don’t Make the Kittens Disappear

It was Jane’s first lesson on subtraction. She took out 5 counters from a box 
and laid them out on her desk under the document camera. Then she asked 
her children: “There are 5 kittens in the room. Now 2 kittens walk away.” As 
she explained the problem, she took 2 counters from among the original 5 and 
put them back in the box, with 3 remaining on her desk (Figure 4.1). Then she 
asked, “How many kittens are still in the room?” Her children looked at the 
remaining counters on her desk and called out, “3!”

Correct. Nevertheless, the purpose of using manipulatives to model a 
problem isn’t just for finding an answer or showing the final result. Rather, it’s 
for demonstrating the process of solving a problem. Ultimately, children need 
to make a connection between the problem being modeled and its represen-
tation: 5 − 2 = 3. But the way Jane modeled the problem, as described earlier, 
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Figure 4.1 Jane’s Modeling of 5 − 2 = 3, With Only the Result Visible
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doesn’t make it easy for her children to make this connection. The problem 
solving process appeared to be reduced to a model where not all quantities 
are visible.

Let’s see how we can revise the model a little to stress the problem solv-
ing process. The first step is no different from what Jane did, that is, drawing 
a square representing the room and putting 5 counters in it to represent the 
original 5 kittens. But when you take 2 counters, representing the 2 kittens that 
walk away, out of the square, instead of putting them back in the box with the 
other unused counters, you need to put them outside the square (Figure 4.2). 
Although the answer is the same, meaning 3 kittens remain in the room, this 
latter modeling makes it easier for children to see that the total number of 
kittens is 5 (all those on the desk), the number of those that walk away is 2 
(outside the square, but still on the desk), and the number of remaining kit-
tens is 3 (those inside the square). In other words, children can now make a 
connection with all the three quantities, all visible at the same time, instead 
of having to keep track of the other two quantities that are no longer present.

Another way of modeling similar problems is to use cards that have a pic-
ture on one side and are blank on the other. Explain to your children that a card 
with the picture side facing up means the kitten is in the room, and when the 
card is turned over and the picture can’t be seen, it means the kitten has walked 
away. Then Jane’s kitten problem may be modeled by laying 5 cards all facing 
up and telling her children that this means there are 5 kittens in the room. Next, 
Jane needs to flip over 2 of the cards to indicate that 2 kittens walk away. Now 
she will want her children to find out how many kittens are still in the room. 
Her children will likely have an easier time figuring out: 5 (all the cards) − 2 
(those flipped over) = 3 (those with pictures still facing up, see Figure 4.3).

Figure 4.2 A Revised Modeling of 5 − 2 = 3, With All Three Quantities Visible

Figure 4.3 A Card Model for 5 − 2 = 3, Where Face-Down Cards Indicate Quantity Subtracted
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To sum up, if the kittens disappear as in Jane’s original model, children 
would see only the final result. With the revised model, what children learn is 
a math fact, 5 − 2 = 3, with all its components present.

Don’t Ever Say “Subtract the Smaller Number from the Larger One”

It’s not uncommon, sometimes even for high school students, to confuse a 
negative number with its positive counterpart. For example, if you ask a class 
of students “What’s 2 − 3?” you may occasionally hear “1” as well as “−1.” 
Such mistakes can be traced back to as early as first or second grade, when 
children are learning simple subtraction facts.

This is what Jane did in her classroom one day. She presented a 1-digit 
subtraction problem, 9 − 4, to her children and said: “Let’s solve this prob-
lem. Now subtract the smaller number from the larger number. Tell me your 
answer.”

In subtraction, which number gets subtracted from which number 
depends on their relative positions. It doesn’t have anything to do with their 
magnitudes. It’s a mistake to say “Subtract the smaller number from the 
larger number,” and that can explain why some children may later confuse 
3 − 2 and 2 − 3.

True, at this stage all facts children learn concerning subtraction are of 
the type 9 − 4, that is, the larger number comes first, followed by the smaller 
one. However, primary-grade children don’t stay on this forever. They will, 
in a matter of a few years, learn 4 − 9. If they are taught a wrong concept, the 
detrimental effect may easily carry on to their later learning, sometimes even 
into high school years.

Let’s examine the detrimental effect this mistake may have on children’s 
learning.

First, teaching children to “subtract the smaller number from the larger 
one” causes them to make a common error like the one exemplified in Fig-
ure 4.4, where one can immediately tell that the children are doing exactly 
what they have been told to do: “Subtract the smaller number from the larger 
one.” This is hardly surprising given that teaching “subtract the smaller 

Figure 4.4 When Putting Down a 3 in the Ones Column for This Problem, the Child Is Apparently Try-
ing to “Subtract the Smaller Number From the Larger One”
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number from the larger one” on a constant basis will condition children to 
search for the larger number (or digit in this case) without any regard to that 
number’s relative position.

Second, and more importantly, this “subtract the smaller number from 
the larger one” rule will instill in children a notion that there’s no need to 
distinguish the two operands in subtraction with regard to their relative posi-
tions, in the same way as they apply the commutative property in addition 
problems (3 + 2 = 2 + 3). But the bad thing about this misconception is that it 
will become latent without notice, because children at this stage are always 
given problems in the form of 9 − 4. When they apply the rule of “subtract 
the smaller number from the larger one,” they will always get the correct 
answer. This, in turn, will reinforce their misconception. They aren’t aware 
that they subtract 4 from 9, not because 9 is greater than 4, but because 9 is 
before the subtraction sign and 4 is after it. When eventually it’s time for them 
to be exposed to 4 − 9, the misconception, latent for several years by now, will 
reveal itself. That’s why some older children have difficulty distinguishing 
between 9 − 4 and 4 − 9, and their new teachers will have to work hard to have 
them unlearn this “subtract the smaller number from the larger one” rule.

Again, in subtraction, which number gets subtracted from which number 
depends on the operands’ relative positions, not their magnitudes. There-
fore, don’t ever say “subtract the smaller number from the larger number.” 
Instead, for 9 − 4 = , simply say “nine minus four equals . . . .”

“Neither a Borrower nor a Lender Be”—Why We Shouldn’t Borrow

Jane learned it that way, and now she’s teaching it to her own children: It’s 
the term borrow used in solving subtraction problems where the digit in the 
minuend, the number from which another number is subtracted, is smaller, 
as shown in Figure 4.5.

Jane described the procedure for solving this problem in this way: “Let’s 
look at the ones column first. We can’t subtract 9 from 6, so we go to our next-
door neighbor, the tens column, to borrow some. This neighbor has enough 
tens. We borrow one from there, so we cross out the 3 and write a 2 above it. 
Now this one ten we have just borrowed becomes 10 ones. Adding the original 
6 to this 10, we have 16. Now we can subtract 9 from it. . .”

Figure 4.5 Many People Learned to “Borrow” to Solve This Problem
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So what’s wrong with borrow?
First of all, when Jane regarded the 6 as being herself and 3 as being her 

next-door neighbor so that she could borrow from that neighbor, she was 
treating two components of the same number as two separate, independent 
entities.1 This partially contributes to some children’ single-digit understand-
ing of multidigit numbers.

Furthermore, in real life, items borrowed should be returned. But we never 
hear a teacher say, “Now that we are done with our problem, let’s return the 
10 we have borrowed.” This contradiction with real-life experiences can cause 
children to be doubtful of the math they are learning.

You may ask: What terms should I use in place of borrow?
There are several choices.
The most common term is regroup, and by far this term is the most widely 

adopted in elementary math textbooks. Regrouping implies that the com-
ponents of the number are being rearranged so as to execute an operation, 
such as addition or subtraction. Its use helps prevent a child from having an 
isolated and unrelated conception of the different parts of the same number.

Another term is trade. This term is especially friendly to younger children, 
as, unlike regroup, it is also a term they use in their daily lives. This word 
captures all the essential connotations regroup has. For example, when Megan 
trades her five pennies for a nickel with her mom, the act involves some change 
of the form of money. The value of the money each party has remains the same.

Two other terms, compose and decompose, are sometimes used, but they 
seem to be big words for primary-grade children and, unlike regroup, are 
directional. That is, we usually say “to decompose a ten into 10 ones” and “to 
compose 10 ones into a ten” but not the other way around.

Can We Subtract a Larger Number from a Smaller One?

When Jane is now teaching subtraction problems such as 36 − 19 where the 
digit in the minuend is smaller, she would make sure to say regrouping in 
place of borrowing. The other parts of her explanation in solving this problem 
would basically remain the same. This is what she said one day when giving 
a reason for having to regroup: “Because we can’t subtract a larger number 
from a smaller one, we have to regroup. . . .”

The question boils down to “Can we subtract a larger number from a 
smaller one?”

The answer is: Yes, we can.
Let’s use a real-world situation to explain this. Suppose it’s now day-

time in Jane’s area and the temperature is 35º. The weather forecast says the 
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temperature will drop 20º by midnight. How do we figure out the tempera-
ture at midnight? Subtract, for sure. So we do: 35º − 20º = 15º. No big deal. But 
let’s suppose that at a location north of where Jane lives the daytime tempera-
ture is also 35º, but because something drastic is occurring there, the weather 
forecast says the temperature will drop 40º by midnight at that location. What 
will the new temperature be at midnight? This is an analogous situation and 
therefore we need to use the same operation, subtraction: 35º − 40º. Now we 
are truly faced with a situation where we have to subtract a larger number 
from a smaller one. Would Jane tell her children that there’s no way of figur-
ing out the new temperature at that location because “we can’t subtract a 
larger number from a smaller one”?

Let’s switch to a similar situation and see whether Jane would be as will-
ing to say “we can’t do such and such.” In teaching division, Jane would 
likely start with the simplest case of dividing one 1-digit number by another 
1-digit number, with no remainder, such as 6 ÷ 2 = 3 and 8 ÷ 2 = 4. Suppose at 
this stage a child approaches her and asks, “How do I do 7 ÷ 2?” How would 
Jane respond? She probably would say, “We haven’t learned how to do that 
yet. But we’ll learn that very soon.” Or, she might give this child an informal 
way of solving this problem: “Let’s see. You and your sister have 7 apples, and 
you want to divide them up. Each of you can get 3 apples, and you have one 
extra remaining. . .” At any rate, Jane would be very unlikely to say, “We can’t 
do that. We can’t divide 7 by 2.”

Likewise, it’s very misleading to tell children that we can’t subtract a 
larger number from a smaller one. It’s merely not the time yet for them to 
learn how to do it.

How do we provide a rationale for learning subtraction requiring 
regrouping when a digit in the subtrahend is larger than the corresponding 
one in the minuend, such as 36 − 19? There’re several ways to handle this 
situation. Jane may say, “If the digit in the minuend is smaller, we need to 
regroup from the tens place. . . .” (For young children, some teachers choose 
to avoid using the term minuend but instead use “the digit on top” when 
they’re referring to a subtraction problem in the vertical setup.) Or, “When 
the digit in the minuend is not large enough for the digit in the subtrahend, 
we need to regroup. . . .”

The mathematical content knowledge children learn is a sequence of 
interrelated topics. They will start with the simplest ones and work their way 
up to more difficult ones. Some of the topics intended for a later age won’t 
stay out of reach for younger children for long. Sooner or later they’ll have 
to tackle them. Telling them that they can’t do a certain type of problem will 
do them a disservice and create a psychological hurdle that they’ll have to 
overcome later.
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10 + 5 − 7 = 15 − 7: No Way to Make It Easier?

Before we take up this topic, let’s first make a simple comparison. Of the three 
subtraction problems listed in the following Math in Action box, which is the 
easiest? Which is the most difficult?

Math in Action: Of the Following Problems,  
Which Is the Easiest? Which Is the Most Difficult?

A. 3 − 2 =
B. 10 − 7 =
C. 15 − 7 =



Most likely, you will say problem A is the easiest. Both numbers in it are 
1-digit and have a low magnitude, and no regrouping is needed in solving it. 
Problem B is a little more difficult: The magnitude is a little higher, and the 
minuend (10) is 2-digit. Still, this problem isn’t that bad in that even though 10 
is 2-digit, it’s the very first 2-digit number and a very frequently used bench-
mark number—all because our numeration system is base-10. When children 
learn how to add or subtract 1-digit numbers, they easily learn what’s known 
as the make-10 facts, such as 1 + 9 = 10, 2 + 8 = 10, 3 + 7 = 10, and so on.

But problem C, 15 − 7, is very different from the other two: It requires 
regrouping. Moreover, different people may use quite different strategies to 
solve it. For example, apart from using direct fact-retrieval, some people may 
increase 15 by 2 and get 17, then solve two simpler subroutines: first 17 − 7 = 
10, and then subtract from 10 the 2 they initially increased 15 by to get 8. Some 
other people may break 15 into 10 and 5, then use one of the make-10 facts to 
subtract 7: 10 − 7 = 3, and then add this resulting 3 and the 5 they broke from 
15 to get 8. Still other people may break 7 into 5 + 2 so that the original prob-
lem now becomes 15 − 5 − 2 = 10 − 2 = 8. The necessity of using several steps 
in solving such a problem is precisely the reason why subtraction requiring 
regrouping is difficult and considered a big hurdle for children to overcome 
after they have learned subtraction with no regrouping.

Having recognized the difficulty involved in subtraction requiring 
regrouping, let’s analyze one problem, 45 − 17, with its vertical setup shown 
in Figure 4.6, and see if there’re ways to make it easier.

The most common procedure for solving this problem is like this: “The 5 
in the ones column is smaller than 7, so we need to regroup. We take a 1 in the 
tens column and the 4 now becomes 3. Then we regroup this 1 ten as 10 ones, 
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add the original 5 in the ones column to it, and now we have 15. 15 minus 7  
is 8. We write 8 in the ones column. In the tens column, 3 minus 1 is 2, and we 
write a 2 in the tens column. The result for this problem is 28.”

The key step in this procedure is: 10 + 5 − 7 = 15 − 7 = 8.
As previously mentioned, subtraction requiring regrouping is difficult for 

children to learn, and here we have a subroutine that requires regrouping. In 
view of this, a question to ask is, “Is there a way to make this step simpler so 
that this difficulty may be alleviated?”

You may say, “No way! This is already the simplest we can get. How can 
there be a simpler way than that?”

Actually the answer is, “Yes, this procedure can be made easier.”
Let’s first review a mathematical property: the associative property of 

addition. In simple terms, this property states that if you add three numbers 
(in fact it doesn’t matter how many), you will always get the same result 
regardless of whether you add the first two numbers together first and then 
add the third number, or whether you add the last two numbers together first 
and then add the first number. This property can be expressed mathemati-
cally as: ( ) ( )a b c a b c+ + = + + .

This expression is a little misleading in that one will get the impression that 
there are only two different ways in which two of the three numbers can be cho-
sen and added first. But statistically, with three addends, there should be three 
ways in which two of them may be added first. That is, a and b may be added 
first, b and c may be added first, or a and c may be added first. For example, for 
1 + 2 + 3, whichever two numbers you add first, the final result will always be 
the same. Because a and c are not adjacent to each other in the mathematical 
expression shown earlier, this third combination is usually skipped.

With this said, 10 + 5 − 7 can be made easier by doing the third combina-
tion first, as shown in the following Math in Action box.

Figure 4.6 The Vertical Setup for 45 − 17

Math in Action: An Easier Way of Solving 10 + 5 − 7

10 + 5 − 7
= (10 − 7) + 5
= 3 + 5
= 8
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Why is this procedure simpler and easier for children? The key reason 
is that there’s no need to regroup. We literally avoid a type C problem as 
listed at the beginning of this section, and change that into a type B problem 
by using the associative property. Instead of adding 5 to 10 first to make it a 
2-digit number and then having to use regrouping to subtract 7 from it, we 
subtract 7 from 10 first, using a make-10 fact, and then add 5 to the result. In 
other words, by subtracting 7 first, we have avoided reaching a 2-digit num-
ber and thus avoided having to regroup.

This is a lot like simplifying before multiplying fractions. For example, 

in solving 5
6

 × 4
7

 × 3
25

 × 15
4

, if we multiply first, our intermediate numbers 

can end up being very large: 900
4200

. After simplifying these two big numbers, 

we would get 3
14

. There’s a lot of work involved and the procedure is prone 

to error. For the same problem, if we simplify before multiplying, the whole 
procedure can be much simpler, because the intermediate numbers never get 
a chance to become large. Figure 4.7 shows the actual steps.

You may still have doubt about the legitimacy of doing 10 + 5 − 7 = 10 − 
7 + 5, asking, “The associative property is used for addition, but here we have 
a ‘subtract 7’ in it. Does it still apply?”

The answer is yes. Addition and subtraction, operationally, are inverse of 
each other. This means whatever property that applies to addition applies to 
subtraction, and vice versa, as long as the operation itself is not altered. With 
regard to the problem at issue, whether we do 10 + 5 first and then do − 7 sec-
ond or whether we do 10 − 7 first and then do + 5 second, − 7 is still − 7 and 
+ 5 is still + 5. Either way the operations themselves are not altered. The only 
difference is the sequence of these operations, and that is what the associative 
property is all about.

Note

1 Ma, L. (1999). Knowing and Teaching Elementary Mathematics: Teachers’ 
Understanding of Fundamental Mathematics in China and the United States. 
Mahwah, NJ: Erlbaum.

4
15

25
3

7
4

6
5 ×××
1 1 1 3

2
1
5

14
3=

1

Figure 4.7 Simplifying Before Multiplying Can Make Solving Such a Problem Much Easier



The Formidable 169-Cell Multiplication Table

Jane spent many good hours and finally memorized the multiplication table 
when she was going to elementary school herself, and now she is teaching 
the same multiplication table to her own children. After all, people need these 
multiplication facts on a daily basis and there’s every reason for a child to 
know them by heart. Search on the Internet or in resource books and you’ll 
find this 13 by 13 multiplication table (see Figure 5.1). But that’s a total of 169 
facts to memorize! That’s why during the past several years of teaching this 
formidable 169-cell multiplication table, Jane resorted to many different strat-
egies. She created some well-rhymed poems, made up some songs, talked to 
other teachers and found a way of “finger multiplication” for dealing with 
multiplying by 9, had her children practice skip-counting by 2s and by 5s so 
that they could memorize the times-2 row and times-5 row easily, and so on. 
Still, while her children seem to be fine with the first few rows of the table, 
errors frequently appear when they get to rows of 7, 8, or 9, not to mention 
the last rows of 11 and 12.

Are there ways to make the multiplication table itself simpler? That is, if we 
keep the multiplication table the way it is, even though we may think of many 
different strategies to make the memorization process manageable, the total 
number of the multiplication facts to be memorized is still 169, and this is indeed 
a daunting task. In contrast, if we can somehow cut down on the total number of 
facts to be memorized, that will be huge relief for children at this stage.

Multiplication

5
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You probably have never given it a second thought. “How can it be?” you 
wonder. “It’s been this way forever, and we need all the facts!”

Not really. Let’s start by considering several questions here. Did you ever 
use a multiplication fact containing a 2-digit number, such as 12 × 9, in solving 
a multiplication problem like the one shown in Figure 5.2? In other words, in 
solving this problem, even though there is a “12” contained in the first num-
ber, did you ever apply “12 × 9 = 108” from the multiplication table? Possibly 
not. Instead, you most likely took the second number, 9, and multiplied it by 
7, then by 2, then by 1, and finally by 8.

The next question is: Why does the multiplication table stop at 12? Why 
not 13? Why not 18? Why not 47? What is the mathematical reason for includ-
ing 12 but not 13?

This may have a lot to do with the word dozen. As a unit, this word used 
to be used very often. It’s not difficult to envision situations where people 

Figure 5.1 A Common Version of the Multiplication Table, With a Total of 169 Cells
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needed to figure out how many objects there were for, say, seven dozen, and 
hence the rationale for containing up to 12 in the multiplication table. But if 
we compare how often people say dozen today with how often people used 
to say it two or three generations ago, we can find that it’s not used as often 
now. In fact, some other non-base-10 units, such as score (20) and gross (144), 
are already, to a great extent, out of common use today, and dozen may be the 
very next one to be on the archaic list. This is a natural outcome because the 
numeration system we use is base-10. It doesn’t make much sense to stop in 
the middle of the second decade of natural numbers.

You may ask, “If we don’t stop at 12, what number should we stop at?”
The answer is: Stop at 9. The mathematical reason for this has already 

been alluded to earlier. For a base-10 numeration system, 0, 1, 2, . . . and 9 are 
1-digit numbers. Since numbers beyond 9 are 2-digit, the natural cutoff point 
is between 9 and 10. No matter how large a number is in a multiplication 
problem, we handle it one digit at a time (trace your mind to see how you do 
the problem shown in Figure 5.2). For this reason, no 2-digit number is ever 
necessary in calculating a multiplication problem. You can safely cross out the 
last three rows and last three columns from the multiplication table.

Furthermore, if you look at the first row and first column, you will see a 
series of 0s. Why do we want to subject children to memorizing “0 times 1 is 
0, 0 times 2 is 0, 0 times 3 is 0” when we know 0 times whatever number is 
0? There’s really no need to list all the “0 times. . .” facts in the multiplication 
table. What children need to know is a simple rule: “0 times any number is 
0.” Therefore, 0 as a factor can also be taken off the multiplication table and 
replaced with a simple rule.

Now we have, in effect, eliminated 0, 10, 11, and 12 as factors in the mul-
tiplication table. Indeed, factors of 1 through 9, plus a “0 times any number is 
0” rule, are sufficient for solving any multiplication problem. That’s 81 facts 
(see Figure 5.3), less than one half the size of the original 169-cell table.

But a table of 81 facts isn’t simple enough. Let’s take another look at Fig-
ure 5.3. If you draw a diagonal line from upper left to lower right through 
the table (from × to 81) and compare the two halves along this line, you will 
find that they are symmetrical. Not considering the numbers on this diagonal, 
every number has a duplicate on the other side of the line. For example, at 
6 across and 9 down, there’s a 54, and at 9 across and 6 down, there’s also a 
54. So the next question we need to consider is: Do we really need two sets of 
numbers, with one set an exact duplicate of the other?

Figure 5.2 Do People Ever Use a Fact Like 12 × 9 = 108 in Solving This Problem?
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The answer is no. What good does it do to have a table where one part is 
a mirror image of the other? One set is definitely sufficient.

What, you may ask, if children need to use the other set?
This is where the commutative property comes into play. The commu-

tative property states that in multiplication, if the two factors switch their 
positions, the resulting product will be exactly the same, namely, a × b = b × a. 
Suppose Jane’s children have learned that 6 × 9 = 54. Let’s further suppose 
that they come across a situation where they need the product of 9 × 6. By the 
commutative property, this should have the same result as 6 × 9 does. What 
Jane needs to do here is tell her children to safely use the product of 6 × 9 as 
the product of 9 × 6. In other words, we can simply teach children one half of 
the table. At the same time, we will have to teach them to derive the other half 
by using the commutative property.

Figure 5.3 A Simplified Version of the Multiplication Table, With 0 and 2-Digit Factors Removed
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Thus, only one section of the original, 169-cell multiplication table is 
needed. If we draw a right triangle covering 1 through 9, with the hypotenuse 
running through the square numbers (Figure 5.4), we will have this small 
section left. But this small section is sufficient for doing any multiplication 
problem. The total number of multiplication facts listed in the new table is a 
mere 45, about one fourth of the original 169-cell multiplication table.

This 45-cell table can be written out in straightforward mathematical 
expressions so that children can practice it verbally to memorize it. This 
written-out table is shown in Figure 5.5.

The multiplication facts as listed in this written-out version are arranged 
in such a way that the first factor is either smaller than or equal to the sec-
ond factor. Let’s take row 4 for illustration. We start with 1 and multiply this 

Figure 5.4 A Further Simplified Version of the Multiplication Table, With Only 45 Cells
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number by 4, and we get 1 × 4 = 4. Then we move on to the next number and 
multiply it by 4, and we get 2 × 4 = 8. Next we move on to the next number 
and get 3 × 4 = 12. We then stop at the fact where the two factors are equal to 
each other: 4 × 4 = 16. When we are done with the times-4 row, we move down 
to the next row (a sequence of numbers times 5).

When children need a multiplication fact where the first factor is 
smaller than or equal to the second one (such as 5 × 8 or 8 × 8), they can 
retrieve this information directly from the table. When they need a fact 
where the first factor is larger than the second (such as 8 × 5), what they 
need to do is simply switch the positions of the two factors and come up 
with the product.

“You Must Put a Zero in the Ones Place”

In doing multidigit multiplication problems, Jane’s children often make the 
mistake of treating a 2-digit number as two separate, 1-digit numbers. For 
example, Tom did a 2-digit by 2-digit multiplication problem as shown in 
Figure 5.6.

Since this is a very common mistake among elementary school children, 
Jane said to her class, “When you come down to the second row, you must put 
a zero in the ones place and then put your numbers next to it.” She showed 
her children her way of doing this problem (see Figure 5.7).

Some other times Jane stressed her point by writing the 0 in a different 
color, or writing some other symbols such as a ×, *, or even drawing a simple 
figure such as an apple. By having her children put a 0 (or some other sym-
bols, for that matter) in the ones place, she has effectively forced her children 
to start writing their ones column over to the left. But is such a 0 a must in 
this case?

Not really. Many people actually do this problem in a “staircase” format 
and still get the correct answer (see Figure 5.8).

Figure 5.5 A Written-Out Version of the 45-Cell Multiplication Table
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Apparently, this last setup indicates that a 0 in the ones place is not man-
datory. To help children understand why they make the mistake as Tom did, 
Jane needs to ask herself this question: What’s the rationale for putting a 0 in 
the ones place? After this question is answered, whether or not to put a 0 
in the ones place will become a minor issue.

In order to see the reason behind putting a 0 in the ones place, we need 
to delve deeper into a learner’s thinking as to how they make such mistakes. 
Many children during elementary school years have a 1-digit understanding 
of multidigit numbers. For the current problem, Tom first took 7 and multi-
plied it with 43. But problem occurred when he moved on to the next column: 
He treated the 5 in 57 as 5 ones. He retrieved all multiplication facts correctly, 
added the two rows correctly, but failed to understand that the 5 in 57 means 
50, or 5 tens.

If we write 57 in its expanded form, then the problem at hand will become 
clearer: 57 = 50 + 7, therefore 43 × 57 = 43 × (50 + 7). By the distributive prop-
erty, 43 × (50 + 7) = 43 × 50 + 43 × 7. Tom did the 43 × 7 part correctly, but 
not the 43 × 50 part. Since he treated the 5 in 57 as 5 ones, he got 43 × 5 = 215 
ones. In fact, the final result he got, 516, is exactly 43 × (5 + 7) = 43 × 12. This 
just shows that Tom, in the process of doing this 2-digit by 2-digit problem, 
treated 57 as a 5 and a 7 put together instead of treating it as composed of 
5 tens and 7 ones.

Figure 5.6 A Common Mistake in Doing Multidigit Multiplication Problems

Figure 5.7 Jane’s Way of Doing This Problem, by Using a 0

Figure 5.8 The “Staircase” Format in Doing This Problem
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Realizing the nature of such mistakes, Jane can specify the procedure by 
either “putting a zero in the ones column” or “starting the tens digit in the 
tens column.” If she wants to go by “putting a zero in the ones column,” she 
may want to avoid saying must. This method of using a 0 in the ones place is 
only procedurally forcing children not to write anything there. In contrast, if 
she wants to go by “starting the second row in the tens column,” Jane may 
want to give some explanation along this line: “The 5 in 57 is in the tens place, 
so it is 5 tens. Now 3 times 5 tens is 15 tens, so we need to write this number 
as tens. Now we put down a 5 in the tens column . . . .”

Can You Move over One Place Value?

While teaching multiplying two double-digit numbers, Jane soon found 
that the mistake her children were making—of not lining up the numbers 
 correctly—was a frequent one (see Figure 5.6).After some contemplation, Jane 
felt that she needed to take up the notion of place value. In correcting the mis-
take exemplified in the problem discussed earlier, she said, “You must keep 
your numbers in the appropriate place value. After you’re done multiplying 
the first digit, 7, you must move over one place value to the left and write your 
results directly under the tens digit, 5, . . . .”

The question is: Can she “move over one place value”? To see the problem 
with Jane’s use of place value, we need to look at what place value is.

What is place value? Precisely as the term indicates, place value refers to 
the fact that each place in an Arabic number has an assigned value. Specifi-
cally, in the Hindu-Arabic numeration system, the values of the digits of a 
number are, starting from the right side to the left, 1, 10, 100, 1000, and so 
on. That’s why we say ones place, tens place, hundreds place, and so on. For 
example, in 435, 5 is in the ones place, or we may say that 5 has a place value 
of ones. Over to the left, 3 has a value of tens and 4 has a value of hundreds. To 
get the magnitude of this number, we have to multiply each digit by its place 
value and then add up the partial products. The total value of 435, therefore, 
is, if we list largest values first: 4 × 100 + 3 × 10 + 5 × 1. This, by the way, is 
called the expanded form of 435.

Thus, place value is a “value.” It is not something like a spot or something 
people can move about. It’s as if we have marked a “price” for each place 
within a number. In the aforementioned number 435, it’s as if 5 was carrying 
a price tag of $1, and it was yelling, “The price for us is $1 each. There are five 
of us, and we are worth $5.” Similarly, it’s as if 3 was saying, “The price for us 
is $10 each. There are three of us, and we are worth $30,” and 4 was saying, 
“The price for us is $100 each, and we are worth $400.” While people can move 
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price tags to be put on different items, they can’t physically move a price. A 
price is a value or feature assigned to a merchandise.

Back to what Jane said that her children “must move one place value to 
the left,” she confused place value with place or column. The following Math 
in Action box lists some incorrect or improper uses of the term place value: In 
each case, it should be replaced with either place or column.

Math in Action: Incorrect Ways of Using Place Value

•	 You	should	put	your	digit	in	the	right	place	value.
•	 You	lined	up	your	place	values	wrong.
•	 You	need	to	move	the	next	partial	product	over	one	place	value.
•	 The	mistake	you	made	was	misplacement	of	the	place	value.
•	 You	should	shift	your	numbers	to	the	left	one	place	value.



Line Multiplication: Why It Doesn’t Work

Jane heard of a new method of multiplication, line multiplication, from 
Mr. Williams, the teacher in the room next door to hers. Mr. Williams men-
tioned that the good thing about this method is that children don’t even have 
to memorize any multiplication facts: All they have to know is how to count. 
Jane got curious and had him demonstrate the procedure to her in great detail 
after school one day so as to assess the feasibility of teaching it to her own 
children. This is how Mr. Williams told her how it works: “Suppose you want 
to do 12 × 31. You first draw one line, representing the tens digit, leave some 
space, and then draw two lines, representing the ones place for the first factor, 
12, with all the lines tilting up on the right (see Figure 5.9a). Next, you draw 
lines for the second factor in a similar fashion, over the first factor drawn, but 
tilting down on the right. Now you have two sets of lines crossing each other, 
forming four groups of crosses (see Figure 5.9b).”

“Now here’s the easy part,” Mr. Williams continued. “You just circle 
the crosses from left to right and count them. The circle on the left has three 
crosses in it, and you write a 3 under it. The one in the middle has two groups 
of crosses, but count them together, and there are seven. Write a 7 under the 
middle circle. The one on the right has two crosses in it, and write a 2 under 
it. Now your final answer is 372” (see Figure 5.9c). After a pause, he contin-
ued, “You see, you don’t need to know a single multiplication fact with this 
method.”
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Jane was impressed. In fact, she thought this method was so cool that 
she decided to teach it to her own children. After all, when this could be 
used without having to use a single multiplication fact, why bother with the 
traditional method, which requires a good amount of time spent on having 
children memorize the multiplication table?

However, except for a limited number of situations, this method won’t 
work. It has some serious flaws that shouldn’t be overlooked.

First of all, the multiplication facts, or the whole multiplication table, are 
there for an obvious reason: We don’t want to count the total number of ele-
ments every single time when they are in groups with each group having an 
equal number of elements in it: for example, counting 5 rows of 8 chairs each. 
For this situation, we don’t even want to use repeated addition to obtain the 
total every single time (8 + 8 + 8 + 8 + 8 = 40). Instead, a single multiplication 
fact will take care of it (5 × 8 = 40). Line multiplication is dragging children 
back to, not repeated addition, but counting.

Figure 5.9 Line Multiplication Showing 12 × 31.

(a) Lines representing 12; (b) Lines slanting the other way, representing 31, drawn over the previously 
drawn 12; (c) three groups of intersections indicating the product of 372
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Second, drawing lines and then counting the crosses can be time consum-
ing. This is especially true if the digits involved have a higher magnitude. 
Imagine multiplying 789 × 987 using this method. Before a child even finishes 
drawing all the 48 lines (they take up a lot of space, too), another child using 
the traditional method could very well finish the whole problem. In other 
words, this method can handle numbers composed of lower-magnitude dig-
its such as 1, 2, and 3 at best. That is probably why Mr. Williams showed Jane 
a problem with lower-magnitude digits only.

Third, if a problem takes more time to do, then usually it’s more prone to 
error. A simple calculation reveals that when doing 789 × 987 using line mul-
tiplication, there will be more than 500 crosses to count! A child has to be very 
attentive to not make any errors in this long process.

Fourth, when there’re more and more digits in a factor, then this method 
will become more and more clumsy, to the point it’s practically impossible 
to handle. Imagine yourself doing a 4-digit by 4-digit problem using this 
method. It’s difficult even without using digits of higher magnitude.

For these reasons, stay clear of this line multiplication.



The Larger Number Doesn’t Always Go Inside

After she introduced division and the long division symbol, Jane presented to 
her children a problem for demonstration: 8 ÷ 4. She explained the procedure 
in this way: “You first draw this symbol for long division () ). Then you 
put the larger number inside this symbol. Next, you put the smaller number 
outside. . . .”

True, at the beginning stage of learning division, children are only exposed 
to problems such as the one just mentioned, where the dividend (the number 
to be divided) is larger than the divisor. That’s because they won’t be able to 
properly handle a problem where the dividend is smaller than the divisor 
before they learn decimals and fractions. However, in a mathematical expres-
sion for division, which operand gets divided by which operand doesn’t 
depend on their magnitudes. Instead, each operand’s relative position deter-
mines whether it’s the number to be divided, or the one to be divided by. This 
is very much like the previously discussed subtraction problem where which 
operand is subtracted from which operand doesn’t depend on their magni-
tudes but rather their relative positions.

Saying “the larger number goes inside” can cause serious misunder-
standing on children’s part. Naturally, after they have heard this “larger 
number goes inside” procedure a sufficient number of times, their minds 
are conditioned to the magnitude of each operand when they see a division 
problem. Later, when they do have to deal with 4 ÷ 8, some of them would 

Division

6
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automatically put the larger operand, 8 in this case, inside the long division 
symbol. Of course, this will cause them to produce a wrong answer. More-
over, by the time they learn decimals, their wrong impression will be so deep-
rooted that they’ll have difficulty distinguishing between 8 ÷ 4 and 4 ÷ 8.

The proper way of handling this situation is simply to identify the posi-
tion of each operand. For 8 ÷ 4, say, “Put the number before the division sign 
inside the long division symbol,” or, “Put the first number inside the long 
division symbol.” That is, 8 ÷ 4 is set up as )4 8. Later, when you teach deci-
mals, you’ll find yourself saying the same thing for 4 ÷ 8: “Put the number 
before the division sign inside the long division symbol,” and the setup will 
be )8 4. In each case, the meaning of the division is maintained, and you don’t 
need to worry about how to change children’s habit of identifying the larger 
operand to that of identifying the first operand in a division sentence. The 
relationship between the dividend and divisor should be kept consistent.

What’s 0 ÷ 0?

Jane learned, from all the math courses she had taken, that she cannot divide 
by 0. Anyway, for a long division problem as shown in Figure 6.1, what num-
ber can go in the quotient’s spot (indicated by a question mark) such that 
0 × ? = 8? No number will ever work, because 0 times any number is 0.

Jane is fine with this “cannot divide by 0” rule. But the next problem gives 
her a lot of trouble: What’s 0 ÷ 0?

At first Jane thought the answer was 0. She reasoned this way: “We don’t 
have anything to start with, and then we divide this nothing by nothing. What 
else can the answer be except zero?” Jane even came up with the long division 
setup (see Figure 6.2) to support her choice.

Figure 6.1 For This Problem, no Number Fits Where “?” Is Displayed Such That 0 × ? = 8

Figure 6.2 Jane Set Up 0 ÷ 0 in This Way to Show That the Result Is 0
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Jane discussed this with Mr. Williams and was surprised to learn that he 
thought the answer was 1. He said, “When a number is divided by itself, the 
result is 1. For example, 25 ÷ 25 = 1, 3.78 ÷ 3.78 = 1, and so on. By the same 
rule, 0 ÷ 0 = 1.”

Unfortunately, neither Jane nor Mr. Williams was correct.
Since the mistake of saying 0 ÷ 0 = 0 is very common, we need to give it a 

thorough examination.
Let’s first use Jane’s setup (shown in Figure 6.2) and see whether it’ll work 

if we replace Jane’s original 0 with a 5 (see Figure 6.3). It seems it does, as 0 
times 5 is 0. But if we extend the same line of thought from here, it appears any 
number can go in that spot, as 0 times any number is 0. So what’s 0 ÷ 0? 0? 5? 
12? 0.009? The list can go on and on, and Jane isn’t so sure now.

Actually, having many possible answers is exactly the reason why 0 ÷ 0 is 
not 0. When a problem has one possible answer, say 3 + 2, that problem is said 
to be defined. This isn’t, however, the case with 0 ÷ 0. We have just seen that 
infinitely many numbers can go in the quotient’s spot in Jane’s long division 
setup. When such is the case, it’s said to be undefined.

For emphasis, 0 ÷ 0 is undefined. This is consistent with the general rule: 
We cannot divide by 0.

You may want to check this out on a calculator. Punch in 0 ÷ 0 on a calcu-
lator and it will display a message such as “Error,” “Dividing-By-0 Error,” or 
“Undefined.” For this matter, even the most primitive calculator will produce 
an error message.

“Is there a real-world situation,” you may ask, “which you can use to 
illustrate your point, that is, 0 ÷ 0 won’t produce a meaningful result?”

Certainly. Let’s suppose you’re watching a women’s basketball game and 
the players’ free-throw percentages for that particular game are displayed 
on television. In order to calculate a player’s free-throw percentage, all we 
need to do is divide the number of free throws made by the total number of 
free-throws attempted. Suppose player A has had 10 free throw chances and 
made 9 baskets. Her free-throw percentage for this game is 9 ÷ 10 = 90%. Let’s 
further suppose player B also has had 10 chances but made 4 baskets. Her 
free-throw percentage is 4 ÷ 10 = 40%. Now let’s look at player C. This player 
hasn’t been fouled at all during the game and hasn’t been awarded any free-
throw chances (0 attempts). Of course, when she hasn’t had any free-throw 

Figure 6.3 It Seems a 5 Will Work in Jane’s Setup
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chances, she has made no baskets in this regard. In order to calculate her free-
throw percentage, we need to apply the same formula: Divide the number of 
free throws made by the total number of free throws attempted, and in this 
case, it’s 0 ÷ 0. So what’s player C’s free-throw percentage—0%? If she’s good 
at making free throws, she would certainly protest and say, “If I’d got some 
chances, I sure would have made some baskets. How come I got 0% here?” 
She really has a point.

Then 0 ÷ 0 = 100% (which equals 1)? This doesn’t make sense either. If 
that player turns out to be a poor free-throw shooter, people would wonder, 
“She’s not a particularly good free-throw shooter, and now she got a perfect 
free-throw percentage?”

In all likelihood, your television screen won’t display a percentage for 
player C. The best description may just be “0 of 0” (0 baskets made, of 
0 attempts). No actual percentage whatsoever fits in this situation.

The lesson to draw from this mistake is: Under no circumstances should a 
person attempt to divide any number by 0. In other words, even if this number 
is 0, still you may not divide it by 0.

Back to Mr. William’s reasoning: If he wants to formulate a rule concern-
ing a number divided by itself, it should be expressed as in Figure 6.4, in a 
rigorous manner, with a condition attached that 0 shouldn’t be used as the 
divisor.

Division Isn’t Always Repeated Subtraction

Let’s say Jane wanted to demonstrate to her children how to divide 21 cards 
evenly among 3 children. Using 21 counters representing 21 cards, Jane took 7 
out from the pile and put them on a separate spot, saying, “Tom will get 7 cards. 
Let’s put them here for Tom.” She then took another 7 out and said, “Now there 
are 7 cards for Megan. Let’s put them here for her.” She went over the process 
again for the third child. Her children could see there were 7 counters for each of 
the 3 children. But is this a correct way for modeling this problem?

The answer is no. But the error isn’t easy to see because all the numbers 
used (21 and 3) are small and the multiplication fact involved (3 × 7 = 21) is 
well known to everyone. So let’s choose a different set of numbers and see 
if we can still do the problem the same way as Jane divided 21 cards among 
3 children.

Figure 6.4 The Rule About a Number Divided by Itself Being 1: It Works for Any Number But 0
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Let’s suppose we want to divide 442 cards among 17 children. How many 
cards should we take out for child A? Most of us wouldn’t have a ready 
answer for 17 × __ = 442, and therefore we wouldn’t have any idea about the 
right number of cards to take out for child A.

Now the problem with Jane taking out 7 cards for Tom is clear. Jane did 
that because she already knew the answer (7) before she started doing the 
problem. But actually that was exactly the number she was trying to figure 
out! Why did she need to go through all the trouble when she already knew 
it was 7?

When the numbers involved are larger (such as 442 and 17) and the 
answer is not apparent, we can’t take out a certain number of cards for child 
A, then take out the same number of cards for child B, and so on, because 
we don’t know the exact number of cards to take out for each child. This is 
because there are two different interpretations for division, depending on 
which factor in the corresponding multiplication problem we are trying to 
figure out. For a multiplication problem such as “There are 4 bags of apples. 
Each bag contains 6 apples. How many apples are there in all?”, we normally 
use the first factor to represent the number of groups and the second factor 
to represent the number of elements in each group (4 × 6). If the number of 
groups is unknown (such as "How many bags will be needed to pack up 
24 apples if each bag can contain 6?", transcribed as 24 ÷ 6 = ?), the interpreta-
tion for this division problem is called subtractive. The person who does the 
packing can repeatedly take 6 apples out of a pile of 24 and put them in a bag 
until the pile is finished with. Then, if the number of elements is unknown 
(“Jane has 21 cards and wants to divide them up among her 3 children. How 
many cards will each child get?”), the interpretation for this division problem 
is called distributive—Jane has to give one card to each of her 3 children (to 
distribute). If the remaining cards are sufficient to go another round, Jane has 
to continue with the process, that is, give one card to each child, until there are 
no more cards left or until the number of cards left is not enough to go another 
round. This is exactly the problem presented at the beginning of this section, 
one involving the distributive interpretation.

In summary, there are two interpretations of division, subtractive and dis-
tributive. The common saying “Division is repeated subtraction” is applicable 
to the subtractive interpretation but not to the distributive interpretation—
and the modeling for one interpretation is different from that for the other. 
When modeling the subtractive interpretation such as “How many bags will 
be needed to pack up 24 apples if each bag can contain 6?”, you repeatedly 
take out groups of 6. But when modeling the distributive interpretation, such 
as “Jane has 21 cards and wants to divide them up among her 3 children,” you 
have to distribute one card to each child and repeat the process until it’s over, 
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rather than take out 7 and give them to one child. In other words, you don’t 
know each child will get 7 before you finish the process.

“Dad, Mom, Sister, Brother, Rover”: Where Is Dad?

Jane presented to her children the procedure for long division of a 2-digit 
number by a 1-digit number, as shown in Figure 6.5.

To help her children remember the order of carrying out the steps involved 
in long division, Jane taught them a mnemonic she heard from Mr. Williams: 
“Dad, Mom, Sister, Brother, and Rover,” where the first letters stand for 
“Divide, Multiply, Subtract, Bring Down, and Repeat.”

Here is a problem, though. For the very first step, “divide,” what exactly 
are children supposed to do before they take on the second step, “multiply”? 
For the example shown in Figure 6.5, what should occur before Jane’s chil-
dren do 1 × 4?

With this saying, Jane made two logical errors that can be confusing to her 
children. First, isn’t the whole thing Jane was teaching called “division”? That 
is, to divide 56 by 4, we need to divide, multiply, subtract, bring down, and 
so on. When the whole thing is “divide,” and this first step of the process is 
also “divide,” then what’s the relationship between them? Second, “divide” 
has no specific action tied to it as the other verbs do. It seems this action is 
fused with the second verb, “multiply.” Children may wonder, “What exactly 
should I do for dividing?”

The rationale for creating such a saying to help children remember the 
order of carrying out the steps involved in doing a long division problem isn’t a 
strong one. This is not like solving a problem involving the order of operations, 
such as 4 + 5 × 3, where 5 × 3 must be carried out first. Without knowing the 
correct order of operations, children most likely would solve this problem from 
left to right, resulting in a wrong answer—hence a rationale for verbalizing the 
order of operations (“multiplication/division before addition/subtraction”) in 

Figure 6.5 A Long Division Problem Jane Used for Demonstrating “Dad, Mom, Sister, Brother, and 
Rover”
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a way that can help children best memorize it. However, in solving a division 
problem such as the one in Figure 6.5, there are various hints suggesting what 
to do next. For example, it is not even possible for children to do the “bring 
down” step at the very beginning. Similarly, they probably wouldn’t subtract 
before the “multiply” step, as there is no number to subtract yet.

In short, this mnemonic is a little farfetched and not quite necessary.

Division Doesn’t Always Yield a Smaller Number

When Jane teaches a certain math topic, she almost always wants to make it 
related to other math topics such that her children can easily see the intercon-
nection among them. It’s no different when she brought up division. While 
teaching this topic, Jane said, “We learned multiplication, which we use to 
make numbers larger. What we are going to learn today is the opposite opera-
tion, an operation we use to make numbers smaller. This is division.”

Certainly when children first learn multiplication and division, the prob-
lems they encounter consist of positive integers only. If we multiply one positive 
integer, say, 4, by another positive integer, say, 2, we will get an integer larger 
than either of the two others, as shown in the following Math in Action box.

Math in Action: Multiplication Problems in  
which We Get Larger Numbers

4 × 2 = 8
8 × 2 = 16
16 × 2 = 32
. . .



Likewise, when we divide a positive integer by another, this integer will often 
become smaller, such as the examples shown in the following Math in Action box.

Math in Action: In These Division Problems,  
the Results Are Getting Smaller and Smaller

64 ÷ 2 = 32
32 ÷ 2 = 16
16 ÷ 2 = 8
. . .





52 ◆ Division

However, children will soon learn fractions and decimals—and once they 
do, they will find what their teachers have said concerning multiplication 
yielding larger results and division yielding smaller results to be incorrect. 
Let’s create two story problems, presented in the following Math in Action 
boxes, to demonstrate this point.

Math in Action: A Story Problem  
where Multiplication Yields a Smaller Number

At the pizza party for his 18 children, Mr. Williams gave each child one half 
of a pizza. How many whole pizzas did Mr. Williams give out to his 
children?



We certainly need to use multiplication to solve this problem: 18
1
2

9× = .

After multiplying, instead of larger number, we get a smaller one.
Additionally, if we multiply a number by 1, we don’t get a larger result 

either: We get an identical number back, such as 4 × 1 = 4 (that’s why this 
property is known as the multiplicative identity property).

Similarly, division can yield a larger result than what children start with. 
The following Math in Action box presents one such story problem.

Math in Action: A Story Problem where  
Division Yields a Larger Result

Mr. Williams wants to make some cakes to entertain his children. The recipe 
calls for 0.2 kg of flour per cake. Mr. Williams has 4 kg of flour. How many 
cakes can he make?



Here, we need to use division to solve this problem: 4 ÷ 0.2 = 20.
Similar with multiplication, division by 1 will not produce a smaller num-

ber, either. Instead, it produces an identical result, such as 4 ÷ 1 = 4.
To sum up, Jane’s statement about multiplication yielding a larger number 

and division yielding a smaller number is true only if the multiplier or divisor 
is greater than 1 (see the multiplying and dividing by 2 problems shown in 
the first and second Math in Action boxes). If the multiplier is less than 1 and 
greater than 0, then multiplication will yield a smaller number, as in the pizza 
example. In a similar manner, if the divisor is less than 1 but greater than 0, 
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then division will yield a larger number, as in the cake example. Additionally, 
multiplication and division can yield an identical result by multiplying or 
dividing by 1.

Although we did not discuss this error when we were talking about addi-
tion and subtraction, it’s a similar mistake to say “Addition will always give 
you a larger number” and “Subtraction will always give you a smaller num-
ber.” These statements are true only if the numbers to be added or subtracted 
are positive. If we use negative numbers or zeros, we can easily come up with 
counterexamples to these generalizations, as listed in the following Math in 
Action box.

Math in Action: Counterexamples of “Addition  
always Yields Larger Numbers”, and “Subtraction  

always Yields Smaller Numbers”

8 + (−3) = 5
8 + 0 = 8
8 − (−3) = 11
8 − 0 = 8



Thus, we should be very careful about making generalizations. What 
seems to be true at the current time may not necessarily be so in a few years. 
Vice versa, what does not seem to be true at the current time may soon be 
something children will be focusing on intensively.



7
The Order of Operations

Aunt Sally Is Evil—The Order of Operations

After her children had learned all the four basic operations—addition, sub-
traction, multiplication, and division—and been exposed to parentheses and 
exponents, it was time for Jane to teach them the order of operations. Jane 
had learned a mnemonic when she was going to elementary school herself, 
and now she was about to teach the same thing to her own children. After all, 
about all the teachers around her were teaching the same thing, and all their 
children could say it fluently. So what else would she do to teach the order of 
operations? Jane did not even give it a second thought when she passed this 
mnemonic on to her children: “Please Excuse My Dear Aunt Sally,” PEMDAS 
for short, which stands for parenthesis, exponent, multiplication, division, addi-
tion, and subtraction. For one of the problems Jane gave for exercise, 7 − 2 + 3, 
her children applied the rule by doing 2 + 3 first, with a resulting 5, and then 
doing 7 − 5. The final answer every child got was 2.

But the right answer is not 2.
Nothing is more misleading than this mnemonic in teaching elementary 

school math. In fact, it has been, and still is, causing tens of thousands of chil-
dren to make mistakes on a problem as simple as 7 − 2 + 3.

The first person who came up with this mnemonic no doubt meant well. 
Obviously it was created to help children memorize the order of operations 
for a problem having two or more operations in it. But if we look at the 
receiving end, it may be a totally different picture. When elementary school 
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children are presented with the order of operations in a linear, sequential 
manner as PEMDAS, they will naturally interpret it as meaning that any 
operation takes precedence over those following it. More specifically, chil-
dren interpret PEMDAS as meaning that multiplication comes before divi-
sion and that addition comes before subtraction, because the mnemonic 
says “M-D-A-S”.

In actual fact, the rule regarding the order of operations states that addi-
tion and subtraction are on the same level and should be carried out from left 
to right. Neither operation has precedence over the other. Thus, for doing the 
problem at issue, the correct procedure is: 7 − 2 + 3 = 5 + 3 = 8. And the same 
is true for multiplication and division. These two operations are on the same 
level and should be performed from left to right. For example, for 18 ÷ 3 × 2, 
the right procedure is 18 ÷ 3 × 2 = 6 × 2 = 12.

You may be puzzled now, because you have, just as Jane has, been doing 
7 − 2 + 3 = 7 − 5 = 2 and 18 ÷ 3 × 2 = 18 ÷ 6 = 3 all your life. After all, who 
would doubt the widespread mnemonic “Please Excuse My Dear Aunt Sally,” 
which many elementary teachers say year after year, in the first place? But 
being widespread doesn’t necessarily mean being correct, and this particular 
mnemonic clearly is not. In fact, it’s harmed much more than helped children 
learning the order of operations.

Let’s take a moment to see why 7 − 2 + 3 can’t equal 2. Let’s use two dif-
ferent methods to analyze it.

We can first use proof by contradiction to handle this problem. To start, 
let’s assume 7 − 2 + 3 = 2 is true; if it leads to a contradiction, then we conclude 
that it’s false. Next, let’s use a different problem of a similar structure: 7 − 
2 − 3. Nobody will have any problem in coming up with the correct answer: 
7 − 2 − 3 = 2. Since both problems have the same answer, it must follow that 
7 − 2 + 3 = 7 − 2 − 3. As the first two terms on each side of the equal sign are 
exactly the same, we can remove them, hence we have: 3 = −3.

We know 3 = −3 is false. Because we are certain that 7 − 2 − 3 = 2 is true, 
we can conclude that 7 − 2 + 3 = 2 is the part that leads to this contradiction 
and, therefore, it’s false.

By our second method, let’s use a real-world scenario. Suppose you had 
$7 in your bank account. On a particular day, you left home for the bank and 
deposited $3 there, and stopped by a convenience store and made a purchase 
of $2 using this bank account, and then headed home. Once home, you calcu-
lated your new account balance: 7 + 3 − 2 = 8, meaning you had $8 on your 
account. No doubt about it.

Let’s backtrack a little and suppose you wanted to do all this over but 
in a different sequence. Again, you had a beginning balance of $7, and you 
wanted to deposit $3 and spend $2, but you wanted to stop at the convenience 
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store first to make the $2 purchase and then deposit $3 at the bank. After your 
trip, again, you wanted to calculate your account balance. So, 7 − 2 + 3 = ?

If someone told you that your ending balance was $2 (because that per-
son claimed that 7 − 2 + 3 = 2), you wouldn’t believe it. “What? Just because I 
made the purchase first my ending balance isn’t $8?” Or you would argue in 
another perspective, “Listen, I had $7 before the trip. I deposited more than 
I spent. How come I ended up having even less money than I started with?”

You get the picture.
“If PEMDAS is misleading, how should I go about teaching the order of 

operations?” you may ask. A simple modification of the presentation of the six 
operations (or symbols) will do the job. Instead of presenting them in a linear, 
sequential manner, rearrange them into four levels, as shown in Figure 7.1.

There are two rules regarding the interpretation of the order of operations 
exemplified in this model:

1. Higher-level operations take precedence over lower-level ones, and
2. if two or more operations are on the same level, they must be carried 

out from left to right.

(Of course when all operations are addition or all operations are multipli-
cation, we have the freedom of doing whichever operation first. In such cases 
the result will be the same, per the associative property.)

The three Math in Action boxes that follow present sample problems 
solved according to these rules, with explanations provided after each step.

Figure 7.1 A Modified Model for the Order of Operations. M and D are on the same level and neither 
has precedence over the other. So are A and S.

Math in Action: Sample Problem 1

12 + 6 ÷ 2
= 12 + 3 (Division is on a higher level than addition. Division first.)
= 15
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Math in Action: Sample Problem 3

−24 ÷ (4 − 7) − 12 + 5 (−2)3

= −24 ÷ (−3) − 12 + 5 (−2)3 (Parenthesis comes first.*)
= −24 ÷ (−3) − 12 + 5 (−8) (Exponent comes next.)
= 8 − 12 + 5 (−8) (Division higher than addition/subtraction, and is 

on the same level with multiplication. Division first.)
= 8 − 12 + (−40) (Multiplication higher than addition/subtraction.† 

Multiplication first.)
= −4 + (−40) (Addition and subtraction are on the same level. From 

left to right.)
= −44

* Actually, since (4 − 7) and (−2)3 don’t cross over to each other, either of 
them can be executed first, or both can be executed within the same step, 
without affecting the final result.
† The multiplication sign is omitted between 5 and the following term.



Math in Action: Sample Problem 2

6 ÷ 2 × 9
= 3 × 9 (Multiplication and division are on the same level. From left to 

right.)
= 27



The key point is, stop teaching “Please Excuse My Dear Aunt Sally” 
immediately. Never say the order of operations is PEMDAS. It’s utterly mis-
leading and untrue. If it helps you to remember, just think Aunt Sally is evil 
and you should never excuse her.

The Order “M/D before A/S” Isn’t Haphazard

After Jane started teaching the order of operations, she quickly discovered 
that it’s a great hurdle for her children to overcome because they, out of the 
habit they have formed so far of processing written information from left to 
right, tend to solve a mathematical problem from left to right, so that their 
answer is 20 for 2 + 3 × 4. For them to do 3 × 4 first before doing the addition 
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part squarely contradicts their habit: When they read, they read from left to 
right. When they write, they write from left to right. And now many of them 
feel puzzled when they suddenly have to start solving certain problems from 
the middle!

So Jane found herself saying this to her children one day: “We have to use 
some order to carry out mathematical operations when there are two or more 
of them in a problem, otherwise different people may come up with different 
answers. Nobody knows why, but mathematicians have decided that multi-
plication and division should be executed before addition and subtraction.”

Believe it or not, the order that multiplication and division come before 
addition and subtraction was not decided on haphazardly. There is a reason 
for this order. Let’s use a real-world situation to explain this.

Suppose you are shopping in a grocery store and have put some items in 
your cart, as shown in the following Math in Action box.

Math in Action: A List of Groceries for Purchase

Item Unit Price Quantity
Bread $2.50 3 bags
Milk $2.89 2 bottles
Cookies $3.99 5 boxes
Water $0.99 6 bottles
Juice $1.75 6 bottles
Cereal $3.50 4 boxes
Orange $0.65 8 pieces



To make sure that you have enough money on you to pay for these items, 
you want to know the total amount of money for these items. You take out 
your TI-30 calculator and punch in the following:

2.50 × 3 + 2.89 × 2 + 3.99 × 5 + 0.99 × 6 + 1.75 × 6 + 3.50 × 4 + 0.65 × 8

You then hit the = key and the total is displayed instantly as 68.87. In other 
words, the calculator first computes 2.50 × 3, puts the result somewhere in 
its memory, then computes the next type of items, 2.89 × 2, and again puts 
the result somewhere in its memory. The same procedure is repeated for all 
remaining items, and then it sums up the amounts for all individual types of 
items and displays the total.
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Let’s suppose the operations did not have this order. Instead, all opera-
tions should be carried out from left to right. For the example problem, the 
calculator (or a human being, for this matter) would first do the leftmost 
operation, 2.50 × 3, and get 7.50. This is the amount of money for bread, and 
it’s fine so far. The calculator would proceed to the next operation, 7.50 + 
2.89 and get 10.39. Well, this doesn’t make much sense. What is the meaning 
of adding the unit price of milk to the amount of money needed for 3 bags 
of bread? The next step would be even more irrational: 10.39 × 2. What does 
the result mean? Before long, the calculations would get out of hand, and 
a correct amount of money for the groceries would never be reached. Sim-
ply put, carrying out operations simply from left to right wouldn’t work 
in many cases. There definitely should be a certain order by the type of 
operation.

Let’s look at a different scenario. Suppose the order of operations was 
addition before multiplication (to make things simpler, let’s leave out 
subtraction and division). After all, children learn addition first and then 
 multiplication—and you might wonder, wouldn’t it make more sense to 
carry out addition before multiplication? Again, let’s refer to the grocery list 
problem and see how that would turn out. If, as before, you punched in the 
numbers this way:

2.50 × 3 + 2.89 × 2 + 3.99 × 5 + 0.99 × 6 + 1.75 × 6 + 3.50 × 4 + 0.65 × 8

the calculator wouldn’t be able to produce the correct amount of money. In an 
“addition before multiplication” order, the calculator would first do 3 + 2.89. 
But that doesn’t make sense: What does the quantity of bread plus the unit 
price of milk mean? In other words, what do you call the result—5.89 bags, or 
5.89 dollars? Again, it wouldn’t give us the amount we want.

To obtain the correct amount of money with either “order,” that is, the 
“from left to right” order or the “addition before multiplication” order, we 
would have to use parentheses. Therefore, we would need to key in this 
sequence on a calculator:

(2.50 × 3) + (2.89 × 2) + (3.99 × 5) + (0.99 × 6) + (1.75 × 6) + (3.50 × 4)  
 + (0.65 × 8)

This would work. But think about how much trouble it would be to have to 
enter a pair of parentheses for each type of groceries you had picked. The 
example list contained only 7 items. If your grocery list was 200 types of items 
long (not unheard of), you would have to literally enter 200 pairs of parenthe-
ses. It would be very time consuming and prone to error to do this.



60 ◆ The Order of Operations

Thus, it all boils down to this: With the order of operations we have, for 
situations like the grocery list problem, there is no need to use parentheses—
this order is simpler, saves time, and less error prone.

You may ask, “Aren’t there situations where people have to add before 
they multiply? In such situations, wouldn’t it make as much sense to stipu-
late an ‘addition before multiplication’ order as a ‘multiplication before addi-
tion’ order?”

Certainly there are such situations, such as this scenario: “Ms. Smith 
teaches 3 second-grade classes, and there are 18, 25, and 22 children in these 
classes. If she needs to collect $5 from each child for the upcoming field trip, 
what is the total amount of money she has to collect?” If the order of opera-
tions were “addition before multiplication”, then either 18 + 25 + 22 × 5 or 5 × 
18 + 25 + 22 would take care of it, and we wouldn’t have to use parentheses.

However, such situations are far less common than those such as calculat-
ing the total sum of money for a list of groceries. In fact, unlike the grocery list 
 scenario—where you can create a list as long as you want it to be (the general 
manager of a grocery store could literally sum up the value of all the inventory 
of that store—thousands of types of commodities, on a handheld calculator, if he 
or she so chooses and if the calculator has enough memory, without using a sin-
gle pair of parentheses)—it’s very difficult, if not impossible, to imagine a long 
list where all additions would need to be computed before all the resulting sums 
multiplied. Try coming up with a story problem to fit 23 + 50 × 31 + 29 × 27 + 99 × 
54 + 75, where addition needs to be executed before multiplication, and you’ll 
realize there aren’t many such situations. Adopting an “addition before multi-
plication” order would make it necessary to use parentheses in all those omni-
present grocery list-type situations, and that would be very counterproductive.

This is precisely the underlying reason why multiplication should come 
before addition: It is simpler and saves time. Mathematicians didn’t simply 
pick multiplication over addition in specifying the order of operations. There 
was a reason to do so.

Next time you go shopping, try using a pair of parentheses for every 
type of items in calculating the total amount of money needed. Then you will 
start to appreciate the rule mathematicians have set up for us: multiplication 
comes before addition.

Are Negative and Subtract Really Different?

Just recently, Jane learned that the correct order of operations stipulates that 
addition and subtraction are on the same level and should be performed from 
left to right, and so are multiplication and division. This was fine now, but then 



The Order of Operations ◆ 61

she encountered a new problem: The order of operations doesn’t say anything 
about the negative sign. So, based on her understanding, this is what Jane 
told her children one day about how to solve − +3 52 : “We have exponent and 
addition in this problem. What do we do first?” After she got confirmation 
from her children, Jane finished the problem in this way: − + = + =3 5 9 5 142 . 
In other words, she squared −3 first, and got 9. Then adding 5 to it, she got 14.

Unfortunately, this is incorrect. The first part of the problem, −32, actu-
ally has two operations involved: a subtraction and an exponent. We know 
exponents come before subtraction, and for that part, the result is: − = −3 92 .

You might protest, “That’s a negative sign! It’s not a subtraction sign!”
But aren’t they the same thing?
They are.
Treating the negative sign and the subtraction sign as different may be the 

underlying reason that many people miscalculate the problem just described. 
Since there is no mention of the negative sign in the rule governing the order 
of operations, many people assume this negative sign isn’t part of the picture. 
So Jane, not surprisingly, considered this negative sign and 3 as if they were 
“fused” together, and that’s why her result was a positive 9.

In reality, no matter how you write the negative sign (that is, right at the 
middle position or a little higher above the middle position) and no matter how 
you say it (be it negative, minus, or subtract), it is the same thing. What applies 
to “subtract” applies to “negative.” That’s why for the problem described, 
the negative sign has to wait until the exponent is executed. If, however, you 
want to square the whole quantity of −3, you have to put it in parentheses, 
as in ( )− =3 92 . This is very similar to the relationship between multiplication  
and addition, where multiplication takes precedence over addition, as in  
2 + 3 × 4 = 2 + 12 = 14. If, however, you want addition to be performed first, 
you have to resort to parentheses, as in (2 + 3) × 4 = 5 × 4 = 20.

If you have a stubborn habit of wanting to square the whole quantity of 
−3 when you see −32, here’s something you can do. When you are presented 
with −32, first put a different number before it. Then you solve the problem as 
you would normally do. After you’re done, then remove whatever you have 
put there. Let’s suppose you see −32 and you aren’t so sure about whether to 
square the whole quantity or the 3 only. You put a number, say 52, before it, 
and now it has become 5 32 2− . You won’t have any problem performing the 
next step for this problem: 5 3 25 92 2− = −  (you don’t want to say the sign 
before 9 has now become positive, do you?). Since you have put a number 
there as a helper, you need to remove it now. So remove 52, which has become 
25, and you should have −9 left as the result of −32.

So from now on, first convince yourself that − = −3 92 , and then convince 
yourself that negative, minus, and subtract are all the same mathematically.



An Equal Sign Means Equal

It’s very often the case that there’s more than one operation in an arithmetic 
expression, and solving it naturally requires several steps. Here’s what Jane 
showed her children about how to evaluate 9 × 4 + 7 − 5 + 1, as shown in the 
following Math in Action box.

Algebra

8

Math in Action: A Problem Jane Solved

9 × 4 + 7 − 5 + 1
= 36 + 7
= 43 − 5
= 38 + 1
= 39



While the final answer was correct, there was a serious problem with the 
process. Specifically, Jane used equal signs to connect expressions that are 
not equal. She simply wrote the result of the first operation and then brought 
down the next operation, disregarding what the whole problem says or what 
each intermediate step equals to. To have a better idea of where her mistake 



Algebra ◆ 63

lies, let’s first evaluate what each of the three middle lines equals to and see 
if it justifies the use of an equal sign (see the following Math in Action box).

Math in Action: The Three Middle Lines  
Are Problematic

Line 1: 9 × 4 + 7 − 5 + 1
Line 2: 36 + 7 (= 43)
Line 3: 43 − 5 (= 38)
Line 4: 38 + 1 (= 39)
Line 5: 39



All the three intermediate steps lead to different results. Therefore, it’s 
a mistake to connect them with an equal sign. It’s as preposterous as saying 
“one equals two.”

Jane may feel tempted to claim that she got the correct answer anyway. 
To discredit this claim, we need to take a look at what effect this illogicality of 
using equal signs has on children’s future learning of mathematics, for there’s 
a long journey lying ahead of them handling more sophisticated math prob-
lems than just finding the correct answer for a simple expression as 9 × 4 + 
7 − 5 + 1. Two broad math topics can be negatively affected by this mistake. 
The first one is children’s future learning of solving equations. We know that 
in the process of solving an equation, one of the key notions is to isolate a vari-
able by adding, subtracting, multiplying, or dividing by a certain quantity as 
long as we do it to both sides of the equation. This is very much like balancing 
scales. If we put a weight on one side without putting a comparable weight on 
the other side of the scale, it will become unbalanced. Connecting expressions 
that are not equal directly runs afoul of this key notion, causing the two sides 
of an equation to be “unbalanced.”

The second topic to be affected is doing mathematical proofs. Take one 
method of proof, proof by contradiction, for example. Here let’s refer back to 
an actual proof we did at the beginning of Chapter 7 when we were discuss-
ing the order of operations. We first assumed that 7 − 2 + 3 = 2 is true. Then 
after introducing into the proving process the indisputably true statement 
7 − 2 − 3 = 2, we found that if both statements were true, then it must follow 
that 3 = −3. Because of this contradiction, we concluded that 7 − 2 + 3 = 2 
is false. In this process, all that matters is the truth value of a statement: for 
example, 1 + 2 = 3 is true but 3 = −3 is false. If children have difficulty tell-
ing false statements from true ones, they will certainly have difficulty doing 
mathematical proofs.
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In addition, Jane’s way of evaluating the first operation before bringing 
down the second operation will not work properly if all the operations are not 
in a left-to-right manner, as in:

18 − 5 × 3 + 12 ÷ 6
= 15 . . .

Even though the first number, 18, should be skipped for the moment, after the 
execution of 5 × 3, Jane really could not go any further from there, because 
the next operation is not immediately after 15. This is where errors can easily 
occur.

Here’s a lesson to draw: Use equal signs only between expressions that 
are equal. In this regard, this is the rule applicable to all expressions, whether 
they should be carried out from left to right or whether they are in a not-so-
organized order. What’s more important, this will lay a solid foundation for 
children’s future learning of other math topics such as solving equations and 
doing proofs.

With that said, the proper way of evaluating the two problems discussed 
earlier is shown in the Math in Action boxes that follow.

Math in Action: The Proper Way of Evaluating  
Jane’s Sample Problem

9 × 4 + 7 − 5 + 1
= 36 + 7 − 5 + 1
= 43 − 5 + 1
= 38 + 1
= 39



Math in Action: The Proper Way of Evaluating  
a Problem not Quite “Organized”

18 − 5 × 3 + 12 ÷ 6
= 18 − 15 + 12 ÷ 6
= 18 − 15 + 2
= 3 + 2
= 5
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What Does Adding Up Numbers Landed Have to  
Do with Finding Factors?

After teaching factors, Jane gave her children an exercise to do. First she 
gave each child a worksheet with numbers 1–100 listed sequentially, each in 
a square, with 1 at the “Start” point and 100 at the “Finish” point. Then she 
divided her children into groups of two and instructed them to roll a dice, go 
to a number, underline it with a colored marker, and then write out all fac-
tors this underlined number has. The two children in each group should take 
turns (using different-colored markers) until one of them reached the end of 
the list. At this point, they would need to add up all the underlined numbers, 
and the child with the larger sum would be considered the winner.

The following Math in Action box shows the work of Tom and Megan. For 
the sake of brevity, only numbers 44 through 53 are shown.

Math in Action: Megan Won This Game for  
Landing Numbers That Have a Larger Sum

Tom
44: 1, 2, 4, 11, 22, 44
45: 1, 3, 5, 9, 15, 45
46:
47
48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
49
50
51
52
53

Sum of underlined numbers:

44 + 45 + 48 = 137

Megan
44
45
46
47: 1, 17
48
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For the selected part of the game, Megan won, as the sum of the three 
numbers landed was 151, larger than Tom’s sum, 137.

Seems to be an interesting game, doesn’t it? But here is a problem: What 
does adding up all the underlined numbers have to do with finding factors? 
The instructional focus of this lesson apparently was finding factors, but 
adding up all numbers landed drifted away from this focus into something 
children had dealt with much earlier: finding the sum of 2-digit numbers. In 
other words, when they added up the underlined numbers, they didn’t even 
have to look at what factors they had found. A winning-conscious child (and 
most of them are at this age) would soon discover that what factors a number 
contains really didn’t matter in winning the game. A better chance was simply 
to land on larger numbers.

Thus, the focus of this game should be changed back to factors. Instead 
of telling her children to find the sum of all the numbers landed, what Jane 
needed to do was tell them to find the number of factors for each number 
landed, write down that number to the right of those factors, and then find the 
grand total of all the factors found. The child with the higher total number of 
factors wins. The following Math in Action box shows how the worksheet of 
the game would look based on the revised game plan.

49
50
51: 1, 3, 17, 51
52
53: 1, 53

Sum of underlined numbers:

47 + 51 + 53 = 151

Math in Action: Tom Won This Game for Having  
Landed on Numbers Containing More Factors

Tom
44: 1, 2, 4, 11, 22, 44 (6 factors)
45: 1, 3, 5, 9, 15, 45 (6 factors)
46
47
48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 (10 factors)





Algebra ◆ 67

49
50
51
52
53

Total number of factors:

6 + 6 + 10 = 22

Megan
44
45
46
47: 1, 47 (2 factors)
48
49
50
51: 1, 3, 17, 51 (4 factors)
52
53: 1, 53 (2 factors)

Total number of factors:

2 + 4 + 2 = 8

By this revised game plan, Tom won the game for landing on numbers 
that had a total of 22 factors. Megan had landed on numbers that generated 
only 8 factors. In order to win this game, a child has to land on numbers with 
more factors than those with fewer factors. Now, with this revised game plan, 
Jane’s children would need to know what numbers are “factor-rich” and what 
numbers are “factor-poor.”

This small change will result in a positive effect in helping children handle 
the concept they are learning at this time: two numbers of a similar magnitude 
may contain very different numbers of factors: For example, 47 has only 2 fac-
tors while 48 has 10.

The benefits actually don’t just stop here. A good understanding of a num-
ber and its factors can help children build a solid foundation for learning at 
least the following two topics:

1. Simplifying fractions. If the denominator and numerator have a 
common factor (except for the number 1), then this fraction can be 
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simplified by this factor. To use the worksheet Jane had used as an 
example, both 45 and 48 have 3 as their common factor. If a fraction 

has these two numbers in it such as 
45
48

, then this fraction can be 

simplified by this common factor. Furthermore, if the two numbers 
in a fraction have two or more common factors, then using a larger 
common factor will involve fewer steps and thus saves time. For 
example, 44 and 48 have two common factors: 2 and 4. Simplifying 

a fraction having these two numbers such as 
44
48

 by 4 involves fewer 
steps.

2. Distinguishing between prime and composite numbers. It’ll be very 
easy to extend from a “factor-poor” number to a prime number, 
defined as a number having 1 and itself as its only factors. In the 
worksheet Jane had used, 47 and 53 have only 2 factors each, and 
thus they are prime numbers. In contrast, those “factor-rich” num-
bers can be easily redefined as composite numbers, those having 
three or more factors, such as 44, 45, and 48.

Timelines Aren’t Good Candidates for Teaching Negative Numbers

To introduce her children to the concept of negative numbers, Jane decided 
to relate it to their daily life as closely as possible. She already has a school 
calendar on the wall, and the first thing she does each morning is to have her 
children indicate the number of days that school has been in session (“Today 
is day 1” for the first day of school, “Today is day 2” for the second day of 
school, and so on). So she decided to capitalize on this calendar. She said to 
her children, “Imagine school starts tomorrow and you’re preparing for it. 
Tomorrow would be day 1 because that’s the first day of school. Then today 
is one day before school starts, we’ll call it day −1. Yesterday was two days 
before school starts, so it is −2 . . . .”

A problem with using a timeline to model negative numbers is that it 
doesn’t exactly signify the concept of a number line: A key element, 0, is miss-
ing. In other words, if school starts tomorrow and today is represented as day 
−1, then you would have to jump from day −1 to day 1, with no day 0 between 
today and tomorrow.

Because of this missing 0, calculations involving timelines can be errone-
ous. Let’s use some examples to explain this.

People usually use subtraction to figure out the length of time that has 
elapsed between two points of time. For example, in figuring out the number of 
years between 1989 and 2016, subtraction will do the job nicely: 2016 − 1989 = 27.  
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In fact, this is the most common way to calculate a person’s age. When these 
dates don’t span 0, there’s no problem at all. However, because of the missing 
0 that separate the dates before and the dates after, calculations of two dates 
that span 0 won’t work. Using the same school calendar example, there are 
2 days between day 1 and day 3 (3 − 1 = 2). This is correct. But if we shift the 
starting date one day ahead of time and ask how many days there are between 
day −1 and day 3, we know there are 3 days. But if we use the formula as we 
would regularly use, we would reach a wrong result: 3 − (−1) = 4.

The same problem would appear in other measurements of time when 
it goes back beyond the reference point of the calendar era currently in use. 
Case in point: There’s no year between year 1 BCE and year 1 CE in this year- 
numbering system. That means an event would be either on the CE side or 
the BCE side, with no neutral year, namely, year 0, in between. Technically, 
subtraction between two dates that span this “turn” will yield a result that is 
off by 1. But people seldom notice this problem because calculation involv-
ing this reference point, dating back more than 2000 years, is hardly needed 
in daily life. Sometimes when we do need to refer to events dating back that 
early in time such as referring to artifacts crafted around that time or earlier, 
approximate numbers are usually sufficient. Under this circumstance, a dif-
ference of 1 is really insignificant and negligible. For example, if archeologists 
unearthed, in year 2000 CE, an item that was supposedly crafted in year 
1000 BCE, how old was it in year 2000 CE? We say it was 3000 years old, as 
2000 − (−1000) = 3000. However, this isn’t totally correct. If those two dates 
were exact, then the actual age was 2999 years. This is because 999 years 
elapsed between year 1000 BCE and year 1 BCE, and 1999 years elapsed 
between year 1 CE and year 2000 CE, but only 1 year elapsed between year 1 
BCE and year 1 CE. Adding up those three lengths of time, we have: 999 + 1 + 
1999 = 2999. This can be illustrated with Figure 8.1.

Such an incongruity often goes undetected, as mentioned earlier, because 
of the small difference in contrast with the large, approximate time span. 
However, if we focus on a short time period that spans only this turn of 
millenniums, the mistake could be jarring. For example, if a political move-
ment started in summer, year 1 BCE and lasted till summer, year 1 CE, and if 

999 years

1000 BCE 1 BCE 1 CE 2000 CE

1999 years1 year

Figure 8.1 The Length of Time Between 1000 BCE and 2000 CE Is 2999 Years

Note: figure not drawn to scale
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someone stated the movement lasted for two years because 1 − (−1) = 2, that 
would make a huge historical error.

Because timelines with this missing 0 don’t fare well in calculating an 
exact answer between two points of time around it, they aren’t good can-
didates for use in teaching elementary children about negative numbers. 
Although at the beginning stage it would seem fine when you want to refer to 
“one day before school starts” as day −1, and “two days before school starts” 
as day −2, the real problem will surface as soon as you start to calculate the 
length of time that has elapsed. Since this is something that children will soon 
spend time on, it’ll be necessary to find things that have a 0 between positive 
and negative values. In this regard, a thermometer or a person’s bank account 
are ideal candidates. In other words, there is a 0º in temperature and there is 
a balance of 0 in one’s bank account. A room with a temperature of 1º is 2º 
warmer than another room with a temperature of −1º, and compared with a 
person with a balance of −$1, if Jane has a balance of $1, then she is $2 richer. 
Between these two candidates, a thermometer is particularly good in that it’s 
visually analogous to a number line: Lay down a thermometer in centigrade 
reading (it usually contains 0°) horizontally with the higher numbers on the 
right side and you have a bona fide number line.

The Worst Example in Teaching Exponents

It was time for her children to learn exponents. Jane explained the meaning of 
the “small 2” raised to the upper right corner of the base number, telling them 
that it was an exponent. She then presented with this example: 22 = 4.

This is the worst example in teaching exponents. Let’s see why.
An exponent means the number of times a quantity is to be multiplied. 

For example, if we want to multiply four 5s, namely, 5 × 5 × 5 × 5, we can 
express this as 54. Here 5 is called the base and 4 is called the exponent. At the 
beginning stage many teachers would have their children practice on writing 
out the expanded form of 54 before writing the result, as: 54 = 5 × 5 × 5 × 5 = 
625. This is because children at this time have a tendency to interpret 54 as  
5 × 4. This tendency will linger for a while before they will gradually grasp 
the meaning of exponents. This intermediate step of writing the expanded 
form is meant to help children understand the meaning of exponents and 
not to form the misconception of interpreting 54 as 5 × 4. However, the use of  
22 = 4 as a beginning example is instilling in children exactly the misconcep-
tion they should avoid forming.

Let’s trace the mind work of children who have just been exposed to 
exponents. At this beginning stage, some children may use the “face value” 



Algebra ◆ 71

of what they see and interpret the 4 in 54 as a factor (5 × 4) instead of as the 
number of factors (four such factors, namely, 5 × 5 × 5 × 5, where there is not a 
4 visible on the surface). When they see that the result of 54 = 625 contradicts 
their face-value interpretation (5 × 4 = 20), they are forced to abandon the face-
value interpretation and reconsider the definition of an exponent. Gradually 
they will adopt the correct interpretation of exponents and are on their way 
to handling expressions containing exponents.

But the example of 22 = 4 perfectly matches their incorrect, face-value 
interpretation. Even though they may have been told many times what  
the “small 2” means, they see two 2s, take the base for the first factor and 
the exponent for the second factor, multiply them, and get the right answer  
(2 × 2 = 4)! This will simply reinforce their incorrect interpretation, and they 
will probably continue to produce answers like 32 = 6, 42 = 8, and so on. In 
other words, they are not starting off on a solid ground. Later they will have 
to spend time unlearning this misconception.

You may ask, what’s a good example to use in teaching exponents? The 
answer is, any other number will work as long as its magnitude is low so  
that children can see the meaning of exponent easily, such as 32 = 9 (3 × 2 ≠ 9), 
42 = 16 (4 × 2 ≠ 16), and 53 = 125 (5 × 3 ≠ 125).



Don’t Count the Diagonals on a Grid

When Jane was teaching perimeter, she drew a few geometric figures on a 
grid. Then she told her children what perimeter was and that in order to find 
it, they needed to count the spaces on the grid for each side and then add up 
all these sides. Her first figure was a rectangle (see Figure 9.1). Her children 
counted the four sides to be 4, 6, 4, and 6 units. Next, she had them add up 
these lengths and they got 4 + 6 + 4 + 6 = 20 units.

The next figure was a triangle. Jane and her children counted all three 
sides to be 5, 5, and 5 units and thus they calculated the perimeter to be  
5 + 5 + 5 = 15 units (see Figure 9.2).

This is a mistake. After all, if all the three sides of a triangle were 5 units 
each, it would have been an equilateral triangle, and the triangle Jane drew 
was apparently not. It could be reasoned that all the three angles in an equi-
lateral triangle are 60º each, and the triangle Jane drew had a right angle, with 
two of its sides coinciding with the grid lines. If a triangle isn’t equilateral, 
then all the three sides are not congruent. So we can conclude that for the 
triangle shown in Figure 9.2, it’s certainly not the case that all the three sides 
are 5 units each.

You may ask, “I can see that the two legs of this triangle are 5 units each. 
But how long is its hypotenuse if it’s not 5?” To answer this question, let’s take 
one square from the grid and see (see Figure 9.3).

Geometry: Bits and Pieces

9



Figure 9.1 For This Rectangle, the Perimeter Is 4 + 6 + 4 + 6 = 20 Units

Figure 9.2 For This Triangle, the Perimeter Is Not 15 Units. Specifically, the hypotenuse is not 5 units.
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In this triangle, the two legs are 1 unit each. By Pythagorean theorem, for 

any right triangle, a b c2 2 2+ = , and therefore c a b= +2 2 , with a and b being 

the two legs and c being the hypotenuse of such a triangle. Thus, c = a b2 2+ = 

1 12 2+  = 1 1 2+ =  (you can find on a calculator that 2 is about 1.4). This 
is the ratio for any isosceles right triangle (cutting a square along one of the 
diagonals will give you two such triangles). In other words, if the two legs of 
a right triangle are congruent, then the ratio of the three sides of this triangle 
(leg : leg : hypotenuse) is 1 : 1 : 2.

As the hypotenuse in Jane’s original triangle is 5 times this length, it’s 
5 2 5 1 4 7× ≈ × ≈. , about 2 units longer than Jane thought it to be.

1

1

√2

Figure 9.3 For an Isosceles Right Triangle as This One, the Hypotenuse Is √2 Units Long

Figure 9.4 For Lower Grades, a Simpler Way Is to Use Horizontal and Vertical Line Segments Only
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Now that we know that all the three sides of a right triangle, as drawn on 
a grid, are not congruent, how should we go about teaching children how to 
find the perimeter of a triangle? One way is to cut a grid into strips and have 
each child use a strip as a ruler to measure the distance. This, however, may be 
a challenging task if your children are in primary grades and not experienced 
in measuring yet. Another issue your children will encounter is having to 
round, as the hypotenuse of most triangles drawn on a grid will be unlikely 
to end up being whole units.

For lower-grade children, a simpler way would be to draw figures on the 
grid’s horizontal and vertical line segments only (see Figure 9.4). After all, 
the focus of this lesson is perimeter, and you want to get this concept across 
without your children having to deal with measuring at the same time.

“All 3-D Shapes Have an Extra Third Dimension of Height”

After her children had enough experience with 2-D shapes, Jane started 
exposing them to 3-D ones. Naturally, she based her discussion of 3-D shapes 
on their knowledge of 2-D shapes. She said, “A rectangle is a two-dimensional 
shape, and it has two dimensions of length and width. A rectangular prism 
is a three-dimensional shape, and it has three dimensions of length, width, 
and height. So we can say all three-dimensional shapes have an extra third 
dimension of height.”

But Jane didn’t have a ready answer when a child asked, “When I look 
at a triangle, it’s a two-dimensional shape and its two dimensions are base 
and height. Now if I have a triangular prism, it’s a three-dimensional shape. 
Then what’s its third dimension? Is it another height? If so, how is it different 
from the previous height? Or should we think base is no longer a dimension, 
and now we must say that a triangle has length and width, but not base and 
height?”

The child’s questions are legitimate. It’s Jane’s definition of all 3-D shapes 
having a third dimension of height that’s problematic. Apparently Jane rank 
ordered length, width, and height and saved the last word, height, for her 
“third” dimension. But she ran into trouble when she had a 2-D triangle that 
already has a “height.”

First of all, “two-dimensional” and “three-dimensional” are just different 
aspects of things we perceive or describe. This isn’t like the case where people 
first invented the clock to tell time and later added a special feature of “alarm” 
for waking someone up. It’s difficult to imagine the initial invention of an 
alarm clock without a regular clock having been there already. In this sense, 
we may say that an alarm clock is a regular clock with an additional feature of 
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alarms. In contrast, 2-D shapes and 3-D shapes have always been there. It just 
depends on the perspective in which we want to describe them (although of 
course children learn 2-D shapes before they learn 3-D ones). For example, if 
you plan to hang a string across your room for hanging decorations on, you’ll 
need to know the distance across your room. This is 1-D. Suppose you want 
to lay carpet for that same room: You’ll need to find out its area. This is 2-D. 
Further suppose you want to use that same room for storing as many same-
size boxes as you can: You will have to find out its space, or volume. This is 
3-D. Your room is the same room. Depending on whether you want to hang 
a string, lay a carpet, or store boxes, you are looking at it as one-dimensional, 
two-dimensional, or three-dimensional.

Now let’s consider two scenarios to give height a close look. For the first 
one, suppose you’re looking at the floor of your room and thinking about its 
area in terms of length and width. Then after a while you are looking at your 
room as storage space and you add a third dimension, height. For the second 
scenario, let’s suppose you’re thinking about buying a tapestry and now 
you’re looking at one of the walls in your room in terms of length and height. 
When you want to consider the whole space and switch to the third dimen-
sion, you will find that height has been used and there is only width left. If, 
however, you’re thinking about the wall as being length by width, then your 
height will be horizontal. But the real issue is, does it matter for what you call 
the “third” dimension? Or does it matter if your height is not upright but 
rather from side to side? Certainly, it doesn’t. In this sense, there’s no order in 
which one of the three terms, namely, length, width, and height, should be used 
only after the other two have been used. Let’s say you have a book in front 
of you with the dimensions 20 cm × 30 cm × 5 cm. You can name whichever 
side length, whichever side width, and whichever side height. If you want 
to describe the front cover, you can say “length” and “width.” But it’s just as 
legitimate if you call them “width” and “height.” Can you call the 5-centimeter 
side the “length”? Of course you can if you want, and there’s nothing that 
says you can’t.

The simplest way to avoid getting yourself into the dilemma described 
earlier is to avoid specifying height being the third dimension. It can be height, 
but it can also be length or width, depending on which you prefer. For the 
triangular prism problem that one of Jane’s children asked about, since base 
and height have been used, she may use length to refer to the third dimension 
(as if the triangular prism is laid down sideways)—or she may use width just 
as well.

In short, you may want to get out of the mindset of “order” in which 
height must be used for the third dimension. Then it will be much easier to 
explain the difference between 2-D and 3-D shapes to your children.
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Don’t Use “Vertical” to Find the Horizontal Value

During a lesson on coordinate geometry, Jane described to her children how 
to plot a point on the coordinate system. She said, “A point is represented by 
an ordered pair such as (5, 2). Here the first number represents the x-value and 
the second number represents the y-value. To plot such a point, first look at 
the x-value and count that many vertical points on the horizontal line. Then 
look at the y-value and count that many horizontal points on the vertical line” 
(see Figure 9.5).

While this might work for her, the way she said it can be confusing to 
her children. In locating and plotting a point on the coordinate system, 
direction is of utmost importance. The position of the coordinates indicated 
in an ordered pair dictates which direction to go. The x-value is always 
written first, before the comma, and is to be located horizontally on the 
coordinate system. The y-value always comes second, after the comma, and 
is to be located vertically on the coordinate system. Mixing up these two 
directions can easily cause children to make mistakes, as (5, 2) and (2, 5) are 
different points. When Jane said to find the x-coordinate (5, in this example) 

-2

-5 5

2

4

6

-4

-6

Figure 9.5 An Ordered Pair (5, 2) Plotted on the Coordinate System
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her children needed to “count 5 vertical points on the horizontal line” she 
mentioned both “vertical” and “horizontal.” Then when she said to find the 
y-coordinate (2) they needed to “count two horizontal points on the vertical 
line,” again she mentioned both “vertical” and “horizontal.” When it’s time 
for her children to plot some points on their own, some of them may wonder, 
“Which is which?”

To give children a solid grasp of the position indicated by the two num-
bers in an ordered pair and help them avoid mixing the two coordinates, we 
need to tie the word horizontal to the x-axis only, without saying the word 
vertical. Similarly, we need to tie the word vertical to the y-axis only without 
mentioning the word horizontal.

You might ask, “Won’t I be handicapped without using vertical when I 
need to talk about locating the point on the x-axis?” Not at all. As a matter 
of fact, Jane’s saying “Count 5 vertical points on the horizontal line” when 
plotting (5, 2) was based on a misconception. She was misled by those ver-
tical lines. To make this clearer, let’s plot 5 on a regular number line (see 
Figure 9.6).

Here you probably wouldn’t say, “Count 5 vertical points to the right 
of 0.” A better choice of word to use here is spaces or units, as “Count 5 spaces 
to the right of 0.”

A coordinate system is nothing more than two regular number lines put 
together, with one laid out horizontally and the other laid out vertically, inter-
secting at 0 for both of them. When plotting the first number of an ordered 
pair, we need to focus on the horizontal number line only, without being dis-
tracted by the vertical lines that pass through this line, and simply say, “Count 
5 spaces to the right of 0 (if that number is positive) on the horizontal line.” 
Similarly, when plotting the second number of this ordered pair, we need to 
focus on the vertical number line without being distracted by the horizontal 
lines passing through it and say, “Count 2 spaces up from 0 (again, if that num-
ber is positive) on the vertical line.”

The Two Sides of a Symmetrical Figure Aren’t Exactly the Same

During her lesson on line symmetry—the most common form of symme-
try discussed in elementary school classrooms—Jane gave this definition: 

Figure 9.6 A Number Line With 5 Plotted
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“Symmetry means the same. When a figure is symmetrical, it means its two 
sides are exactly the same along the line in the middle.”

This definition is problematic. To see why, let’s use a simple figure to illus-
trate (see Figure 9.7).

In this figure, there is a bird on either side of the line in the middle, and 
the two birds are exactly the same with respect to their shape, size, and layout. 
But is this figure symmetrical along the line in the middle? By the definition 
Jane gave, her children would be led into thinking that it is because the two 
birds fit her definition of being “the same.” In reality, however, this figure is 
not symmetrical.

To properly define line symmetry, you have to stress what constitutes the 
most essential feature. Depending on the age of your children, you may do 
one of several things. For younger children, you may demonstrate cutting out 
a symmetrical figure on a piece of paper. First fold the paper to make a crease. 
Then draw a figure along the crease, preferably a half figure such as half of a 
butterfly or half of a tree. Cut out the figure and then unfold the paper. What 
your children see is a symmetrical figure along the crease. The point here is to 
demonstrate to your children that when the figure is folded along the crease, 
one side of the cutout matches the other.

If your children are old enough to know the meaning of mirror image, that 
will be a great phrase to use to explain the meaning of line symmetry. To aid 
your children in the understanding of this concept, you may demonstrate 
by putting a mirror beside a simple figure, a paper cutout, and so on, and let 
your children see the actual figure or cutout and its reflection in the mirror. 
These two corresponding parts form a symmetrical figure. For example, if 
you have a bird cutout and then have a mirror image beside it along the edge 
of the mirror, they will form a symmetrical figure. Then you may transfer this 
demonstration onto the board by drawing two birds facing each other along 
a line in the middle, as in Figure 9.8.

Now your children can see that the two parts of a symmetrical figure are 
not simply “the same,” but that they need to be a mirror image of each other. 
Because a mirror image is a reflection, line symmetry is also called reflection 
symmetry.

Figure 9.7 A Figure Isn’t Necessarily Symmetrical When Its Two Sides Are the Same
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Don’t Use Tiles to Figure Out the Perimeter

In teaching how to figure out the perimeter of a polygon, Jane divided her 
children into several groups and handed out to each group a rectangular 
piece of paper. She said, “What I’ve just given you is the floor plan of our 
room and let’s see what its perimeter is. Here for each group is a bag of ‘tiles’; 
each one represents a 1 meter by 1 meter square. First lay the tiles along the 
edge of the floor plan. Next count how many meters each side is and then sum 
up all the sides.”

All the groups of children laid the tiles down as Jane had directed (see Fig-
ure 9.9). However, while some groups figured out the correct perimeter to be 
34, a few others didn’t. They simply counted all the tiles around the perimeter 
and figured it to be 30.

Figure 9.8 A Figure Is Symmetrical When Its Two Sides Are Mirror Images of Each Other

Figure 9.9 Tiles Laid Down on a 7 × 10 Rectangular Shape
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You have probably noticed that the difference between the two measures 
is 4. That’s exactly what the four tiles at the corners did: Each one covered  
2 units on the perimeter but got counted just once.

A way to help children see the length of each side more clearly, you may 
want to use thin, long objects such as matches (with their heads removed). 
For the aforementioned activity, prepare pieces of paper with lengths of  
7 matches × 10 matches. Then give each group enough matches, with each one 
representing 1 meter, and ask all groups to lay the matches around the paper 
passed out, as shown in Figure 9.10.

The key point in this latter type of modeling is that no units at the cor-
ner will get accidentally skipped. As indicated by Figure 9.10, the perimeter 
of that shape is 10 + 7 + 10 + 7 = 34 meters. And this is a good practice for 
introducing the upcoming formula for calculating the perimeter of rectangles: 
perimeter = 2 × length + 2 × width, or perimeter = 2 × (length + width).

Figure 9.10 Matches Laid Around a 7 × 10 Rectangular Shape
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Length Doesn’t Necessarily Mean Longer

Jane drew a rectangle on the board and said this to her class: “What you see 
here is a rectangle. You’ve probably noticed the horizontal pair of sides are 
parallel and congruent, and the vertical pair of sides are also parallel and con-
gruent. Let’s first name these sides. The longer sides are called lengths, and 
the shorter sides are called widths.”

Linguistically, true, the word length comes from long, and it makes sense to 
assume that “length” refers to the longer sides of a rectangle. But this assump-
tion won’t hold true if we use the same logic for width: “Width comes from 
wide, so the wider sides are called widths, and the narrower sides are called 
lengths.”

If this isn’t convincing enough, let’s consider a pair of common antonyms: 
old and young. No one will have any problem in saying a man who’s lived for 
70 years is old and a baby who’s lived for 7 days is young. However, when we 
describe their age, we use old in both cases: “The man over there is 70 years 
old“ and “The baby over there is 7 days old.” We don’t say “The baby is 7 days 
young,” although a 7-day-old (again, old) baby can hardly be said to be “old.” 
The reason is this: When we aren’t using old in comparison with young, but 
rather when we’re using it to mean “age,” it’s an unmarked term and doesn’t 
necessarily have to do with being old. The same is true with length. When we 
use it to refer to a side, it doesn’t necessarily have to be longer than the other 
sides. It can be shorter than the other sides, but still we call it length.

10
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Simply put, when a term is used in an academic discipline such as math-
ematics, this term usually has its own specific meaning, and this meaning can 
be different from its everyday usage, just as child for tax filing purposes has 
specific definitions and may be different from what we usually use it to refer to.

So, what’s the mathematical difference between length and width? None. In a 
rectangle where the two pairs of sides are different in their linear distances (I’ve 
intentionally avoided using length here), length is one dimension and width is 
the other. It really doesn’t matter one way or the other. It doesn’t make any differ-
ence either. For example, suppose the longer side of a rectangle is 8 centimeters 
and the shorter side is 5 centimeters. If we name the longer side “length” (l = 8) 
and the shorter side “width” (w = 5), then the perimeter of this rectangle is p = 
2l + 2w = 2 × 8 + 2 × 5 = 16 + 10 = 26 cm, and its area is a = lw = 8 × 5 = 40 cm2. 
Alternatively, if we name the shorter side length (l = 5) and the longer side width 
(w = 8), then the perimeter is p = 2l + 2w = 2 × 5 + 2 × 8 = 10 + 16 = 26 cm, and its 
area is a = lw = 5 × 8 = 40 cm2. Not a thing has come up differently.

A look at this problem in a different perspective will tell us why it 
shouldn’t matter one way or the other. Suppose there were such a stipulation 
that the longer sides were called “lengths” and the shorter sides “widths.” 
How could we accommodate a square? We know a square is a special rect-
angle and—while it has its own perimeter and area formulas for easier cal-
culation purposes (p = 4s and a = s2, where s refers to the side)—any formula 
for a rectangle should apply to a square as well. For example, if a square has 
a side of 5 cm (see Figure 10.1), then its perimeter and area are p = 4s = 4 × 5 = 
20 cm and a = s2 = 52 = 25 cm2. Then, by way of formulas for a rectangle, p = 2l + 
2w = 2 × 5 + 2 × 5 = 10 + 10 = 20 cm and a = lw = 5 × 5 = 25 cm2 (in any square, 
l = w = s), respectively. This should hardly come as a surprise, because if for-
mulas for rectangles didn’t apply to squares, then squares would no longer 

Figure 10.1 A 5 × 5 Square

The perimeter and area of a square can be calculated using the formulas for a rectangle because it is a 
rectangle.
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be rectangles. If lengths must be longer than widths, how can anybody ever 
be able to decide which pair is the lengths and which pair is the widths since 
they happen to be equivalent?

To use an actual example: If a person’s computer screen is 20 cm from top 
to bottom (shorter) but 30 cm from left to right (longer), then is that person 
wrong to say that the width of the computer’s screen is 30 cm, if you think 
that width is the shorter side of a rectangle?

In short, the length of a rectangle can be either the longer or shorter side. 
And the same is true for width.

A Rectangle’s Orientation Doesn’t Matter Either

As width in its everyday use is usually defined as “distance from side to side,” 
Jane told her children to distinguish it from length in this way: “Look at the 
rectangle in front of you. The two parallel sides that go up and down are 
called lengths. The two that go from side to side are called widths.”

Just as it doesn’t matter whether the longer sides or the shorter ones of a 
rectangle are called “lengths,” its orientation, or layout, doesn’t matter either. 
Coupled with the situation where one pair of sides are longer than the other, 
there are two scenarios to consider. The layout may resemble a door, or it may 
resemble a television screen. For both scenarios, the length can be the vertical 
distance and the width the other dimension, or the length can be the horizon-
tal distance and the width the other dimension. It doesn’t matter at all which 
way you call it.

Let’s see why it should not matter one way or the other. Suppose we 
specify that the dimension from left to right was width and the dimension 
from top to bottom was length: What about a rectangle tilted 45º when neither 
pair of sides were strictly horizontal or vertical (see Figure 10.2). Now which 
is which? Should we say that we can’t handle such a rectangle any longer?

Figure 10.2 A Tilted Rectangle



Geometry: Common Geometric Shapes ◆ 85

The confusion is even worse if the layout and the lengths of the two pairs 
of sides are combined. Suppose it was stipulated that the longer side was 
length and the shorter side was width, and further suppose it was stipulated 
that the side from left to right was the width and the side from top to bottom is 
the length. Then how can we deal with a rectangle whose longer side is from 
left to right, such as a television screen? Now children can really get confused.

Simply put, the width of a rectangle can run from left to right or from top 
to bottom or whatever direction if the figure is tilted—and the same is true 
for length.

“A Rectangle Has Two Longer Sides and Two Shorter Sides”

In comparing a rectangle to a square, Jane said this to her children: “A square 
has four congruent sides but a rectangle has two longer sides and two shorter 
sides.” Before we take on this issue, let’s start with the defining features of 
each shape, as listed in the following Math in Action boxes.

Math in Action: Defining Features of a Rectangle

•	 Quadrilateral	(four-sided);
•	 opposite	sides	parallel	to	each	other;
•	 opposite sides congruent (equal in length); and
•	 all	four	angles	are	right	angles.



Math in Action: Defining Features of a Square

•	 Quadrilateral;
•	 opposite	sides	parallel	to	each	other;
•	 all four sides congruent; and
•	 all	four	angles	are	right	angles.



Here, all the features for both shapes are identical except for one: For a 
rectangle, the opposite sides are congruent whereas for a square, all four sides 
are congruent (this feature is italicized in the boxes).

Let’s take up the rectangle first. For any rectangle, each pair of opposite 
sides are congruent. There are two possibilities concerning the relationship 
between these two pairs: One possibility is that one pair is longer than the 
other, and the other possibility is one pair is as long as the other. Since the 
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defining features of a rectangle don’t say anything concerning the relation-
ship between these two pairs of sides, we have to assume that whether one 
pair of sides is longer than the other pair, or one pair is as long as the other, is 
irrelevant to whether a shape is a rectangle or not.

Let’s use a concrete case to explain this. Suppose we take a 10 cm × 6 cm rect-
angle and then increase the shorter sides by an increment of 1 cm. Its measurement 
will be 10 × 7, 10 × 8, 10 × 9, and so on. By the defining features of a rectangle, as 
long as the opposite sides of this shape are congruent and parallel and the angles 
are right angles, it remains a rectangle. Because we’re increasing the two shorter 
sides at the same time, none of the defining features is being altered, and we have 
to conclude that what we have after each increase remains a rectangle.

When the shorter sides of this figure have been increased to the point 
where they are of the same length with the original longer sides, the measure-
ment is now 10 × 10. This shape doesn’t cease to be a rectangle simply because 
the two pairs of sides happen to be congruent. In other words, their being con-
gruent doesn’t disqualify such a shape from being a rectangle. No definition of 
the rectangle ever says that the two pairs of opposite sides must be of different 
lengths in order to be a rectangle. When they are of the same length, it’s still a 
rectangle: It’s simply a special rectangle. We call this special rectangle a square.

The relationship between rectangles and squares can be illustrated with 
the diagram in Figure 10.3.

This diagram indicates that the relationship between these two categories 
is such that one is a subset of the other. They aren’t mutually exclusive of each 
other. Specifically, all squares are rectangles, but not all rectangles are squares. 
A squares is just a special kind of rectangle.

What’s Wrong with Saying “Triangles, Rectangles,  
Squares, and Hexagons”?

Although Jane realized that a square is a special rectangle, in practice she 
often regarded these two shapes, unwittingly, as being two different cat-
egories. For example, before presenting geometric solids, Jane wanted her 

Figure 10.3 An Illustration of the Relationship Between Rectangles and Squares
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children to review some common 2-D shapes so that when it came to a face on 
a solid, they could easily recognize that shape. She drew several figures on the 
board (see Figure 10.4) and said, “We have learned different two-dimensional 
shapes such as triangles, rectangles, squares, and hexagons, and now we are 
going to move on to three-dimensional shapes.”

The mistake here is juxtaposing rectangles and squares, and giving chil-
dren the impression that each type of shape is independent of the other. In 
fact, this is the root for the common misconception that a rectangle has two 
longer sides and two shorter sides, as discussed in the previous section.

When a list of things is enumerated, each member is usually independent 
of any other member in the list. In other words, they should be mutually 
exclusive of each other. You may say to your children, for example, “Please 
take out a pencil, a marker, and a piece of paper.” But you probably won’t 
say “Please take out a pencil, a marker, and a red marker”, because a marker 
and a red marker are not mutually exclusive of each other: A red marker is still 
a marker. If your children are old enough, they may even ask, “Isn’t a red 
marker also a marker?”

Similarly, it’s problematic to say “triangles, rectangles, squares, and hexa-
gons” because the members here aren’t mutually exclusive of each other. It’s 
as if you were saying “a pencil, a marker, and a red marker”—and decide 
for yourself if you don’t have any problem saying “Triangles, equilateral tri-
angles, and rectangles.”

The reason that many people wouldn’t juxtapose “a marker and a red 
marker,” or “a triangle and an equilateral triangle” but would often juxtapose 
“a rectangle and a square” is that the words rectangle and square don’t share 
anything in common as marker and red marker do. That rectangle and square 
are totally different words leads to the misconception that they are mutually 
exclusive figures, and to rationalize this misconception some people cre-
ated this “feature” for rectangles: “A rectangle has two longer sides and two 
shorter sides.” This is the same mistake as thinking that a marker can’t be a 
red marker at the same time.

Back to the example at the beginning of this section about reviewing a list 
of common geometric shapes, Jane can avoid making this mistake by simply 

Figure 10.4 Geometric Shapes That Aren’t Mutually Exclusive of Each Other
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listing “Triangles, rectangles, and hexagons” (see Figure 10.5). Should a child 
mention “squares,” she may say something to the effect of “Squares are just a 
type of rectangles” or “Rectangles include squares.”

Because the words rectangle and square have no linguistic linkage to each 
other, causing many children to believe that they represent mutually exclusive 
figures, a better way to handle this would be to avoid saying square altogether. 
When there is need to refer to such a shape, equilateral rectangle will do the job 
nicely. There are several reasons for this recommendation. First, a rectangle is 
to a square what a triangle is to an equilateral triangle. Due to the linguistic 
linkage between a triangle and an equilateral triangle, the relation between the 
two is self-evident (equilateral triangles are a subset of triangles, triangles 
subsume equilateral triangles, all equilateral triangles are still triangles, etc.). 
Children usually don’t have any difficulty distinguishing two categories of 
objects with one type having a name composed of the other plus a modifier. 
By the same token, if a square is referred to as an equilateral rectangle, it is as 
clear as equilateral triangle is. Children will easily perceive an equilateral rect-
angle as a subset of rectangles, and they will have no trouble understanding 
that an equilateral rectangle is still a rectangle.

Second, it will be no longer necessary for teachers to spend much time 
explaining the relationship between these two terms—no more clichés like 
“All squares are rectangles but not all rectangles are squares.”

Third, and most importantly, there will be no such mistakes as enumer-
ating non-mutually exclusive things like “triangles, rectangles, squares, and 
hexagons.” When squares are referred to as equilateral rectangles, it will be as 
unlikely for teachers and their children to say “triangles, rectangles, and equilat-
eral rectangles” as to say “Please take out a pencil, a marker, and a red marker.”

Base Doesn’t Necessarily Mean “Side at Bottom”

Jane drew a triangle on the board as indicated by Figure 10.6 and told her 
class, “In order to find the area of a triangle, we need to know its base and 
height. The base of a triangle is the side at the bottom. Let’s label it b. The 

Figure 10.5 Geometric Shapes That Are Mutually Exclusive of Each Other
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height is the perpendicular distance between the base and its opposite vertex. 
Let’s label it h.”

But Jane soon found herself in an awkward situation when a child 
approached her and, presenting her with a figure where the horizontal side 
was at the top rather than at the bottom (see Figure 10.7), asked, “What is the 
base of this triangle when the horizontal side is at the top?”

Can a side other than the one at the bottom be called a base, such as the top 
side in Figure 10.7? More importantly, can the formula for the area of a triangle 
still be applicable if the given side is at the top, instead at the bottom, as side 
b shown in Figure 10.7? Undoubtedly, the answer to both questions is “yes.”

Misunderstanding the term base for meaning the side at the bottom per-
haps stems from the root meaning of the word: “the bottom of something.” 
When the term was first decided on, mathematicians probably had the side at 
the bottom in mind (Longman Dictionary of Contemporary English defines base 
as “a line on which a figure stands”). But when a term is used in describing 
something in a specific discipline such as mathematics, the meaning associ-
ated with the discipline can be different from its everyday meaning or usage, 
as we discussed earlier in this chapter. Base is just one such term.

Concerning the specific problem at hand, the layout of a triangle really 
doesn’t matter with regard to its perimeter or area. For example, we can sim-
ply rotate the triangle as shown in Figure 10.6 into different orientations (see 
Figures 10.8 and 10.9) and, with the same given measures, the resulting area 
will not be affected at all.

So, you may ask, how should I define the base of a triangle? Since the 
layout doesn’t matter at all, you may simply say “The base of a triangle is any 
one of its three sides.” In Figure 10.7 shown above, either a, b, or c can be the 
base of that triangle.

Figure 10.6 A Triangle With the Horizontal Side at the Bottom

Figure 10.7 A Triangle With the Horizontal Side at the Top
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It is worth noting, however, that once the base has been designated, 
the height must be defined in relation to this base so that the formula 

area base height= ⋅ ⋅
1
2

 can be used to find the area. More specifically, the 

height is the perpendicular distance between this base and the opposite ver-
tex. This is similar to the case of the area formula for a rectangle, expressed 
as area = length · width. As mentioned earlier in this chapter, the length can be 
any one of the four sides. But after the length has been designated, either one 
of the two sides perpendicular to the length is to be regarded as the width of 
the rectangle.

Three Sides Don’t Necessarily Make a Triangle

After giving her children the definition of the perimeter of a polygon, Jane 
started with the polygon of the fewest sides: the triangle. She told them that to 
find the perimeter of a triangle, what they needed to do was add up the lengths 
of its three sides. For practice, she listed a few triangles, each with three num-
bers indicating the lengths of its three sides. For the last triangle, she said, “This 
triangle has three sides with lengths of 7, 13, and 5 centimeters. What’s its 
perimeter?”

Few people would make a mistake on the sum of the three angle measures 
of a triangle. For example, if one of Jane’s children said to her that he had a 
triangle with angle measures of 50°, 50°, and 90°, Jane would immediately 

Figure 10.8 The Triangle in Figure 10.6 Has Been Rotated, With Its Base on the Upper Right Side

Figure 10.9 The Triangle in Figure 10.6 Has Been Further Rotated, With Its Base on the Upper Left 
Side
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tell him that it’s impossible to have such a triangle because in plane geometry, 
the sum of the three angle measures in any triangle is always 180°. But Jane 
was not aware that there is a restriction on the lengths of a triangle’s three 
sides as well, as expressed in the triangle inequality theorem. Simply put, 
this theorem states that in any triangle, the sum of any two sides is greater 
than the third. Conversely, any one side of a triangle is shorter than the sum 
of the two other sides. Applied to a daily-life situation, this theorem can 
explain why a shortcut is shorter. Suppose you are at point A going to point 
C through point B, as shown in Figure 10.10, you will find going from A to C 
directly through the lawn is shorter—because the shortcut involves one side 
of this triangle whereas going from A to B and then to C involves the sum of 
the other two sides.

Jane’s mistake of enumerating the lengths of the three sides of a triangle 
as being 7, 13, and 5 centimeters would immediately become apparent if she 
attempted to draw such a triangle to scale. We can make this attempt for her 
here. Let’s designate the three sides having lengths of 7, 13, and 5 centimeters 
as sides a, b, and c, respectively. First, using actual measures, let’s draw side 
b (13 cm, the longest side) on a piece of graph paper. At one endpoint of side 
b let’s draw side a (7 cm) as close to it as possible. Next, at the other endpoint 
of b, let’s draw side c (5 cm), also as close to it as possible (see Figure 10.11). 
We can easily see that no matter how close sides a and c are to side b, their 
endpoints won’t join each other to make a triangle. In other words, a and c 
added together must be longer than b in order for all three sides to join each 
other to make a triangle. This is what the triangle inequality theorem is about.

To avoid making similar mistakes, you may want to do one of two things. 
First, after you have come up with the lengths of the three sides of a triangle, 

Figure 10.10 Going From A to C Directly (the Shortcut) Is Shorter Than Going From A to C Through 
B Because the Shortcut Involves One Side of This Triangle Whereas Going From A to B and Then to C 
Involves the Sum of the Other Two Sides

Figure 10.11 There Is No Way to Make a Triangle With Three Lengths of 7, 13, and 5 Centimeters
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try to draw this triangle to scale. If the triangle inequality theorem is violated, 
you won’t be able to accomplish drawing such a triangle, just as it happened 
when we were trying to draw the triangle with sides of 7, 13, and 5 centime-
ters. The second method may be easier. Simply rearrange the three lengths in 
order from longest to shortest. Then add up the two shortest sides. If the sum 
is not longer than the longest side, they won’t make a triangle. For example, 
for the three lengths mentioned earlier, rearrange them into 13, 7, and 5. The 
sum of 7 and 5 is not greater than 13, so they won’t make a triangle.

How Many Sides Does a Circle Have?

After teaching triangles, rectangles, and hexagons, Jane moved on to circles. 
Wanting to make a connection to the shapes her children had already learned, 
Jane brought up the number of sides a shape has as a starting point. She said, 
“A triangle has three sides, a rectangle has four sides, a pentagon has five 
sides, and so on. But a circle has zero sides.”

To investigate this issue, let’s start with polygons. By definition, a polygon is 
a simple closed figure composed of three or more line segments joined at their 
endpoints. These line segments are called the polygon’s sides. Some polygons 
have special names with a Greek root referring to the number of sides they 
have (-gon actually means “angles”), such as pentagon (penta- means “five”), 
hexagon (hexa- means “six”), and heptagon (hepta- means “seven”).

A circle, in contrast, is not composed of line segments (sides) as a polygon 
is, and thus it doesn’t fall in the family of polygons. So “the number of sides a 
circle has” is in itself a pseudo-proposition, because side is not a feature attrib-
uted to circles. We can use the number of bones in mammals as an example 
to illustrate this.

People sometimes use the number of bones to describe a group in King-
dom Animalia, such as “A human being has 206 bones” and “A cat has 290 
bones.” But we don’t use the number of bones to describe anything in King-
dom Plantae, as bones don’t exist in it. Thus, asking how many sides a circle 
has is like asking “How many bones does a tree have?”, and saying that a 
circle has 0 sides is like saying “A tree has no bones.” In other words, although 
it isn’t technically wrong to say “A circle has 0 sides”, this statement in itself 
isn’t very rigorous or proper.

Meanwhile, several other statements concerning the number of sides a 
circle has can be considered wrong, such as “A circle has 1 side” and “A circle 
has infinitely many sides.”



“A Quarter in Time Means 15”

Jane was teaching her children different units of time and how to tell time from 
an analog clock. Knowing that they had knowledge of money due to hearing 
and saying quarter on a daily basis, she wanted them to distinguish between 
a quarter used in money and a quarter used in time. So she started her lesson 
saying, “A quarter in money means 25, but a quarter in time means 15.”

There’re in fact two mistakes here.
First, a quarter, when written out as a number, is a constant, and its value 

doesn’t change. The way Jane said it leaves her children the impression that 
this number adopts different values when used with different entities.

Second, a quarter doesn’t mean either 25 or 15. A quarter is a fraction, 
namely, one fourth (1/4). When used as a money unit, it means one fourth of 
a dollar. As a dollar is customarily divided into 100 cents, a quarter of a dollar 
is 1/4 of 100 cents, which is 25 cents. There’s a coin for this unit of money: a 
quarter of a dollar. This coin is commonly referred to as a “quarter.” When 
people say quarter in this sense, it’s the coin name that is intended, just like a 
dime or nickel, rather than the numerical meaning.

When quarter is used to measure time, it’s still 1/4, only it’s 1/4 of an hour. 
Since an hour is 60 minutes, 1/4 of 60 minutes is 15 minutes. Does quarter 
have a changed meaning here? No, it still means 1/4.

The confusion lies in the fact that quarter, as a coin name, has come to be 
associated with 25 cents for many children. In contrast, even though there’s a 

Time-Telling

11
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coin with a name similarly composed of a fraction—the half-dollar coin—the 
word half hasn’t gained the status of the name of the coin (possibly because 
half-dollar coins aren’t nearly as omnipresent as quarters are). In daily life 
people may say “All I have on me is a quarter” but never say “All I have on 
me is a half.” Instead, they may say “All I have on me is a half-dollar coin.” 
Because of this, children usually don’t associate half with 50 cents.

Depending on the different entities used with quarter, it may be 1/4 of a 
dollar, 1/4 of an hour, or 1/4 of whatever we want to measure. For example, 
a full NBA game is divided into four parts, with each part being (naturally) 
a quarter. As a full game is 48 minutes, here a quarter is 1/4 of 48 minutes, 
which is 12 minutes. But a full NCAA game is 40 minutes, so a quarter of an 
NCAA game is 10 minutes. Some other examples include “a quarter inch,” “a 
quarter mile,” and so on. Even in the realm of time, quarter can be used with 
other units as well, such as 1/4 of a year, as in “Sales went up in the second 
quarter of this year.” In any case, a quarter is 1/4, and is neither 25, nor 15, nor 
any other number of whatever it happens to be used to measure.

Does 1 on Analog Clocks Mean 5 Minutes?

When it came to telling the number of hours and number of minutes on an 
analog clock, Jane told her children how to produce the two numbers in this 
way: “When you want to tell the number of hours, say the number the hour 
hand points to as it is. But when you want to tell the number of minutes, you 
look at the number the minute hand points to, and then multiply it by 5. So, 
when you see 1, it’s 5 minutes, when you see 2, it’s 10 minutes, when you see 
3, it’s 15 minutes, and so on.”

What Jane said here isn’t a conceptually rigorous way of teaching children 
how to tell hours and minutes. What if the minute hand points to somewhere 
between 1 and 2? Should we tell them to do 1.5 × 5 = 7.5? This isn’t an appro-
priate option for elementary school children. Of course Jane might argue that, 
by her reasoning, when the minute hand is pointing at the midpoint between 
1 and 2, the number of minutes should be halfway between 5 and 10, which 
is 7.5 minutes.

Jane has, actually, been deceived by the large, visually salient numbers on 
the clock face. Those numbers, 1–12, are for the hours only. There’s another 
set of numbers, 1–60, for the minutes, right outside the first set of numbers. 
But these 60 numbers have to be very small to be printed on the outer ring 
of the clock face, and in many cases they don’t fit—and even if they do, they 
are often left off because they wouldn’t look very appealing. Manufacturers 
handle this problem in several different ways. They may print 60 short bars 
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for the minute hand, with only every fifth bar accompanied by its correspond-
ing number (5, 10, 15, etc.). Sometimes they may print these multiple-of-5 
numbers on the inner circle to take advantage of the space there, as shown 
in Figure 11.1. Or they may print all 60 bars, with every fifth bar thicker or 
longer, without actually printing any numbers (see Figure 11.2). This design 
is the most common. Some clocks don’t have either numbers or marks for the 
minutes at all (see Figure 11.3). Such a design is not good for teaching time to 
elementary school children.

The point here is, there’s one set of numbers for the hour hand and a dif-
ferent set of numbers for the minute hand, and children should know which 
set of numbers is for which hand. They need to be taught that in order to tell 
the number of hours, they should read the larger set of numbers on the inner 
circle, which the tip of the hour hand falls on. When they want to tell the 
number of minutes, they should use the small marks or bars (sometimes with 
every fifth number printed or every fifth mark made thicker) on the outer 
circle. They are most likely on the outer circle because the minute hand is 
longer, and that’s where its tip falls. Adults often don’t even bother to look at 

Figure 11.1 On This Clock Face, 60 Bars Are Printed for the Minute Hand, With Only Every Fifth Num-
ber Printed



Figure 11.2 On This Clock Face, no Numbers Are Printed for the Minute Hand; Every Fifth Mark Is 
Thicker

Figure 11.3 On This Clock Face, no Numbers or Marks for the Minute Hand Are Printed
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these small marks. But for children, it’s important that they distinguish these 
two sets of numbers.

In this sense, it’s conceptually wrong to say “When the minute hand is on 
6, it is 30 minutes past the hour.” That 6 belongs with the set of numbers for 
hours.

“Why Does the Time on My Analog Clock Look Weird?”

Jane has a model analog clock in her classroom that allows her to move its two 
hands freely and demonstrate whatever time she wants to show to her chil-
dren. During her lesson on how to tell time, Jane wrote “9:30” on the board 
and said, “It’s 9:30 now and let’s see how we can make our clock show this 
time. First, we need to put the hour hand on the bigger number 9, which means 
the number of hours. Then we need to point the minute hand to the outside, 
smaller number 30, which means the number of minutes.” Figure 11.4 shows 
what Jane’s clock looks like for 9:30 (Figure 11.4).

Then Jane found that her clock looked weird but didn’t know why. Let’s 
figure this out for her.

Have you observed the movement of the hour hand and minute hand of 
a real analog clock or a mechanical watch? Suppose you have one in front of 
you; let’s go over the movement. At 9:00, the hour hand points to 9 even, and 

Figure 11.4 A Wrong Layout of Hands for 9:30
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the minute hand points to 0 (some clocks have 60 printed on them, which, 
strictly speaking, is wrong). As the minute hand moves forward, the hour 
hand doesn’t sit there idly: It also moves forward, although at a much slower 
rate. After the minute hand has completed a full circle and arrived at 0 again, 
the hour hand has edged forward for 1/12 of a circle, and it is pointing to 10 
now. Halfway during this process, at 9:30, the minute hand has completed 
half of the circle and should be pointing to 30 minutes. Where should the hour 
hand be pointing to now? Again, it hasn’t remained immobile at 9. It’s been 
moving. It’s left 9 but hasn’t reached 10 yet: It’s halfway between 9 and 10. A 
clock showing this time should look like Figure 11.5.

A similar mistake under a different disguise may also be very common. 
For example, Jane asked her children to demonstrate 6:15. After she had them 
put the minute hand at 15 minutes, she asked, “Is the hour hand on 6 or 7?” 
She was expecting to hear “6,” so then she put the hour hand on 6. However, 
although it’s wrong to put the hour hand on 7, it’s not right to put it on 6 
either. Theoretically, unless the time is exactly 6:00 where the hour hand is on 
6, and unless it’s exactly 7:00 where the hour hand is on 7, any time between 
these two points will cause the hour hand to be away from landing exactly 
on either 6 or 7. Of course sometimes the distance the hour hand has traveled 
is so small that even if it’s put on the even hour it may not be noticeable. For 
example, if the minute hand has traveled for 5 minutes after 6:00 (6:05) and we 

Figure 11.5 The Correct Layout of Hands for 9:30
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still put the hour hand on exactly 6, it will be hardly noticeable to most people. 
However, that doesn’t mean that the small distance should be disregarded.

The whole idea is that the hour hand doesn’t “jump” from 6 to 7 at one 
single moment and then stays immobile for the next full hour. It’s moving 
gradually but continuously. Exactly how far it’s away from the previous 
whole hour is a function of the number of minutes that has passed in rela-
tion to the whole hour. When the minute hand has moved for a fourth of an 
hour, the hour hand should also have moved for a fourth of an hour, too. The 
only difference is that the minute hand has moved for a fourth of a full circle 
(which is 1 hour) while the hour hand has moved for a fourth of the distance 
between 6 and 7 on the clock (which is also 1 hour).

For this reason, it’s a good idea to choose model analog clocks that have 
coordinated hands. In other words, to set a time on such a clock, all a child 
has to do is turn the minute hand only. Then the hour hand will be moved by 
the wheels behind the clock face to its correct position.

Which Hand Pointing to 12 Makes 12:00?

As 12:00 noon is the dividing time between morning and afternoon hours 
and at this time the two hands on an analog clock point directly upward, Jane 
chose this time to teach her children how to tell the whole hour. She set her 
clock at this time, wrote 12:00 on the board, and told her class that the time 
her clock was showing was 12 o’clock.

But this is the hour that Jane should, by all means, avoid using in teaching 
how to tell the whole hour. Let’s see why.

Suppose a high school student from a foreign country came to stay with 
you as an exchange student. In her home country, all clocks are digital, and this 
student had never seen an analog clock before. Now you wanted to show her 
how to tell time on an analog clock. You demonstrated with your clock, saying, 
“Now let me make the hour hand point to 3 and the minute hand point to 12 
and this is 3:00.”1 Then you continued, “I’ll go get something to drink. When 
I’m back, you show me what the clock is like for 5:00.” Then you left the room.

The young woman reasoned, “The shorter hand pointing to 3 and the lon-
ger hand pointing to 12 makes 3:00. If I want to make 5:00, I can simply make 
the shorter hand point to 5 without changing anything else.” When you came 
back, she showed you the time and it was right.

Now let’s consider a different scenario. If, instead of 3:00, you showed her 
12:00 and asked her to show you 5:00. Again, let’s trace her mind work to see 
how she would accomplish this task. She thought, “Both the longer hand and 
shorter hand pointing to 12 makes 12:00. Now I want to make 5:00. Do I make 
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both hands point to 5? Or should I move the longer hand to 5 while leaving 
the shorter hand at 12? Or should I move the shorter hand to 5 and leave the 
long hand at 12?” With only the example of 12:00 given, there was no way for 
her to know exactly how to show 5:00. In other words, the example of 12:00 
did not help at all.

Children starting to learn how to tell time on an analog clock are just like 
this exchange student. This is why 12:00 should be avoided as an example to 
show children how to tell the whole hour at the beginning stage, because after 
this example, they still don’t know which hand pointing to 12 makes 12:00. 
Any other hour will work well, be it 3:00, 5:00, or 10:00.

Why We Shouldn’t Jump Around Between 8:00 and 9:00

After she felt that her children could tell whole and half hours on an ana-
log clock, Jane began to throw in times at 5-minute intervals. With a model 
clock, she showed different times, making sure that the number of minutes is 
a multiple of 5, and asked her children to say out loud: 4:20, 7:55, 1:10, 8:50, 
and so on. But she soon found that her children were sometimes off on the 
number for hours, such as saying 9:50 instead of 8:50 for the time indicated by 
the clock in Figure 11.6. The reason is that the hour hand in this example was 
much closer to 9 than it was to 8.

Figure 11.6 Children Often Say That the Time on This Clock Is 9:50
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As mentioned earlier in this chapter, the hour hand on an analog clock 
moves as the minute hand does, but at a much slower rate. To be exact, for 
every full circle (360°) the minute hand moves, the hour hand moves only 
1/12 of that angle. For example, for a full hour between 8:00 and 9:00, the 
minute hand will make a complete turn, from the original upright position 
and back at that position again, but the hour hand will move only 1/12 of 
that angle, with it originally pointing to 8 now pointing to 9 (see Figure 11.7).

For the first half hour after 8:00, the hour hand is closer to 7 than is to 8, 
and most children will have little trouble telling the correct hour. For example, 
most children will be able to tell the time represented by Figure 11.8 to be 8:15.

Things will be different for the second half hour, that is, after 8:30. At 8:50, for 
example, the hour hand is much closer to 9 than is to 8 (see Figure 11.6). That is 
why Jane’s children made the mistake of saying that it was 9:50 instead of 8:50.

Now probably you can see Jane’s mistake of having her children learn 
how to tell the second half hour at the same time of how to tell the first half. 
Given that the second half hour can cause confusion at the beginning, it will 
be a good idea for Jane to have her children practice the first half extensively 
before moving on to the second. After they become comfortable telling the 
first half, Jane would need to gradually move to the first few minutes after 
the half hour mark. For example, suppose Jane sets the clock at 8:30 and her 
children can tell it correctly. If she says she is going to show 5 minutes after 
that and then moves the clock to 8:35, it is likely that many of them will say 
that it’s 8:35 because they hear her say it’s 5 minutes after 8:30 and they see 
her move the clock 5 minutes after the previous time. If Jane keeps moving 

Figure 11.7 From 8:00 (a) to 9:00 (b), the Minute Hand Turns One Full Circle While the Hour Hand 
Turns Only 1/12 of That Angle
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the clock in this gradual manner, her children will probably follow the pat-
tern of saying 8:35, 8:40, 8:45, 8:50, and 8:55. Then, at this moment, Jane will 
need to help her children arrive at the conclusion that the number of hours is 
determined by the number the hour hand has passed and left behind, not the 
number it’s closer to. In other words, as long as the hour hand hasn’t reached 
the next hour, it’s still the previous hour that should be called out, no matter 
how close it is to the next hour.

In addition, Jane could try to use the number line as an analogy (see Fig-
ure 11.9). A point after 35 on a number line—say, 38, is closer to 40 than it is to 
30. However, we don’t say 48. No matter how close to 40 we are as we move 
towards it, we keep using 30s, such as 37, 38, 39, until we reach 40.

Note

1 Actually, it should be 0 (or 60 on some clocks) rather than 12 because this 
is the number for the minutes (see “Does 1 on Analog Clocks Mean 
5 Minutes” in this chapter). Here 12 is used to follow the same misconception 
of using the hour number for minutes.

Figure 11.8 Most Children Have no Difficulty Telling This Time

Figure 11.9 A Point May Be Closer to 40 Than It Is to 30 on a Number Line, yet Until We Reach 40, We 
Say “Thirty-Something”



A Condition for Using Fractions: Equivalent Parts

Jane told her children that they were going to learn fractions, and they were 
excited. To start with, she drew a circle on the board, then drew three vertical 
bars on it dividing the circle into four parts, and said, “A fraction expresses 
parts of a whole. We just divided this circle into four parts. If we take one part, 
that’s 1 of 4.” (see Figure 12.1).

Jane’s definition of a fraction, that it expresses parts of a whole, was cor-
rect. But this definition has a condition that needs to be satisfied: When we 
divide a whole thing into a number of parts, these parts have to be of equal 

Fractions

12

Figure 12.1 A Circle Divided Into 4 Unequal Parts
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size to be expressed with a fraction. Otherwise, the fraction may not be a cor-
rect representation of the parts in relation to the whole. In the figure Jane drew 
(Figure 12.1), the two pieces in the middle were larger than the two pieces on 
the outer sections.

We may make an analogy to multiplication being referred to as repeated 
addition, in which case each set should consist of the same number of ele-
ments as any other set. Suppose Jane bought 8 packs of pencils and each pack 
contained 12. Jane could use multiplication to find out the total number of 
pencils she had bought: 8 × 12 = 96. However, suppose Jane bought 8 packs 
of pencils, but some packs contained 12 pencils each, some other packs con-
tained 10 each, and still others contained 6 each. In this case she may not use 
8 × ___ to solve this problem because not all packs contained the same num-
ber of pencils.

A way to modify Jane’s picture so that a fraction may be used to express 
one or more parts of it is to draw lines that pass through the center of the 
circle. If you want to divide a circle into 2, 4, or 8 equivalent parts, you can 
simply fold the circle 1, 2, or 3 times, respectively, and use the creases as divid-
ing lines (see Figure 12.2).

If you want to divide a circle into 3, 5 or 6 equivalent parts, you can divide 
each of these numbers into 360º and use a protractor to measure out the angle 
of each of the sections you want your circle cut into. For example, if you want 
to divide a circle into 5 equivalent parts, first find out the angle measurement 
of each of the sections: 360º ÷ 5 = 72º. Then use a protractor to divide your 
circle into five sections, with each having a central angle measurement of 72º 
(see Figure 12.3).

Figure 12.2 A Circle Divided Into 2 (a), 4 (b), and 8 (c) Equivalent Parts
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“Bottom Number” and “Top Number” Aren’t Nearly Sufficient for 
Defining Denominators and Numerators

Jane felt that her children had been given enough background information 
about fractions and decided to introduce to them the definition of the two key 
terms involving this concept: denominator and numerator. She said, “So what’s 
the denominator? And what’s the numerator? The denominator is the bottom 
number, and the numerator is the top number.”

Such definitions aren’t nearly sufficient for defining the two key com-
ponents of a fraction. Let’s put ourselves in the shoes of Jane’s children to 
see why.

Suppose after giving the “denominator is the bottom number, and numer-
ator is the top number” definition to her children, Jane assigned them this 
problem and asked them to write a fraction for what’s expressed in the prob-
lem: “Megan’s mom just baked a pizza. She cut it into 4 equal slices. Megan ate 
1 slice. Write a fraction to express the portion of pizza that Megan ate.”

With her definition, her children were still unable to handle this task. They 
might be wondering, “Which number should be my bottom number? And 
which number should be my top number?” This is because Jane’s definition 
merely specifies the position of the two components but doesn’t say anything 
about their meaning at all. Naturally, without knowing their meaning, her chil-
dren couldn’t tell which should be written as the bottom number and which 
should be written as the top number, as meaning is what bridges the original 
situation and a fraction that expresses it.

To give her children the proper concept of these two terms, Jane would 
need to tell them their meanings in addition to their positions. The “parts-of-
a-whole” definition is a classic textbook definition and can be readily used 

Figure 12.3 A Circle Divided Into 5 Equivalent Parts
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with children here: “The denominator tells us how many equal parts a whole 
thing is divided into. The numerator tells us how many of these divided parts 
we are talking about.” Of course, we have to follow this definition by where 
to write each of the two components: “We write the denominator under the 
fraction bar, and we write the numerator above the fraction bar.”

Armed with this definition, Jane’s children would be able to transcribe the 
situation presented earlier into a fraction. Let’s trace their mind and see how 
it works. The text presented in the following Math in Action box shows how 
one fictitious child solves this problem.

Math in Action: Possible Mind Work of Transcribing  
the Pizza Situation

Ms. Smith just said the denominator is the number of equal parts a whole 
thing is divided into. Megan’s mom cut her pizza into 4 equal slices. Then 
4 must be the denominator. Megan ate 1 slice. This 1 slice is what we are 
talking about, so it should be the numerator. Next, since the denominator 
appears under the fraction bar, I need to write the 4 here, like this: 

4
. The 

numerator goes above it, so it should look like this: 1
4

.



Incidentally, it’s always a good idea to define the denominator first, as 
it’s the foundation for expressing a fraction. Without the denominator having 
been defined first, it’s difficult to say what a numerator is. As an example, if 
you are given a fraction and told what the denominator is, such as 4, without 
being told what the numerator is, you could still possibly picture a situation 
as shown in Figure 12.2(b). In contrast, if you are told that the numerator of a 
fraction is 4 without being told what the denominator is, it’s very difficult to 
picture anything in the mind.

What Does 1/2x Mean?

After Jane had her children represent a fraction using circular cutouts as piz-
zas, Jane came up with another idea. She gave each child a Hershey’s choco-
late bar and told them that they were going to use it to represent a fraction. 
She started by showing a whole chocolate bar, and then broke it into 12 equal 
pieces. She took one piece and said, “We broke this bar into 12 equal pieces. 
That’s our denominator. This one piece is what I want to eat. So this is how we 
write this much using a fraction.” She then wrote 1/12 on the board.



Fractions ◆ 107

This written form, the slash in place of a horizontal fraction bar, isn’t very 
good. To further discuss this issue, we need to trace how each of the symbols 
came to be used.

When fractions started to be represented in writing, it was the dividend 
over the divisor (so it makes sense to read a fraction as one number “over” 
another in English, or one number “sur” another number in French), with 

a horizontal bar in between, as 
1

12. Problems came with the age of print-
ing, when it was apparent that fractions were more difficult to typeset and 
required a larger line space. At the same time, fractions didn’t look aesthetic, 
with a line containing a fraction jarringly wider than the other lines. Publish-
ers began to favor the solidus during the 19th century, as in 1

12. With the 
solidus, the typesetting of fractions was easier, and the line space was not 
too much larger than a regular line. From the solidus, it was just a small step 
to move to the use of a forward slash on a typewriter or computer—because 
the solidus isn’t available on the keyboard (the solidus is also called “diago-
nal,” a 45-degree slanted line, whereas the slash on a typewriter or computer 
keyboard is more upright). Nowadays many people aren’t even aware that a 
solidus and a slash are different characters.

It’s apparent that using the forward slash is just the “computer” way, and 
a makeshift way at that, of substituting for a horizontal fraction bar. In an 
elementary classroom, most often teachers will have to handwrite fractions 
on the whiteboard and, likewise, students will handwrite fractions on their 
scratch paper. In such situations, there really is no reason to adopt this make-
shift, computer way of using slashes in place of fraction bars. In other words, 
when a good symbol is readily available through handwriting, why settle for 
something less desirable?

You may ask, why is the slash a less desirable form to use for writing a 
fraction?

The main reason is, with a slash, the relation between the denominator 

and the numerator may be ambiguous. For example, 
1

2x
 and 

1
2

x are totally 

different. However, if you type these two fractions on a computer using 
slashes, both expressions will end up being 1/2x. In other words, it’s dif-
ficult to tell whether the x in 1/2x belongs with the denominator or not. It 
often occurs that when students write down such fractions using slashes 
and are later asked about the relation among the terms, they can’t remember 
themselves.

Unless the composition of a fraction is very simple, such as 1/2, a slash 

can often be misleading. For example, suppose the expression x
x

+
−

6
1

 is writ-

ten with a slash, then two pairs of parentheses are needed so that its original 
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meaning is preserved: (x + 6)/(x – 1). However, many children, and even 
some adults, aren’t clear about when parentheses are necessary and when 
they’re not, and may unwittingly omit them. When this happens, the value 
of this new fraction will not be the same as that of the original fraction. For 
the expression just mentioned, if it’s written as x + 6/x – 1, then it means  

x
x

+ −
6

1. This is quite different from the original x
x

+
−

6
1

. You can test this out 

yourself. Give x + 6/x−1 to a group of high school students or even college 
students and ask them to evaluate it given x = 2, and you will likely get two 
different answers: 8 and 4.

Slashes aren’t able to handle a fraction within a fraction, such as 
2
3

11
 or 

2
3
11

. The first expression has a value of 
2
33

 whereas the second expression has 

a value of 
22
3

. This is because division is not associative. In the first case 
2
3

 

is used as the numerator and 11 used as the denominator, and in the second 

case 2 is used as the numerator and 
3
11

 used as the denominator. They have 

very different meanings. But when slashes are used, both expressions will be 
written as 2/3/11, and nobody can tell if the numerator has a fraction or the 
denominator has one.

An additional disadvantage of slashes is when you handle a series of 

fractions. For example, for the expression 5
9

3
4

6
10

15
8

× × × , regardless whether 

you simplify first and then multiply or multiply first and then simplify, the 
relationship among these numbers is clear. If you choose to simplify first, 
there are a number of different ways to do it because any denominator can 
be simplified with any numerator, such as the 9 in the first fraction simplified 
with 3, or with 6, or with 15. Not only that, you can keep simplifying until 
you can’t simplify any further. For instance, after 9 is simplified into 3 with 
the 3 in the second fraction, it can be further simplified with the 6 in the third 
fraction. Since all denominators are below the central line (imagine drawing 
a line along all the four fraction bars) and all numerators are above the line, 
they can be easily distinguished. In contrast, if the above expression is writ-
ten as 5/9 × 3/4 × 6/10 × 15/8, students have to be extremely careful when 
they simplify, because all numbers are in a roughly horizontal position, and 
they have to see if a number is before a slash or after it so as to determine if 
it’s a denominator or numerator. It can be even more confusing if a number is 
simplified more than once.

For these reasons, cultivate in your children the habit of using horizontal 
bars in fractions.
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A Fraction Doesn’t Address “How Many”

To have her children make an easy connection with real things around them, 
Jane designed an activity where they were divided into several groups, with 
each group sitting around one table. She had each table group first count the 
total number of children in that group and then count how many of them 
were wearing sneakers. Then she asked, “How many children in your table 
group wear sneakers? Write a fraction on the card I gave you and hold it up 
when you finish.” Jane walked around the room and checked on the results. 
There were 5 children at Table One, and two of them were wearing sneakers. 

They came up with 2
5

. At Table Two, all four children were wearing sneakers, 

and they were holding up a card saying 
4
4

.

Although this activity was an engaging one and closely connected with 
the children’s daily lives, the question Jane asked did not fit the answer she 
was soliciting. For the question, “How many children at your table wear 
sneakers?” the correct answer for Table One would simply be 2. Similarly, the 
answer for Table Two would be 4. In contrast, when the children at Table Two 

came up with the answer of 4
4

, this had the effect of 1, which is not the num-

ber of children at that table who were wearing sneakers.
This boils down to the definition of fractions. Recall that a fraction expresses 

the relation of a part to the whole. In other words, a fraction does not address 
the question of “how many.” Instead, it expresses a ratio. Here two quantities 
are at play, very much like, for example, a cookie recipe which requires 1 cup 
of water and 3 cups of flour. If you want to make twice as many cookies, you 
can use 2 cups of water and 6 cups of flour. Even though the quantity for each 
ingredient has changed, the ratio has remained the same, and it still meets the 
requirement of the recipe.

In contrast to this requirement, Jane’s question “How many children at 
your table wear sneakers?” would elicit one quantity only, while the intention 
of her activity was to produce a ratio, that is, a relation between two quanti-
ties. Thus, the original question should be changed to fit the activity Jane 
designed. Considering that the word ratio may be a little difficult for children 
at this stage, Jane may ask the question along the line of “What part of your 
group wears sneakers?”

The following Math in Action box lists several situations where the ques-
tions asked are in effect “how many” oriented even though the original inten-
tion is for soliciting fractions. Each question is then reworded so as to suggest 
a ratio.
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Denominators Should Be Substantially Different for Easy Comparison

After spending several days working with her children on how to compare 

fractions of like denominators such as 
1
3

and 
2
3

, Jane felt confident that 

they were ready to move on. So she decided to present the topic of com-
paring fractions of like numerators but unlike denominators. She gave this 
scenario: “Your mom baked two exact pizzas. She cut the first pizza into 
5 equal slices and the second one into 6 equal slices. You are really hungry 
and want to eat as much as you can. But Mom says you can eat either a slice 
from the first pizza or a slice from the second pizza.” After demonstrat-
ing the problem by drawing two circles representing the pizzas with the 
intended pieces shaded (see Figure 12.4), Jane posed this question: “Which 
piece should you pick?”

Math in Action: Situations where a Ratio Is Intended

•	 “How	can	you	express	this	red	M&M	as	a	fraction?”	after	Jane	opened	a	
bag	of	12	M&Ms,	of	which	one	was	red.	This	one	red	M&M	is	just	one	
red	M&M.	This	question	can	be	reworded	as,	“What	portion of this bag of 
M&Ms	is	red?”	or	“How	much	of	this	bag	of	M&Ms	is	red?”

•	 Similarly,	“How	do	you	express	these	green	M&Ms	 in	a	 fraction	form?”	
should	be	reworded	as	“How	much	of	your	bag	of	M&Ms	is	green?”	or	
“What	portion	of	all	M&Ms	is	green?”

•	 “Look	at	my	whiteboard	here.	I	have	drawn	a	grid	of	3	rows	and	5	columns	
of squares. Let me shade the top 5 squares. Now, how many squares are 
unshaded?	Write	a	fraction	for	them.”	This	question	should	be	reworded	
as	“How	much	of	the	grid	is	unshaded?	Write	a	fraction	for	it.”



Figure 12.4 Jane Was Comparing 1/5 (a) and 1/6 (b)
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Children usually have no trouble comparing fractions of like denomina-
tors because, in such situations, the fraction with a larger numerator has a 
larger value. This is consistent with their prior knowledge on whole numbers. 
But the value scheme for fractions having like numerators but unlike denomi-
nators is just the opposite: a fraction with a larger denominator has a smaller 

value (1
6

 is smaller than 1
5

). Many children at the beginning stage tend to 

pick 1
6

 as the larger fraction due to the influence of their prior knowledge on 

whole numbers (because 6 is greater than 5). Jane should be commended for 
making sure to present comparisons of fractions with like denominators first 
before taking up the current topic. She also did a good job coming up with a 
real-world situation that her children can make an easy connection to. Despite 
all this, they were still making frequent errors when comparing fractions hav-
ing unlike denominators. Jane was wondering what would be a better way to 
handle this topic.

A brief introduction to some interesting findings in mathematical cog-
nition may put our discussion of the current topic in a better light. One 
of such findings is that close numbers are more difficult to compare than 
numbers farther apart. For example, people take longer and make more 
errors when they compare 2 and 3 than they compare 2 and 9. This phenom-
enon is commonly referred to as the distance effect. As mentioned earlier, 
fractions of unlike denominators, for their inconsistency with the value 
scheme of whole numbers, are more difficult to compare than fractions of 
like denominators. When the more difficult case of fractions (like numera-
tors and unlike denominators) is combined with the more difficult case 
under the distance effect (numbers close to each other such as 5 and 6), it 
is small wonder that Jane’s children would make frequent errors. A closer 
look of Figure 12.4 reveals that the shaded areas in the two pizzas are not 
very different.

Once Jane becomes aware of the distance effect, she can make an informed 
decision on what examples to use for comparing fractions of unlike denomi-
nators. For the current topic, her children’s understanding can be greatly 
enhanced if she could make the denominators in the two fractions substan-
tially different from each other. They could be 5 and 24, or they could be 
4 and 30. If Jane does not intend to draw any figures, she could make them 
as different as 5 and 200. When the two pieces of pizza are substantially dif-
ferent from each other because the denominators used are very different (see 
Figure 12.5 for a comparison of 1

5
 and 1

24
), children may find them much 

easier to compare than the two pieces of pizza represented by fractions hav-
ing denominators as close to each other as 5 and 6.
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Percentage Shouldn’t Be Juxtaposed with Fractions and Decimals

On the first day of teaching percentage, Jane said to her children, “We have 
learned fractions and decimals. Now we’ll learn another form of number. It 
is called percentage.”

In order to see the problem with what Jane said, let’s explore why we need 
percent in the first place. Suppose you were a store manager and wanted to 
keep track of the daily performance of the 20 employees in your store. Because 
of the different price ranges of the merchandise sold at each department, each 
employee had a different goal depending on the department that employee 
was in. Also, sales differed from day to day, with Sunday being the busiest 
day and Wednesday being the slowest day of the week. Each employee had a 
different sales goal set for the different days of the week. For a particular day, 
let’s suppose salesperson A in the furniture department had a goal of $1550, 
salesperson B in the cosmetics department had a goal of $1245, and salesper-
son C in the school supplies department had a goal of $815.

Now let’s suppose you wanted to see, halfway through the day on a cer-
tain day, how each employee’s performance in sales was. With salesperson A 
reaching $745, salesperson B reaching $647, and salesperson C reaching $498, 
how did each salesperson’s sales compare to those of the others? To find out, 
you would need to express the sales each salesperson had reached in relation 

to his or her goal of the day: 745
1550

, 647
1245

, and 498
815

 for salespersons A, B, and 

C, respectively. To compare these three fractions, you would need to find the 
least common denominator, which is not an easy task even with the help 
of a small calculator when the numbers are 3- or 4-digit (the least common 
denominator in this example, by the way, is large: 62,909,850). The trouble is, 
if you wanted to compare some other employees, you would have a different 

Figure 12.5 A Comparison of 1/5 (a) and 1/24 (b) Is Much Easier Because the Areas They Represent 
Are Very Different
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set of denominators to work with because their goals were all different. Even 
with the same employees, as their goals were different from day to day, the 
denominators would also differ from day to day. Imagine the headache you 
would be faced with each time you needed to compare any number of sales. 
You would soon realize that there really should be an easier and more efficient 
way to do this.

This is where percentage comes into play. In order to make easy compari-
sons of fractions with all different denominators, mathematicians have fig-
ured out a way whereby all those fractions to be compared are changed into 
ones with a common denominator, 100. With this common denominator, there 
is no need to find the least common denominator any longer. Whatever the 
original denominator is, we simply change that into 100 and then change the 
numerator accordingly to maintain the same ratio. After this change, we can 
compare any number of fractions without having to go through the trouble 
of finding the common denominator. For the sales example, the performance 

of salespersons A, B, and C halfway through the day is 48
100

, 52
100

, and 61
100

, 

respectively, with the numerator rounded to the nearest whole number. Now 
these numbers can be easily compared. We can see that despite the largest 
dollar amount, salesperson A’s performance actually was the lowest among 
the three salespersons. In contrast, the dollar amount of $498 for salesperson 
C, even though the lowest, translates into the highest performance.

To make it easier for reading and writing, mathematicians have devised a 
special symbol for expressing a fraction with a denominator of 100. The frac-
tion bar and denominator of 100 have been transformed into the percentage 
sign: %. Thus, 61

100
is commonly written as 61%. Conversely, when children 

see a percent such as 48%, they need to comprehend it as meaning 48
100

. 

(Incidentally, this concept is still expressed in two words in French: pour cent, 
meaning literally “for [every] hundred.” Earlier, English had a similar form: 
per cent, but the two words have been fused together in American English.)

In summary, a percent is no different from a fraction. It is simply a fraction 
with a denominator of 100, for easy comparison. With this in mind, when you 
start teaching percentage, you may want to put it in the picture of fractions in 
general and say something along the line of, “We are going to learn a special 
fraction today. This fraction has a fixed denominator of 100.”



Changing the Value Scheme of Base-10 Blocks Is Not a Good Idea

Base-10 blocks are a popular manipulative set in teaching place value and, in 
particular, in demonstrating regrouping between columns of multidigit num-
bers. The unit cube represents 1. Ten such blocks, as if fused together, form a 
rod, which naturally represents 10. Ten such rods are fused together to form 
a flat, which represents 100. Finally, 10 flats are fused together and form a 
thousand cube, which, just as its name indicates, represents 1000.

Jane used those blocks extensively while teaching addition and subtraction 
involving regrouping such as 35 − 18 and many other topics, and they worked 
very well. Now that it was time for her children to learn decimal numbers, she 
thought of those blocks again and wanted to take advantage of them in this 
new task. This is what she said to her children one day: “We used those blocks 
before. But in order to deal with our decimal numbers now, we need to change 
what each block represents. The flat doesn’t represent 100 anymore. Now it 
represents 1 for us. If we break this flat into 10 equal parts, then one such part 
is a rod, which we write as 0.1. If we further divide this rod into 10 equal parts, 
then each such part is this smallest block, which we write as 0.01.”

This is exactly where the problem lies. Ever since her children were 
exposed to base-10 blocks, they learned that a unit block is 1, a rod is 10, and 
a flat is 100. This value scheme may very well have taken root in them. Now 
suddenly Jane wanted to change it: She wanted these same blocks to repre-
sent a different set of values. Naturally, some of her children got confused.

Decimals
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Changing the value scheme of base-10 blocks for the discussion of decimal 
numbers is not a good idea. First of all, every block can potentially represent 
two different values. For example, does a set of 2 rods and 3 unit blocks rep-
resent 23 or 0.23? Here Jane may find herself having to give the two schemes 
two different labels such as “whole number blocks” versus “decimal number 
blocks.” But a more serious problem occurs when both schemes need to be 
used to represent a number such as 101.25. By Jane’s new value scheme 1.25 is 
represented by 1 flat, 2 rods, and 5 unit blocks. But how would she represent 
the 1 in the hundreds place of 101.25? Using another flat? How would her 
children be able to tell which flat is 100 and which flat is 1? Or would they use 
101 flats? That’s not very constructive.

By now, a question may surface: “If changing the value scheme of base-
10 blocks is not a good idea, then what can I use to teach decimal numbers?”

Two things may be good candidates. One is money, limited to bills of 
multiples of 10 such as $100, $10, $1, and coins of dimes and pennies. Since 
the way an amount is written (such as 1.25 and 0.75) is consistent with the 
actual value scheme (one $1 bill = 10 dimes, one dime = 10 pennies) and also 
since prices in decimal form are everywhere, from grocery stores to televi-
sion commercials, these money bills and coins make a good manipulative set 
for teaching decimal numbers. But a drawback for money units is their lack 
of physical connection between different units. For example, a $10 bill is not 
physically 10 times larger or longer than a $1 bill, and a dime is even smaller 
in size than a penny.

The other is the meter tape measure. A meter is divided into 10 decime-
ters, and a decimeter is divided into 10 centimeters. A meter, a decimeter, and 
a centimeter are represented by 1, 0.1, and 0.01 (m), respectively, and these are 
exactly how they are written in real life. A good thing about the meter tape 
measure is it doesn’t have the drawback that money has. Since the tape mea-
sure’s intended use is for measuring length, the relation between different 
units is in their actual lengths: 1 meter is physically 10 times a decimeter, and 
1 decimeter is physically 10 times a centimeter. Also, a meter tape measure is 
inexpensive and may be cut into pieces for teaching purposes.

When Is It Appropriate to Read a Decimal as a Fraction?

In teaching her children about how to read a decimal, Jane tried to make a 
connection to their prior knowledge of fractions. This is what she said: “In 
reading a decimal number, first you need to separate your number into two 
parts: the whole number part, which is before the decimal point, and the deci-
mal part, the part after the decimal point. You already know how to read a 
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whole number. Then treat the part after the decimal point just as a fraction. 
Connect the two parts with the word and. For example, read 3.25 as ‘three and 
twenty-five hundredths.’”

It’s true that most decimals can be transformed into fractions, and read-
ing a decimal as a fraction can enable children to see the interconnectedness 
between them. But we have to recognize that reading a decimal as a fraction 
has serious limitations and flaws, and, in certain circumstances, it’s next to 
impossible to do so. Let’s look into such limitations and flaws.

The first problem is that when the number of decimal digits increases, read-
ing a decimal as a fraction becomes anywhere between clumsy and impossible. 
Handling quite a few decimal digits is not too distant a prospect for current 
elementary children, as they will soon go into middle and high schools, and 
many into universities, where that scenario is not unusual. Let’s use the value 
of π as an example. π is a never-ending decimal number. At two or three digits, 
it doesn’t seem to be a problem, as 3.14 can be read as “three and fourteen hun-
dredths” and 3.142 as “three and one hundred forty-two thousandths.” But 
what about π ≈ 3.1415927? Or π ≈ 3.1415926536? Or π ≈ 3.141592653589793? A 
more important question is: Even if you could read it as a fraction, will other 
people understand you? You may do a simple experiment. Compose a number 
of 10 decimal digits such as 8.2793415086 (not to mention anything longer) and 
ask the teacher next door to read it as a fraction. Write down what that teacher 
has said and ask another teacher to translate it back into an Arabic number. 
Can you guarantee that you will get the original number back?

Then there is the problem of using the word and. At least for some people, 
it is customary to say and in reading a 3-digit number in English, as in “one 
hundred and twenty-three” for 123. Now when a decimal is read as a fraction, 
the decimal point is “translated” as and. This creates a problem when there 
are two ands in a number, which can be very difficult to interpret, as in “four 
hundred and three thousand two hundred and sixty-five ten-thousandths” 
(is it 403,200.0065 or 400.3265?). To avoid this scenario, some teachers forbid 
their children to say and in expressing 3-digit numbers. But this doesn’t mean 
that adults will stop saying it, which, potentially, would result in confusion if 
two ands happen to be used within one number.

Taken as a whole, reading a decimal as a fraction is essentially a round-
about process where the speaker first translates the decimal into a fraction 
and then the listener translates the fraction back into a decimal. This transla-
tion process has two direct consequences. First, it takes much longer than 
reading a decimal just as a decimal. Second, it’s prone to error. If you do the 
abovementioned experiment on several people, don’t be surprised that the 
answers you get are all different.
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But most importantly, decimals are not read as fractions in daily life. The 
following Math in Action box lists a few actual instances of how decimals are 
read by newscasters, sports commentators, and other programs on television. 
If you collect all instances of how decimals are read on television for a speci-
fied period of time, you will find that those read as fractions are few and far 
between.

Math in Action: Instances of how Decimals  
Are Read (in Italics) on Television between  

March and May, 2016

•	 News	 reporter,	 on	 CNN:	“But	 last	 year,	 his	 attorneys	 argued	 that	 the	
course was worth far less, only one point three five	million	dollars.”

•	 Narrator	of	Forensic Files,	on	HLN:	“Hair	grows	at	an	average	rate	of	one 
point three	centimeters	per	month.”

•	 Commentator	 on	a	men’s	 basketball	 game,	on	 ESPN:	“Three point five 
seconds	remain	for	being	uneliminated. . .”

•	 Commercial	on	TENNIS:	“You’ll	simply	earn	unlimited	one point five per-
cent	cash	back	on	every	purchase	everywhere.”

•	 Movie,	on	HBO:	“I	do	have	a	GPS	and	a	four point O	GPA.”



In short, reading decimals just as decimals (namely, reading 3.14159 as 
“three point one four one five nine”) is straightforward, fast, doesn’t allow 
much room for misinterpretation, and can handle any number of digits 
beyond the decimal point. Above all, that is the way people read them in 
daily lives.

You may ask, “When is it appropriate to read a decimal as a fraction?”
There are indeed times when it’s appropriate to read a decimal as a frac-

tion. Two conditions usually need to be present for it to occur. First, there’s no 
whole number part, and that eliminates the necessity of using and to represent 
a decimal point. Second, there’s only one significant decimal digit, so that the 
formulation is simple. This one significant digit often falls on a “neat” column 
or strongly suggests a certain column. For example, 0.000001 second can be 
read as “one millionth of a second” rather than “zero point zero zero zero zero 
zero one second.” The following Math in Action box shows an example from 
coverage of an NCAA gymnastics championship competition on television. 
Keep in mind, though, this way of treating a decimal is more “interpreting” 
than directly “reading.”
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25.0 and 25 Aren’t Exactly the Same

In calculating decimal numbers, Jane’s children often ended up with one or 
more trailing 0s after the decimal point such as 25.0. In a situation like this, 
Jane would tell them to simply leave off the trailing 0s. For this example, 
she told them, “25.0 and 25 are exactly the same. So simply omit the 0 and 
write 25.”

This actually depends on what is being described. Let’s take a closer look 
at that.

On the one hand, the amount or quantity being described may be discrete. 
In this case, there are no intermediate values between any member and its 
next neighbor. For example, suppose you have 25 children in your class. Each 
child is discrete, and there are no intermediate values between any two of 
them. If you are sending them out to the water fountain in groups, you may 
line them up and say, “The first five children go. The rest of us stay here and 
wait.” You will not say, “The first 5.3 children go.” There is no value between 
the fifth and sixth children.

On the other hand, the amount or quantity being described may be con-
tinuous. There may be an infinite number of intermediate values between 
any two points on the scale. Suppose you put water in a test tube and heat it 
from 25°C to 26°C. An infinite number of values can be used to describe the 
temperatures in between: 25.1°, 25.15°, 25.384°, and so on.

Thus, if you had a thermometer with whole-degree readings and you mea-
sured your classroom temperature to be 25°C, it wasn’t exactly, or exclusively, 
25°. Rather, it was anywhere between 24.5° and 25.5° (to be more accurate, the 
range should be expressed as 24.5 ≤ x < 25.5). This range of temperatures can 
be illustrated in Figure 13.1, where any point on the bold line segment can be 
represented by 25°.

Math in Action: An NCAA Gymnastics  
Championship Competition

After three rotations, these scores were shown on the television screen:

•	 University	A:	98.8500
•	 University	B:	98.6125
•	 University	C:	98.6000

The	commentator	said,	“University	A	 [is	first],	with	an	outstanding	ninety-
eight	eight	five,	University	B	is	second,	about	two tenths	of	a	point	behind.”
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If your thermometer was accurate to one decimal place—that is, its mark-
ings were 23.1, 23.2, 23.3, etc., and you measured your classroom temperature 
to be 25 0. °—this temperature would have a much smaller range. Specifi-
cally, it would be anywhere between 24.95°C and 25.05°C (more accurately 
expressed as 24 95 25 05. .≤ <x ). Figure 13.2 illustrates this range.1

A comparison of Figures 13.1 and 13.2 suggests that these two numbers, 
25 and 25.0, represent two different ranges of temperatures, with 25.0 being 
more accurate than 25. While the temperature represented by 25°C may actu-
ally include a reading of 25.4°, the temperature represented by 25.0° certainly 
doesn’t include a reading of 25.4°. By the same token, 25.00 is even more accu-
rate, with a yet smaller range between 24.995 and 25.005.

To sum up, trailing 0s for describing continuous quantities are not mean-
ingless. They usually indicate a more accurate range.

In teaching children how to represent decimal numbers, what you want to 
do is specify the number of decimal places to round to and ask your children 
to keep that number of decimal places, even though such numbers may con-
tain trailing 0s. For example, if the representation of the final answer of 21.7 + 
3.3 calls for one decimal place and your children calculate it to be 25.0, then 
they need to write it that way instead of writing it as 25.

Keep a Few More Decimal Places when Rounding at Intermediate Steps

It’s true that in dealing with decimal numbers we often need to round. How-
ever, it’s important to realize that an inappropriate rounding at intermediate 
steps may cause the final answer to be way off. The direction to “round to the 
nearest whole number,” “round to the nearest tenth,” and so on is usually 
intended for the final answer, not intermediate steps.

Take the problem ( )6 20 7 3+ ÷  for example. Let’s say the direction says 
“Round to the nearest tenth.” After Jane’s children executed the first step, 

Figure 13.1 The Range of Temperatures Covered by 25°C

Figure 13.2 The Range of Temperatures Covered by 25.0°C
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20 ÷ 7, they found that they got a nonterminating decimal: 2.857143. So Jane 
directed them to round to the nearest tenth. They finished the problem in this 
way, shown in the following Math in Action box.

Math in Action: Inappropriate  
Rounding at Intermediate Steps

(6 + 20 ÷ 7)³
= (6 + 2.9)³
= 8.9³
= 704.0



Math in Action: Delay Rounding to the  
Desired Decimal Place until the End of the Problem

(6 + 20 ÷ 7)³
= (6 + 2.857)³
= 8.857³
= 694.8



Let’s see what happens if we keep just two more decimal places after the 
first step, as shown in the following Math in Action box.

A difference of two decimal places when rounding at intermediate steps 
causes the two answers to this problem to be different by almost 10. Of 
course it’s the answer in the previous Math in Action box (704.0) that’s more 
off. If the exponent was higher, the error could be even greater. If this was 
for solving a real-world problem, such an error could bring about serious 
consequences.

Jane’s directions could be modified just a little to avoid misinterpretations 
on her children’s part. Instead of a general requirement of “Round to the near-
est whole number,” “Round to the nearest tenth,” and so on, you may want 
to try this: “Round your final answer to the nearest whole number,” “Round 
your final answer to the nearest tenth,” and so on. For intermediate results, 
if your children are using calculators, have them use whatever number of 
decimal places displayed. If somehow they have to round and reenter an 
intermediate value, then have them keep two or three more decimal places, 
at a minimum, than what is required of the final answer.
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Note

1 Conventionally, the left endpoint of this range should be a solid circle, 
meaning this point (24.95) is part of the range, whereas the right endpoint 
should be a hollow circle, meaning this point (25.05) is not part of the 
range. This detail has to be left out in this figure as the range covered is 
so small.



Were the Children in Your Class Born, on Average, on the 12.8th?

On the day Jane was teaching simple statistics, she asked each child to write 
down the day of the month on which he or she was born (1–31). After she 
collected the raw data, she involved her children in calculating the mean, 
median, and mode of the set of numbers on a calculator. All went well, and 
after they punched in the numbers and hit the Enter key, her children came 
up with the three measures.

But here’s the problem: How would Jane explain or interpret the results of 
the calculations? Suppose the mean, median, and mode for the dataset were 
12.8, 14.5 and 18, respectively. What did these numbers mean? Could she pos-
sibly say, “The children in our class, on average, were born on the 12.8th?” So 
the point to make here is, when raw data are collected from real-world situ-
ations, they should be able to answer questions concerning such situations. 
Otherwise the results may be meaningless.

The confusion over Jane’s class activity arose because the data she col-
lected weren’t strictly quantitative. For brevity purposes, we can divide data 
into two major types: qualitative and quantitative. Many qualitative data are 
nominal in nature and have verbal descriptors as their original form, such as 
black, brown, and blue for eye color, and Catholic, Protestant, and Jewish for 
religion. The nominal nature in such data is easy to ascertain, as people won’t 
try to find the “mean eye color” or the “median religion.”

Quantitative data, on the other hand, are numerical. Such data express 
either a countable quantity such as the number of siblings a child has (discrete), 

Simple Statistics and Graphs
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or a measurement of some physical dimension such as a child’s height in cen-
timeters (continuous).

The data Jane collected, the day of the month each child was born on, had 
a disguise—their values were numerical and may appear to be quantitative. 
However, they weren’t true quantitative data. If Jane had collected the year, 
the month, and the day on which each of her children was born and converted 
those numbers into age in number of days, then those would be true quanti-
tative data. For example, a child whose age was 3425 days would be 10 days 
older than a child who was 3415 days old, and Jane may say that the youngest 
child in her class was 3208 days old, and so on. However, when her children 
reported the days of the month they were born on, no similar descriptions 
were possible. A child who was born on the 24th may not necessarily be 
younger than a child who was born on the 20th because their birth months 
and even birth years could be different. Similarly, a child who was born on 
the 1st may not be the oldest, as any child born in the previous month (e.g., 
May 31 vs. June 1) in the same year was older.

To tell whether the data collected are quantitative so that you can perform 
some simple statistics on, you can do two simple tests by asking: (a) Can the 
data be ordered such that the ranking is consistent with the actual ranking? 
(b) Is it appropriate to compare the distance between values? The data Jane 
collected on the day of the month fail both of these two tests (all her children, 
when ordered from the 1st, 2nd, and so on till the 31st, aren’t necessarily from 
the oldest to the youngest, and it’s not the case that a child born on the 10th 
was older than a child born on the 20th). Thus, the days her children were 
born on were merely used as labels, and they were by and large nominal data 
just as eye color or religion.

To enable your children to come up with data in connection with their 
daily lives in order to compute the mean, median, and mode, you may want 
to use such quantitative data as their heights in centimeters; the number of 
books each child has read during the past 6 months; or age in years, months, 
or even days. Then after their calculations, you may sum up the results by 
saying that the mean height of the children in your class is how many centi-
meters, or each child in your class, on average, has read this number of books 
during the past 6 months, or the median age of your children was this number 
of years, months, or days.

“The Mean Is the Average”

In teaching simple statistics, Jane picked up the first three most common mea-
sures covered in textbooks for elementary students: the mean, median, and 
mode. This is how she taught these concepts and the ways to find them: “For 
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a dataset, the mean is the average. Add up all the values and then divide the 
sum by the number of items. The median is the middle number. First arrange 
all the numbers in either ascending or descending order and pick the one that 
lies in the middle. If there are an even number of items, pick the two at the 
middle, add them up, and divide the result by 2. The mode is the value that 
occurs the most frequently.”

Although what Jane said about the mean being the average is not concep-
tually wrong, the way she presented the three indices—that is, discussing all 
three measures at the same time but reserving the word average for only the 
mean—left her children with the impression that only the mean is the average 
while the median and the mode are not. To discuss this topic in more detail, 
let’s first look at what these three measures are used for.

It’s very often the case that after we collect a set of data, we don’t want 
to present all individual scores to other people. Let’s consider two scenarios. 
For the first scenario, suppose you recently gave your class of 24 children a 
math test. When you mentioned this to the principal, she asked, “How did 
your kids do?” It’s unlikely that you would read out all 24 individual scores 
to her. This is where a measure for the central tendency becomes useful. You 
would more than likely give her a most representative score. For the second 
scenario, suppose you plan to run a babysitting business and you’re deciding 
between two parts of town for the location of your business. The key fac-
tor to consider is the number of 3- through 5-year-old children each family 
within the two parts of town has. You send off a survey team to obtain these 
numbers. Several days later, the survey team comes back with the number of 
children from 1600 families in one part of town and that from 1450 families in 
the other. It probably won’t help you very much if these numbers are reported 
to you individually, such as 3, 1, 2, 4, 0, 2, 1. . . Instead, you may want your 
survey team to summarize the data and report to you one representative 
figure from each part of town. In both scenarios, the representative figure, as 
the name indicates, best captures where all individual data points stand and 
best represents the whole dataset, but in a simplified way. This representative 
figure is commonly known as the average. It describes the central tendency.

Several indices can be used to describe the central tendency depending on 
what type of data is being described and some other factors. Most often the 
mean is used. But sometimes the mean isn’t the best index for certain types of 
data and, in particular, doesn’t handle outliers well. For example, in describ-
ing the average household income for a particular city, the mean can be easily 
distorted when there are a few households that earn so much that they can 
drive up the mean to such a degree that it’s no longer representative. That’s 
why the median is often used in reporting average household income. By this 
measure, the outliers, namely, the extreme scores, no longer affect the central 
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tendency. But the key point is, the mean, median, and mode are all ways to 
describe the average.

In short, when you teach the central tendency, you can either mention that 
the mean, median, and mode are all indices for reporting the average—or 
you can avoid using the word average altogether. That way you will not be 
creating a misconception that the mean is the average while the median and 
mode are not.

Where in the World Does the Mode Ever Get Used?

Jane was very familiar with the textbook definition of the mean, median, and 
mode. While teaching this topic, she sometimes came up with her own data-
sets and had her children practice finding the three indices. For example, the 
following Math in Action box shows two datasets Jane assigned one day, fol-
lowed by the mean, median, and mode that her children calculated.

Math in Action: Two Sets of Data Jane  
Assigned for Finding the Mean, Median, and Mode

Set A:     2, 3, 4, 5, 6, 8, 8.
Mean = 5.1, median = 5, mode = 8.

Set B:     2, 2, 6, 7, 8, 9, 11, 12.
Mean = 7.1, median = 7.5, mode = 2.



Technically, there was nothing wrong with these calculations. However, 
while the mean and median derived from these datasets captured the central 
tendency quite well, the mode gave a rather distorted picture. As discussed 
earlier, all the three indices—the mean, median, and mode—are measures of 
the central tendency of a dataset, and each one of them is used to answer the 
question: “What’s the average of this dataset?” or “What’s the most represen-
tative number for this dataset?” However, the mode in both datasets, 8 and 
2 respectively, was far from the central point of the dataset. In fact, lying at 
either the lowest or highest end of the datasets, they didn’t even come close to 
representing the central tendency at all. Suppose dataset A was the record of 
the number of children each of the seven employees in an office had. Would 
anyone ever say that the average number of children these seven people had 
was 8? In other words, people normally would not use the mode as the mea-
sure for representing the central tendency of this dataset.
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You may ask, “I see the mean used in daily life all the time. And I occa-
sionally see the median used, such as the median household income in census 
reports. But where in the world does the mode ever get used, if at all?”

There are situations where it makes good sense to use the mode as a rep-
resentative number of a dataset. Let’s suppose you taught two classes during 
the past two years, one a first-grade class and the other a third-grade class. 
Let’s further suppose that there were 25 children in each of the two classes. 
The following Math in Action box shows the frequency distribution of the 
children’s ages in these two classes.

Math in Action: Frequency Distribution  
of Students’ Age, in Years, in Jane’s Two Classes

First-Grade Class
Age Number of Children
5  2

6 20

7  3
Third-Grade Class
Age Number of Children
6  1

7  3

8 21



With regard to your first-grade class, if someone asks you about the aver-
age age of the children, the mode is the easiest, most readily accessible index 
to use: 6. Because the overwhelming majority of your children (20 of them) 
were of this age, the mode wouldn’t be far away from the mean age anyway. 
In other words, the mode captures the central tendency very well in this situ-
ation. If you use a calculator and actually calculate the mean, you will find 
that the two indices are almost identical: 6 versus 6.04.

Even though the mode may be at the end of an ordered dataset as in the 
case of your third-grade class, where the mode is 8 (the oldest age in this 
group), still, using this index as its average won’t be far off. A calculation 
reveals that the mean of this dataset is 7.8, which is very close to 8, the mode. 
The reason for the mode’s being at the end of the ordered dataset but still 
being close to the mean is that its frequency is substantially higher than the 
other data points combined (21 vs. 4). In a sense, it “overpowers” the other 
data points and essentially dominates the whole set to be the representative 
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figure. In contrast, almost all the seven data points in dataset A described at 
the beginning of this section were unique, except for the two cases of 8. This 
mere one more case does not make the data point of 8 more representative 
than any other one. If it’s singled out as an average of the whole dataset simply 
because it has one more case than all other data points, it can tremendously 
distort the whole picture and can be very misleading. That’s why nobody 
would feel comfortable concluding that “the average number of children the 
seven people in this office had was 8.”

In summary, a condition for using the mode as a measure of central ten-
dency is that its frequency is substantially higher than any other data point 
such that it won’t give a distorted picture.

Do All Your Children Have an Equal Chance of Winning?

In teaching math concepts to elementary children, Jane tried at every chance 
possible to relate to their daily life or even to the children themselves. But 
sometimes this doesn’t work out very well. The following Math in Action 
box shows a problem Jane gave one day when she was teaching probability.

Math in Action: Jane’s Problem on Probability

Ms. Smith is having her class run a 100-meter race. There are 12 girls and 
8 boys in her class. What’s the probability of a girl winning the race?



And here’s how Jane led her class in figuring out the probability:

p
number of girls

total number of children
= = =

12
20

0 6.

An important condition for this formula is that all events have an equal chance of 
occurring. That is, this formula will work if there’s no gender difference in run-
ning a race and every child, as compared to any other child, has an equal chance 
of winning. In real life, however, we know that boys and girls perform differ-
ently. That difference can affect the prediction of the outcome of the race. In other 
words, not fulfilling this “equal chance” condition can lead to a faulty probability.

To make an analogy, suppose 99 children and 1 adult were to run a race. 
You probably wouldn’t say that a child winning this race was 99%. Just on 
the contrary, even though the one adult was outnumbered considerably, that 
single person still had a much better chance of winning. Similarly, if you bet 
on a race between a man and a woman, you most likely would bet on the man 
winning the race, all other conditions being equal.
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For the purpose of modifying the problem mentioned earlier, you have 
to ensure the satisfaction of the condition of equal chance for everybody or 
every event. If you take a close look at the revised version of the problem 
shown in the following Math in Action box, you will find that this condition 
has been met and can be used for calculating the probability.

Math in Action: A Revised Version  
of the Previous Problem

Ms. Smith has prepared a deck of cards and written every child’s name on 
a card. There are 12 girls and 8 boys in her class. If Ms. Smith shuffles the 
cards and draws one without looking, what’s the probability of her drawing 
a girl’s name?



Use Different Types of Data for a Beginning Lesson on Graphs

On the first day of teaching graphs, Jane announced that it was “Pockets Day” 
that day and started off collecting data on the number of pockets on her chil-
dren’s clothes. She first figured out that the largest number of pockets on any 
child’s clothes would be no more than 6. Then she drew a horizontal line (the 
x-axis) representing the number of pockets a child might have. Next she asked 
each child to count the number of pockets on his or her own clothes and write 
that number down on a sticky note she had just given out. She then counted 
the number of times each number of pockets had shown up on the sticky 
notes and drew a corresponding bar above the horizontal line. Her graph now 
looked like this (see Figure 14.1).

Here’s a problem with a graph like this at the beginning stage: The two 
groups of numbers were interfering with each other. This can be revealed 
by a look at the questions Jane had to ask. After graphing the data collected, 
Jane asked a series of questions such as “What’s the number of pockets that 
most children have?,” “What’s the number of pockets that the fewest children 
have?,” “How many children have 3 pockets?,” and “What’s the smallest 
number of pockets that children have?” Even though Jane marked the x-axis 
and y-axis as representing “Number of Pockets” and “Number of Children,” 
respectively, because they both represented quantitative data and the num-
bers used were in a similar range, her children could easily be confused about 
which was which. Take the first question “What’s the number of pockets that 
most children have?” for example. Some children may look at the bar at the 
far end of the x-axis and find 6 there. Still other children may locate the tallest 
bar and call out its frequency, 6, on the y-axis. In a similar fashion, statements 
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such as “1 child has 0 pockets and 0 children have one pocket” can be difficult 
to comprehend.

A way to avoid this situation is to use qualitative data for the x-axis while 
keeping the quantitative data on the y-axis. For example, instead of polling on 
the number of pockets (quantitative data) her children have, Jane may want 
to poll on different colors (qualitative data) of the shirts they are wearing. Or 
she may want to poll on the different types of pizza (qualitative data) her chil-
dren prefer. A similar set of data collected on the different colors of the shirts 
they’re wearing may be represented by the graph displayed in Figure 14.2.

Figure 14.1 Number of Children by the Number of Pockets They Had

Figure 14.2 Number of Children by the Color of Shirts They Were Wearing
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Now, even if we ask similar questions to those asked about the number 
of pockets on the children’s clothes, the chance of causing confusion will be 
greatly reduced. When children are faced with such questions as “What’s 
the color that most children wear?”, “What’s the total number of colors that 
children are wearing?”, “How many children are wearing green shirts?”, 
and “What color of shirt are 0 children wearing?”, children will have a much 
easier time finding the information on the correct axis. In a sense, these two 
types of data don’t interfere with each other. Whatever the question is, when 
it concerns one type of data, it would be unlikely for children to search for 
the answer from the other type, simply because answers from one type (3, 4, 
or 5) will not fit into questions for the other (blue, red, or yellow). Therefore, 
it will be easier for children to find the correct answer and less likely to make 
mistakes.



Why Do We Need Nonstandard Measurement?

It was time to take up the topic on nonstandard measurement, and Jane started 
off with telling her children the rationale for it. She said, “Sometimes we want 
to measure the length of something, but realize we don’t have the necessary 
tools handy such as a ruler or a tape measure. In such a situation, we use what 
we can find at the time such as straws, pencils, or even our arms or hands as 
measuring tools. Today we’ll use pencils to measure how long our desks are.”

It’s true that people sometimes do use concrete objects as makeshift 
tools for measuring other objects. But the rationale for teaching nonstandard 
measurement in an elementary school classroom is not for addressing the 
unavailability of measuring tools. Even though there may be a ruler or even 
a tape measure in a child’s box of supplies, we still want to start off teaching 
nonstandard measurement. The rationale for doing this, then, is for develop-
ing children’s initial understanding of the basic principles underlying mea-
surement and laying the foundation for their applying these principles when 
they encounter standard measurement in later grades.

With this in mind, instruction on nonstandard measurement should align 
with the essential elements involved in using standard measuring tools. The 
following Math in Action box lists the three essential elements when measur-
ing the length of an object, such as a desktop, using a standard measuring 
tool. Adults often take for granted the conditions that must be satisfied in 
order to make an accurate measurement, but these conditions have to be spe-
cifically taught to children.

Measurement

15
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You will notice that the accurateness of measurement using nonstan-
dard measuring tools leaves much to be desired. But for children at this 
stage, accurateness is less of a concern than learning the essential elements 
involved in taking such measurement. That’s the purpose for using nonstan-
dard measurement.

What Is Standard Measurement?

When it came to using a ruler to measure the length of an object, Jane wanted 
to base that discussion on the experience her children already had. So she 
said, “We already know some common units for measuring length in our 
daily lives such as yards, feet, and inches. These are standard units. We are 

Math in Action: Essential Elements for  
an Accurate Measurement of Length  

Using a Tape Measure

•	 Point	0	on	the	tape	measure	is	lined	up	with	one	of	the	endpoints	of	the	
object.

•	 The	tape	measure	is	pulled	straight.
•	 The	point	on	the	tape	measure	that	corresponds	to	other	endpoint	of	

the object is located. Reading of this point on the tape measure is taken 
as the length of the object.



Math in Action: Essential Elements for  
Measuring the Length of a Desktop Using Pencils

•	 The	endpoint	of	the	first	pencil	(point	0)	is	lined	up	with	the	edge	of	the	
desk (one of its endpoints).

•	 All	additional	pencils	are	lined	up	straight,	end	to	end,	with	no	gaps	or	
overlaps in between.

•	 The	total	number	of	pencils	covering	the	desktop	from	one	end	to	the	
other is taken as the length of the desktop.



Corresponding to the essential elements for measuring the length of an 
object using a tape measure, the activity Jane described at the beginning of her 
class about using pencils to measure the length of a desktop should contain 
these elements, as presented in the following Math in Action box.
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going to learn metric units today. The first three units for measuring length we 
are going to learn today are meters, centimeters, and millimeters.”

It is interesting to note that some people use the term standard measure-
ment in nonstandard ways. Colloquially, standard is often used to refer to 
something that came into being earlier or something that has been used for 
a longer period of time. This is the case with describing shifting gears of a 
vehicle. Some people refer to manual shift as standard, in juxtaposition with 
automatic shift. Since this way of using standard does not cause any significant 
confusion, we don’t have to be concerned.

When it comes to describing systems of measurement, however, this use 
of the word standard does cause confusion. Currently two systems of measure-
ment are in use world wide: the metric system (which employs meter, kilogram, 
and liter for the three most common attributes of length, weight, and volume) 
and the customary system (which employs foot, pound, and gallon for those 
three attributes). Some people use standard to refer to the customary system, 
leaving on children the impression that the metric system is nonstandard.

In fact, both the customary system and metric system are standard, and 
both can be very accurate. The difference lies in the fact that the metric sys-
tem is strictly base-10 and employs much fewer names. It’s currently used 
in most countries all over the world. The customary system, in contrast, 
uses many different bases and employs many names and conversion ratios. 
Only three countries in the world still use it: Liberia, Myanmar, and the 
United States. Nonstandard measurement, as we discussed earlier, refers 
to the use of common objects such as pencils, paper clips, and even body 
parts such as hands and arms, in measuring some other objects. We usually 
teach children nonstandard measurement before we teach them standard 
measurement.

The relationship among these different systems of measurement can be 
illustrated in Figure 15.1.

Figure 15.1 Relationship Among Different Systems of Measurement
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What Are Centimeters Used to Measure?

After teaching her children nonstandard measurement such as measuring the 
length of their desks with pencils, the width of a storybook with paper clips, 
and the height of a poster with their hands, Jane decided to introduce stan-
dard measurement units. In particular, she wanted to start teaching metric 
units first. So she said, “Today, we’ll learn how to use centimeters to measure 
length, width, and height, and then we’ll use grams to measure weight.”

Unlike weight, which is the only word used to describe the attribute of 
how heavy an object is (in most cases, weight and mass are exchangeable, 
but they aren’t exactly the same thing in physics), there’re several terms to 
describe the attribute of how long an object is: length, width, and height (these 
are the three most common ones. There’re others such as depth and thickness). 
These three terms, however, don’t describe three different attributes. Instead, 
they all describe the same attribute: the distance from one end of an object to 
its other end along one dimension. When this attribute is described in its gen-
eral sense, one term is sufficient: length. Just as weight is used to refer to how 
heavy an object is, length can be similarly used to refer to the general attribute 
of how long something is.

Thus, we need to distinguish the general sense of the word length and 
its narrow sense. On one hand, when we talk about the attribute of distance, 
length is the general term to use and it includes width, height, and so on. On 
the other hand, when we talk about different dimensions within this attribute, 
we use length, width, and height for this purpose, and length here is used in 
its narrow sense. Thus, back to what Jane told her children concerning what 
centimeters are used to measure, she was using the general sense of distance, 
and in that case, the word length alone is sufficient.

You might argue, if length, width, and height all describe the same attribute, 
why do we need to have three terms instead of just one? To answer this ques-
tion, let’s look at one specific example. Suppose we have a rectangular prism 
with dimensions of 3 cm × 2 cm × 5 cm (see Figure 15.2) and need to know its 
volume. To find out, we use the formula v = l · w · h, where l, w, and h stand for 
length, width, and height, respectively. For the problem at hand, the volume is

v = l · w · h = 3 · 2 · 5 = 30 cm3.

Here, in order to find the volume of the rectangular prism, we need to 
know its three dimensions—that is, its length, width, and height—and they 
can all be different. If there was only one term to use, then the formula v = 
l · l · l can be used only if all the three dimensions are the same. Apparently 
this is not sufficient, for there are rectangular prisms made of three different 



Measurement ◆ 135

dimensions, and we do need to be able to describe these different dimensions. 
It’s here that we have different terms for such a task.

Leave Out Units of Measure at Intermediate Steps

In teaching how to calculate the area of an equilateral rectangle given the 
length of one side, Jane said, “Suppose the side is 3 centimeters. Square this 
number, and you’ll get the area of this equilateral rectangle.” She first wrote 
the formula A = s2 on the board, and then replaced s with 3 cm. Now the 
expression became A = s2 = 3 cm 2. Finally, she calculated the result to be 9 cm2. 
The whole expression on the board now was: A = s2 = 3 cm 2 = 9 cm2.

Here is a problem: What Jane showed to her children is not an equality. 
That is, if she omitted the cm2 part, what she had on the left side of the last 
equal sign doesn’t equal what she had on its right side (3 = 9 certainly doesn’t 
make sense). Moreover, if the same logic Jane applied to 3 cm2 = 9 cm2 was 
reapplied to the result, then she would get an expression that could go on 
forever, without reaching any result: 3 cm2 = 9 cm2 = 81 cm2 = 6561 cm2. . .

Jane might protest, “I left some space after 3 centimeters before I wrote 
the exponent.” Here a little space won’t change the way a mathematical 
expression is evaluated, and it won’t accomplish what she had intended to 
accomplish.

To properly handle demonstrating the procedure for solving this problem, 
Jane would need to do one of two things. First, enclosing 3 cm in parentheses 
will effectively avoid the 3 = 9 mistake. So what she should be presenting will 
look like A = (3 cm)2 = 9 cm2. But sometimes if a unit of measure is repeatedly 

Figure 15.2 A Rectangular Prism of Dimensions 3 cm × 2 cm × 5 cm
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used in an expression, it can look clumsy. For example, if a trapezoid has 
5 cm for one of its bases, 9 cm for the other, and 10 cm for its height, then the 
calculation of its area may look like:

A base base height= ⋅ + ⋅ = ⋅ + ⋅

= ⋅ ⋅ =

1
2

1
2

5 9 10

1
2

14 10 7

1 2( ) ( )cm cm cm

cm cm 00 2cm

All those units of measure scattered within the expression can potentially 
be distractive in the calculation process—and this isn’t a complicated formula. 
A simpler way of handling this situation, then, is to omit the units of measure 
at the intermediate steps and then use whatever the unit is at the very last 
step. So the problem can be solved in a cleaner and more concise way:

A base base height= ⋅ + ⋅ = ⋅ + ⋅ = ⋅ ⋅ =
1
2

1
2

5 9 10
1
2

14 10 701 2( ) ( )  (cm2)

How Do You Say the Word for “1000 Meters”?

As her children already had some home experience with common measures 
of the customary system, that is, foot, pound, and gallon, Jane planned a com-
prehensive unit on the metric system. She started with the basic units for 
length, weight, and volume—meter, gram, and liter—and said that one of the 
nicest things about the metric system is that there’re much fewer names and 
conversion ratios to memorize than there are for the customary system. The 
customary system has a different set of names for each attribute. For length, 
it’s mile, yard, foot, inch, and so on; for weight, it’s pound, ounce, dram, and so 
on; and for volume, it’s gallon, quart, pint, cup, and so on. In contrast, the met-
ric system uses some prefixes across all the common measures: kilo- (1000), 
centi- (1/100), and milli- (1/1000) attached to the basic unit of meter, gram, and 
liter. For example, 1000 meters is a kilometer, 1000 grams is a kilogram, and 
1000 liters is a kiloliter. After this explanation, Jane led her children in reading 
these words aloud. She pronounced the first word, kilometer, as /ki-’lo-me-
ter/, in a similar way as odometer is pronounced.

Although kilometer may be pronounced either as /ki-’lo-me-ter/ or as 
/’ki-lo-me-ter/ and that both pronunciations are acceptable in dictionar-
ies, pronouncing it with the second syllable stressed is not very helpful to 
children. To see the problem with it, let’s do a little research on some words 
containing meter.
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Meter is the basic unit measure for length in the metric system. As men-
tioned, it’s combined with prefixes such as kilo-, centi-, and milli- to form 
larger or smaller units than the basic one, such as kilometer, centimeter, and 
millimeter. Let’s call these words “length words” as they all measure length. 
They are usually pronounced with the first syllable stressed, as in /’cen-ti-me-
ter/ and /’mi-lli-me-ter/.

Meanwhile, meter is also used to form the names of instruments used for 
measuring a certain attribute, such as odometer ([h]odo- means road in Greek) 
and thermometer (thermo- means heat). Let’s call this group of words “instru-
ment words.” Their pronunciation, unlike that for those “length words,” fol-
lows the pattern for most English words with multiple syllables, that is, the 
stress falls on the third syllable from the last. Thus these last two words are 
pronounced as /o-’do-me-ter/ and /ther-’mo-me-ter/, respectively.

It’s interesting that only kilometer from the group of “length words” has 
been singled out to be pronounced as an “instrument word,” with the third 
syllable from the last stressed. But this pronunciation doesn’t reflect the com-
position of the word, as the other “length words” do, and it interferes with 
children’s learning of the prefix of kilo-. When pronounced this way, the two 
constituent parts (kilo + meter) seem to be fused together and give the impres-
sion that it is an “instrument word.” With this pronunciation, children may 
not easily recognize that the word contains a kilo part, as kiloliter does.

In short, pronouncing kilometer as /ki-’lo-me-ter/ isn’t helpful to children 
learning the metric system at the beginning stage. For this reason, it’s impor-
tant that we teach children to say kilometer as we say kiloliter, not as we say 
odometer. Merriam-Webster’s Collegiate Dictionary (10th edition) notes that “first 
syllable stress (read as /’ki-lo-me-ter/) seems to occur with a higher rate of 
frequency among scientists than among nonscientists.”

Fractions Don’t Belong with Metric Measurements

In teaching her children how to measure length in metric units, Jane dis-
played part of a ruler marked in centimeters, with each one further divided 
into 10 smaller units. These smaller units are millimeters, indicated by the 
small marks within each centimeter. The one in the middle is slightly longer. 
Figure 15.3 shows what her children saw on the screen.

Figure 15.3 A Metric Ruler in Centimeters
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After she showed her class how to measure the length of an object in whole 
centimeters, Jane wanted her children to be more accurate. So she said, “The 
small mark in the middle of a centimeter is halfway between the beginning 
of a centimeter and the end of it. That’s one half centimeter. Now I’m passing 
out some strings. Let’s measure the length of each string to the nearest half 
centimeter.” To help her children recognize these midpoints, Jane marked on 
her projected ruler every half centimeter in addition to the originally marked 
whole centimeters. Figure 15.4 shows what it looked like now.

The problem here is that Jane mixed up metric measurements with cus-
tomary ones. To see the underlying reason behind this problem, let’s take a 
look at the key difference between the customary system and the metric sys-
tem. The customary system essentially uses fractions. For length, it divides 
an inch into two halves, and each half is further divided into two halves, with 
each half of the original half being one fourth. This goes on for several more 
times depending on how accurate people want to be. Most rulers designed 
for school use are in 16ths, namely, an inch divided into 16 equal parts. Some 
tape measures sold in home improvement stores are in 32nds, and some steel 
rulers are even in 64ths. With these fractions come the clumsiness and inef-
ficiencies in making calculations. For example, if there’s a rectangular piece 

of wood and it measures 2
13
16

 inches by 5
27
32

 inches, then what’s its area in 

square inches? Without a calculator handy, it’ll take an average person quite 
a few minutes to find the answer—first changing each number into improper 
fractions, then multiplying the two denominators and the two numerators to 
form a new fraction, and then changing this new improper fraction back to 
a mixed number. Sometimes if conversions are needed, the calculations may 

take even longer. Suppose you were not given a number like 2
13
16

. Instead, 

you were given “There’re 5 bottles of milk and each bottle contains 2 gallons, 
3 quarts, 1 pint, and 1 cup. What’s the total volume of milk in gallons?” Now 
imagine timing yourself in first converting each bottle’s quantity before mul-
tiplying it by 5, and then changing the results back into mixed numbers.

In contrast, the metric system uses decimals. In fact, this is its very 
beauty: Base-10 units (dec- in the very word decimal means 10) are consistently 
used, which practically eliminates the necessity of dealing with fractions. 
For example, meter, the basic unit for length, is divided into 10 decimeters, 

Figure 15.4 A Ruler in Centimeters, but Marked With Fractions



Measurement ◆ 139

one decimeter is divided into 10 centimeters, one centimeter is divided into 
10 millimeters, and so on. In calculations involving metric measurements, 
there is no need to find the common denominator, changing between mixed 
numbers and improper fractions, and then simplifying the results to lowest 
terms. The measurements for the piece of wood mentioned earlier would be 
approximately 7.1 cm and 14.8 cm, respectively. Finding its area in square cen-
timeters will be much faster and much easier than finding it in square inches.

Now the problem of marking all those half centimeters becomes obvious. 
On a metric ruler as shown in Figure 15.3, each small mark within a centime-
ter indicates 0.1 cm, or 1 mm. The fifth one, therefore, indicates 0.5 cm. The 
reason that it’s a little longer than the other millimeter marks is for easier 
recognition. One can easily tell that the mark right before this middle mark 
is 0.4 cm and the one right after it is 0.6 cm without having to count. If all the 
millimeter marks were all the same length, it wouldn’t be as easy, especially 
for readings in the middle range.

Second, marking each centimeter into two halves may mislead children 
into thinking that there’re quarter-centimeter marks and eighth-centimeter 
marks, while actual metric rulers don’t have such marks.

Most important of all, resorting to fractions in using metric units is like, 
to use a cliché, carrying coals to Newcastle: It makes little sense. It’s time con-
suming, clumsy, and prone to error.



Is Computational Estimation an Educated Guess?

In teaching computational estimation, the first problem Jane encountered was 
the definition of estimation. She first thought about guess, as she had heard the 
coinage guesstimate. After all, an estimate is not expected to be the same as an 
exact answer. But Jane did not feel convinced that this was a good definition. 
A guess could be nowhere near the correct answer. If a colleague of hers were 
wearing a new woolen dress and asked all the people around her “Guess 
how much it cost?” some answers she would hear could be really wild. Jane 
wanted her children to do better than just “guess.” So she decided on adding 
a modifier: an educated guess.

This is a much better definition in that some prior experience or knowl-
edge is involved in making an educated guess. Suppose from Jane’s prior 
shopping experience at a particular store, a woolen dress was more expensive 
than a high-end shirt, which cost about $100, but less expensive than a woolen 
coat, which cost about $500. With this knowledge, an educated guess for the 
cost of her colleague’s woolen dress would be somewhere between $100 and 
$500. Exactly what figure Jane were to produce would also depend on other 
factors such as the time of year, the style of the dress, and so on. At any rate, 
she factored in her prior experience and this is why an educated guess is bet-
ter than just a pure “guess.”

However, although an educated guess can guide a person in producing a 
closer figure, still it’s not quite what a computational estimate is and doesn’t 
quite capture its connotations. Let’s use an example to illustrate the key points of 
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computational estimation. Suppose you gave your children a 2-digit by 2-digit 
multiplication problem, 54 × 32, and asked them to give you an estimate. Many 
elementary school children have a strong tendency to mentally go through a 
previously learned written procedure to get an answer. The first thing you want 
to stress is that they should not resort to using paper and pencil, nor should they 
try to mentally applying a written procedure to work on the problem.

Without going through the written procedure, an estimate may be obtained 
in many different ways, very often through some type of simplification. Let’s 
trace the mind work of three fictitious children and see how each of them may 
get an estimate for this problem, as shown in the following Math in Action box.

Math in Action: Three Fictitious Children’s  
Mind Work on Estimating 54 × 32

Child	A:	“I	rounded	54	to	50	and	32	to	30.	Then	I	did	50	×	30	and	got	1500.”
Child	B:	“54	 is	about	half	of	100.	 I	first	multiplied	32	by	100	and	got	3200.	
Then	I	halved	this	number	to	get	1600.”
Child	C:	“32	 is	 about	one	 third	of	 100,	 so	 I	 just	need	 to	find	one	 third	of	
54 × 100. I know one third of 54 is 18, so one third of 54 × 100 is 18 × 100, 
which	is	1800.”



All these are valid, reasonable estimates. However, if a child rounds 54 to 
100 and 32 to 30 and obtains an estimate of 3000, you’ll probably think it’s way 
off mark. After all, for a problem whose exact answer is 1728, an estimate of 
3000 is about 74% off. This may not be very useful.

To conclude, at the beginning stage of teaching children what computa-
tional estimation is, you may want to stress its key characteristics: (a) obtained 
mentally through some type of simplification rather than through applying 
its written procedure, and (b) the answer may be rough but is reasonable.

Are All Estimates Good Ones?

After discussing the key characteristics of computational estimation, Jane 
started giving her children multiplication problems of two double-digit num-
bers for them to estimate. Among the first batch of problems was 54 × 32, and 
her children produced a whole gamut of different estimates, from 80, 150, to 
the ones we discussed in the previous section such as 1500, 1600, and 1800, 
and all the way to 15,000. Jane then said, “Since estimation isn’t like calculat-
ing an exact answer, there may be many different answers. You all did a won-
derful job in estimating this problem. Let’s move on to the next.”
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It’s true that there can be many different answers for estimating an arith-
metic problem. However, not all of them are reasonable. Suppose you had a 
meal in a restaurant and decided to leave a tip of about 15%. After you were 
presented with the bill of $38.92, you quickly estimated that your tip should 
be around $6.00. Compared to the corresponding exact answer of $5.84, this 
was a close estimate. But if you came up with an estimate of $11.00 (about 
88% more than what you intended), you probably would laugh at yourself for 
doing some lousy math. On the other hand, if you underestimated by about 
the same percentage and left a meager tip of $0.70, your waitress would prob-
ably feel unhappy. Either way, an estimate will stop being useful when it’s off 
by quite a bit. Generally, a 40% cutoff line is considered a lenient criterion.1 
That is, if the exact answer of a problem is 100, a lenient criterion is to allow 
any estimates between 60 and 140 to be considered reasonable.

By this criterion, reasonable estimates for 54 × 32 are the ones between 
1037 (40% below the exact answer of 1728) and 2419 (40% above). Those 
outside this range should be considered unreasonable, such as 80, 150, and 
15,000, as they do not provide a useful frame of reference for solving a real-
world problem such as tipping.

By failing to differentiate between reasonable estimates and unreasonable 
ones, Jane left her children the impression that they didn’t need to strive to 
make their estimate reasonable as long as they came up with an estimate. In 
teaching this topic, a constructive way is to let your children know that not 
all estimates are good ones. At the beginning stage, you may make your cri-
terion even more lenient than 40%—let’s say 50%. After you get all answers, 
calculate the lower and upper limits for reasonable estimates and use these 
limits to see whose estimates are within the reasonable range. Gradually, you 
can raise the bar a little. If you want to emphasize the closeness of an esti-
mate, you may adopt a more stringent criterion such as 30%. In doing such 
exercises, you may even select one or two children who produce the closest 
estimates as winners for each round.

The underlying idea is that, to be useful, estimates have to be reasonable, 
that is, not too far away from their corresponding exact answers.

How Practical Is an Estimate If It Takes 4 Minutes?

It was the second day of practice on estimating 2-digit multiplication prob-
lems, and Jane gave this direction to her fifth-grade children: “Here’s a prob-
lem on the smartboard. You have four minutes to come up with an estimate. 
Then we’ll share the results.”

Four minutes is an awfully long time for fifth-grade children to produce 
an estimate for a 2-digit multiplication problem. In the previous section, it 
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was mentioned that estimates should be reasonable in order to be useful. 
Here’s an additional essential feature for estimates: They have to be produced 
in a relatively quick manner. Let’s see why there should be a speediness factor 
involved in producing an estimate.

To address this issue, a question that should be answered first is: “What 
are estimates used for?”

Estimation is a useful tool both in and outside of the school setting. In 
doing school work, students may often use it to check if an answer obtained 
through exact calculation is reasonable, as a safeguard against careless errors. 
Even if calculators are used, sometimes a keystroke may not be pressed hard 
enough, or a series of operations may be executed in a different way than 
expected. If the answer obtained through exact calculation is very different 
from such an estimate, it’s a good indication that some error may have been 
made and more careful calculations may be necessary.

Outside school, estimation is often called for in place of exact calculation 
because the latter in many situations is unnecessary. An example of this is 
estimating the amount of a tip in a restaurant, in which case a rough amount 
is usually sufficient.

Neither use of estimation is practical if it takes longer than exact calculation. 
Imagine that you are taking a formal timed test such as SAT, where you have 
only a limited time for each section. If it takes you 1 minute to manually calcu-
late a problem, you probably wouldn’t spend 2 minutes estimating the same 
problem in order to determine if you have made any possible careless errors. 
Likewise, for a real-world situation such as tipping in a restaurant, half a minute 
is usually sufficient to calculate the exact tip amount with paper and pencil. It 
is unimaginable that you would spend 4 minutes coming up with an estimate.

It’s clear that in addition to the reasonableness criterion, there should be 
another criterion to judge the usefulness of an estimate: the speediness factor. 
Generally, an estimate should not take longer than the corresponding exact cal-
culation. Thus, a formal definition of computational estimation, when all these 
factors are taken into consideration, can be given as: Computational estimation 
is the process of arriving at a rough but reasonable answer to an arithmetic 
problem in a relatively quick manner without resorting to any external calculat-
ing devices such as paper and pencil. In short, this definition stresses three main 
features of computational estimation: reasonable, quick, and obtained mentally.

A rule of thumb is that estimation shouldn’t take longer than calculating 
the exact answer to the same problem. Most children need much less time 
than 4 minutes to precisely calculate a 2-digit by 2-digit, or 3-digit by 2-digit 
multiplication problem using paper and pencil. Therefore, Jane was giving 
her children too much time for estimating such a problem. Some children 
might use this time to mentally calculate an exact answer, as many elementary 
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school children have a strong tendency to apply exact-answer oriented pro-
cedures in attempting an estimate. Limiting the time allowed may help force 
them out of this tendency.

Be Extremely Careful When Rounding 1-Digit Numbers

In teaching how to estimate a product, Jane gave her children this general 
rule: First round both factors to the nearest multiple of a power of 10, and 
then find the product of the rounded numbers. For practicing purposes, she 
gave the multiples of the few most common powers of 10 a number may be 
rounded to, as listed in the following Math in Action box.

Math in Action: Multiples of the  
Few Most Common Powers of 10

•	 10:	10,	20,	30,	40	. . .	90;
•	 100:	100,	200,	300,	400	. . .	900;
•	 1000:	1000,	2000,	3000,	4000	. . .	9000.



As an example, Jane said, 78 may be rounded to 80, 214 may be rounded 
to 200, and 6751 may be rounded to 7000, and so on.

Jane then handed out a worksheet and led her children in estimating the 
multiplication problems listed on it. The first problem was 351 × 6. By follow-
ing her rule, her children came up with 351 × 6 ≈ 400 × 10 = 4000. Jane used a 
calculator and found the exact answer to this problem was 2106. Her intuition 
told her that an estimate of 4000 was just too high, but she couldn’t figure out 
where the problem was.

We have previously talked about a criterion of 40% already being lenient, 
and an estimate of 4000 for 351 × 6 is about 90% off. Such an estimate is 
hardly of any use. Here let’s develop a formula for exploring the effect of 
rounding on the size of the final product. For a multiplication problem, we 
may use error of rounding to refer to the ratio of the difference between the 
rounded and original factors with regard to the original factor. This error can 
be expressed as:

error of rounding
rounded number original number

original number
=

−
××100%
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where a positive result indicates that the number has been rounded up 
whereas a negative result indicates that the number has been rounded down.

For example, when 76 is rounded to 80, the error of rounding is 
80 76

76
100 5 3

−
× =% . %. In other words, compared with the original number 

76, the rounded number has been increased by about 5.3%. Similarly, round-
ing 214 to 200 yields an error of −6.5%.

When a 2- or 3-digit number is rounded to its nearest tens or hundreds, the 
error of rounding is usually low, as the previous examples show. However, 
when a 1-digit number is rounded, the error of rounding can be large due to 
the small size in the denominator in the formula. For example, although the 
difference between 80 and 76 is 4, and that between 10 and 6 is also 4, round-
ing 76 to 80 results in an error of a small 5.3% whereas the error in rounding 
6 to 10 is as high as 66.7%.

As a general rule, be aware of size of rounding errors and try to keep them 
small. For this reason, be extremely careful when you round 1-digit num-
bers because that can potentially result in very large errors. This, of course, 
doesn’t mean that you may not round 1-digit numbers at all. As an example, 
in estimating 8 × 674, you may round 8 up to 10 but round 674 down to 600 to 
compensate for the increase in rounding up 8 and still arrive at a reasonable 
estimate (8 × 674 = 5392, and the result of using 10 × 600 = 6000 is an overes-
timate of 11.3%).

There Is Often More Than One Way to Round a Number

In teaching how to estimate whole-number multiplication problems, Jane laid 
out the basic procedure that her children needed to follow: Round the two fac-
tors and then multiply the rounded factors. Then she gave them this rule for 
rounding 2- or 3-digit numbers: “When the ones digit is 4 or smaller, round 
this digit down to 0. If it’s 5 or greater, round this digit up, that is, change it 
into 0 and increase the tens digit by 1. For example, 74 should be rounded 
down to 70, and 76 should be rounded up to 80.”

This rule is fine for rounding for its own sake. Nevertheless, Jane was 
teaching her children how to estimate, and rounding as a part of the esti-
mation process shouldn’t be a separate procedure, but rather, should be 
executed in conjunction with consideration of the whole problem at hand. 
To use an example, in estimating 76 × 32, it makes good sense to round the 
two factors to 80 and 30, respectively, and obtain an estimate of 2400. This 
estimate, compared with the corresponding exact answer, 2432, is off by 
only 1.3%.
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Now suppose 76 is used in a different problem, 76 × 128. By the proce-
dure Jane told her children, an estimate could be obtained through 80 × 130 = 
10400. However, both factors in the given problem are about the same dis-
tance from 100, one above and the other below. Rounding both factors to this 
common number may produce a faster result: 100 × 100 = 10000.

Not only would you obtain the second estimate faster, it was also a better 
estimate (76 × 128 = 9728). Let’s use a formula to measure the error of estima-
tion following the formula for error of rounding developed in the previous 
section (in fact, we used this formula indirectly but didn’t elaborate on it 
when we were discussing the tipping problem). Basically, the error of estima-
tion is the ratio of the difference between an estimate and the exact answer to 
the exact answer, expressed in percent. Informally, this is simply how much, 
and in what direction, an estimate deviates from the exact answer. This error 
can be expressed in the formula:

error of estimation
estimate exact answer

exact answer
=

−
×100%

where a positive sign indicates an overestimate, and a negative sign an under-
estimate. Using this formula, we can obtain the first estimate’s error to the 

problem 76 × 128 as 10400 9728
9728

100
−

× % = 6.9%. Substituting 10000 for 10400 

in the same formula will produce a smaller error of estimation: 2.8%.
To sum up, rounding as a part of the estimation process should be handled 

in conjunction with the whole problem instead of by itself. Otherwise it would 
give children the impression that there is only one way to round a number. How 
a number is rounded to solve an estimation problem may be impacted by sev-
eral factors, and children need to take into consideration the specific features 
of the estimation problem at hand. After all, an estimate should be close to the 
exact answer enough to be useful and it should be solved in a relatively quick 
manner.

Note

1 I discussed this cutoff criterion in these articles: Liu, F. (2009). Computational 
estimation strategies on whole-number multiplication by third- and fifth-
grade Chinese students. School Science and Mathematics, 109, 325–337; Liu, 
F. (2013). Are exact calculation and computational estimation categorically 
different? Applied Cognitive Psychology, 27, 672–682.



On different occasions, Jane uses some mathematical terms or formulations 
not quite the way they are meant to be used. A term describing a mathemati-
cal concept usually has specific denotations and may not be easily exchange-
able with another term. Each of the following sections discusses such a case 
as indicated by its subtitle. The problematic words or phrases are underlined, 
with a corresponding formulation or words to use suggested, presented in 
italics. The last paragraph in each section gives an explanation why the origi-
nal formulation or words are problematic and why they should be replaced 
with the suggested formulation.

Circumference

“The formula for finding the circumference of a circle is: c = dπ.”
Formulation or words to use: c = πd.

Explanation: Letters, such as x, y, and z in English, are often used to repre-
sent any one of a set of numbers known as variables. As the term indicates, 
the quantity assumed by a variable may change from situation to situation 
(variable comes from vary, meaning “change”). A letter may also be used to 
represent a value that remains unchanged. Such a value is called a constant. 
π is such a constant. By mathematical convention, when a variable and a con-
stant appear in the same term of a mathematical expression or formula, the 
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constant is written first, followed by the variable, such as πd. If a numeral is 
also used, then it appears before either one, such as 2πr. Again, this is only a 
matter of convention.

Clock Hands

“Look at my clock here. The red hand is the hour hand. The blue hand is 
the minute hand.”

Formulation or words to use: shorter hand; longer hand

Explanation: The color used on an analog clock has nothing to do with dis-
tinguishing between the hour hand and minute hand. It’s the length of the 
hands that does. While one manufacturer may make the hour hand red and 
minute hand blue, another manufacturer may very well make the two hands 
in opposite colors. Children conditioned to tell the two hands apart by color 
will have to relearn the true mechanism of distinguishing the two clock hands 
by their lengths. If you have a choice, choose model clocks having hands of 
the same color. That way children will be forced to look for what’s intrinsic 
in what makes an hour hand an hour hand and what makes a minutes hand 
a minute hand.

Commas

“Your answer for this problem is 6300. But there’s something wrong here. 
You must write a comma for every group of three digits.”

Formulation or words to use: “Use a comma for every group of three dig-
its for numbers 10,000 or higher.”

Explanation: Commas aren’t part of a number. They’re used simply for easier 
recognition. When faced with a number of more than several digits written 
one after another without any commas, such as 1000000 or 12345678, people 
literally would have to count how many 0s or how many digits there are in 
it. In contrast, if commas are used, as in 1,000,000 or 12,345,678, readers can 
perceive its constituent digits at a glance without having to count. However, 
because they aren’t an integral part of a number, commas don’t have to be 
used if the perception of the number is easy. For example, many math text-
books and academic journals don’t use commas for numbers composed of 
four digits, as in 6300. Commas do get used in numbers of more digits, but 
even here there’re variations. Some journals use a narrow space, to the same 
effect, as in 63 000 000. The key point here is, if numbers with quite a few 
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digits don’t get used very frequently in children’s school work, the use of 
commas doesn’t have to be stressed or even required.

Diameter

“The diameter of a circle is two radii put together.”
Formulation or words to use: The diameter is a chord that passes through 

the center.

Explanation: Although the diameter is indeed twice as long as the radius of 
a circle, defining it as two radii put together may lead to mistaking the two 
line segments as shown in Figure 17.1(a) for the diameter of the circle. The 
definition of a diameter should start with a chord, which is a line segment 
that connects any two points on the circle. The definition of a diameter, then, 
should capture this key feature: It’s a line segment straight across through the 
center of the circle, as shown in Figure 17.1(b).

Equation

“Let’s look at this equation here: 0.8 + 0.375 = . Who can tell me how we 
should set it up in a vertical form?”

Formulation or words to use: problem.

Explanation: An equation is a statement of equality of expressions. In other 
words, an equation involves two expressions joined together by an equal 
sign (=) indicating a relationship of equality between them. 3x + 4 = 10 is an 

Figure 17.1 Two Radii Put Together (a) Don’t Necessarily Make a Diameter (b)
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equation, and so is 4 5 1 02x x+ + = . For 0.8 + 0.35 = , there’s only one expres-
sion on the left side of the equal sign, and there’s no expression on the other 
side. Thus, it doesn’t form an equality and it’s not an equation. In such situa-
tions, we should simply say problem in place of equation.

Lines (1)

“A quadrilateral is a figure composed of four lines.”
Formulation or words to use: line segments.

Explanation: In geometry, a line extends in both directions infinitely. Think 
of a number line. Any number, big or small, can be accommodated on it. In 
contrast, any one of the four sides of a quadrilateral doesn’t extend beyond 
the vertices. Thus, it’s only a portion of a line, delimited by two endpoints. 
Such a portion is called a line segment.

Lines (2)

“An angle is formed when two lines meet at a point.”
Formulation or words to use: rays.

Explanation: A ray is part of a line that has one endpoint and extends in one 
direction infinitely. An angle is formed when two rays meet at their end-
points, and this common point is known as the vertex. In other words, neither 
side of the angle extends beyond the vertex, but it can extend in the other 
direction. An angle may also be formed by two line segments.

More Than

“Every place in a number is 10 more than the next place to its right.”
Formulation or words to use: times.

Explanation: In the Hindu-Arabic numeration system, each place of a number 
has a specific value. These values are, from right to left, 1, 10, 100, 1000, and 
so on, with each one 10 times the previous one. For example, if we put a 7 in 
the hundreds place to make 700, it is 10 times the number formed by putting 
the same 7 in the tens place (70). The relationship of the two numbers joined 
by times is exactly what it is: multiplication (700 = 10 × 70). In contrast, “more 
than” usually indicates an addition/subtraction relationship, as in “10 is 9 
more than 1” (10 = 9 + 1; 10 − 1 = 9).
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Number

“Which number in 358 is in the tens place?”
“In 2719, which number is the largest? Which number is the smallest?”
“123, 213, and 321 all have the same numbers.”
Formulation or words to use: digit.

Explanation: The Hindu-Arabic numeration system employs 10 symbols, 
namely, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0, to form numbers. For example, 358 is one 
number, which is composed of three digits: 3, 5, and 8. Similarly, 2719 is one 
number, and it is composed of four digits: 2, 7, 1, and 9. A number can be single-
digit as well: Any one of the 10 digits can stand alone as a number.

Object

“Area is how much space a two-dimensional object has.”
Formulation or words to use: shape or figure.

Explanation: All objects are three-dimensional. Area is two-dimensional, and 
that is probably what prompts Jane to say a “two-dimensional object.” In 
defining area, resort to words that in themselves denote “two-dimensional,” 
such as shape and figure suggest.

Percent

“A fraction can be changed into a percent by using this formula: 

numerator
denominator

percent
100

= .”

Formulation or words to use: 
numerator

denominator
x

100
= .

Explanation: A percent already has “over 100” in it, and it is incorrect to pres-
ent a formula containing another “over 100.” What appears in the position of 
“percent” in Jane’s formula should actually be a variable representing only  

the numerator of the percent. If we want to change 3
5

 into a percent, for  

example, we can start by asking: “3/5 is what number over 100?”, and this  

can be set up in an equation: 3
5

 = x
100

. Solving for x, we have:

5x = 3 (100)
 x = 60
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Putting 60 in the position of x of the original equation, we have: 3
5

 = 60
100

. As 

mentioned earlier in this book, a percent is no different from a fraction, and 
60

100
 is virtually the answer we want to find. From this fraction, we just need 

to take a small step to transform it into the “percent” form, the one with a 
percentage sign: 60%.

Sphere

“The formula for the area of spheres is πr 2.”
Formulation or words to use: circles.

Explanation: Figures or shapes drawn on a flat surface (plane) are often called 
2-D geometric shapes. Geometric shapes that take up physical space (like 
objects) are referred to as 3-D geometric shapes or solids. A circle, like the 
image of the top of a round dining table, is a 2-D shape. The formula for cal-
culating its area is πr 2. A sphere, like a basketball, is three-dimensional. 3-D 
shapes such as a rectangular prism may be composed of a number of faces 
and each face has its own area, and the term “surface area” is often used to 
refer to the sum of the areas of all its faces. The formula for calculating the sur-
face area of a sphere is different from that for calculating the area of a circle.

Times

“More digits in a decimal don’t necessarily mean a larger number. For 
example, 0.214 is smaller than 0.8. In fact, 0.213 is about four times 
smaller than 0.8.”

Formulation or words to use: (one fourth) of

Explanation: Times means “multiplied by” and is readily translatable into a 
mathematical expression, as “3 times 4 is 12” is translatable into “3 × 4 = 12.” 
When we compare two numbers where one is several times the other, we 
can say similar things such as “18 is three times larger than 6,” which can be 
translated into 18 = 3 × 6. However, “smaller than” cannot be used in the same 
way. Let’s suppose what Jane said was (to make it easier to explain) “2 is four 
times smaller than 8.” If we want to write this statement into a mathematical 
expression, we would have: 2 = 4 × 8, which we know is not correct. To fit into 
the equation 2 = __ × 8, only one fourth (1/4) will work. So the correct way of 
saying what was intended is “0.213 is about one fourth of 0.8.”
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Units for Area and Volume

“When you calculate the area of a geometric figure, remember the unit of 
measure has an exponent 2. For example, a rectangle of 3 centimeters 
long and 5 centimeters wide has an area of 15 centimeters squared.”

Formulation or words to use: square (centimeters).

Explanation: Although the exponent 2 in algebra is often read as “squared” 
(used as a verb), as a b c2 2 2+ =  is often read as “a squared plus b squared 
equals c squared,” a unit of measure with the exponent 2 indicating area is a 
little different. By convention, it’s read as “square” preceding the base mea-
sure. For example, the area of the aforementioned rectangle has an area of 
15 square centimeters. Here square is used as an adjective. Similarly, there’s an 
adjective for units of volume. A rectangular prism with dimensions of 2 cm, 
4 cm, and 5 cm has a volume of 40 cubic centimeters (2 cm × 4 cm × 5 cm = 
40 cm3). Usually it’s not read as “40 centimeters cubed.”



While readers may find this book a perfect resource guide and use it indi-
vidually as they progress through the school year, it may serve as a book 
for study groups equally well. If you are a principal or instructional coach 
acting as facilitator of such a group consisting of teachers in your building, 
you may find the following steps easy to implement and yet highly effective. 
Such study sessions will have a direct, positive impact on your faculty’s daily 
teaching of some fundamental math content, which, in turn, will lead to better 
student performance.

Because all sections in this book are structurally similar—namely, each 
section begins with Jane saying something problematic, followed by analysis 
of what she said and then advice on how to avoid making this mistake—a 
group study session may be conducted by following these steps:

1. Decide on a topic discussed in the book that fits the grade level of 
and is of particular interest to your group members as a whole.

2. Show on a smartboard Jane’s way of presenting that specific topic. 
Ask if any of your group members teach the same way as Jane does 
and, if so, why it is problematic to teach that way.

3. Set aside about 20 or 30 minutes for reading the analysis part of the 
selected section.

4. Start a roundtable discussion on the ill effects of presenting the 
content in Jane’s way. Have your group members reflect on how to 
avoid making such mistakes in their own teaching.

5. Resume reading, this time the advice part of the selected section. Ask 
your group members if they have come up with, while reflecting, 
the same strategy as suggested in the book or share their strategies if 
they have come up with different ones.

Appendix

Suggestions for Using Common 
Mistakes in Teaching Elementary 

Math with Study Groups
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You may want to ask your group members to not read the selected section 
ahead of time. A discussion with varied opinions on whether Jane’s way 
of teaching is problematic and why or why not it is so can be lively and 
thus its effect will be maximal. Such a desired effect may not be as easy 
to achieve when all members already have consensus on the issue being 
discussed.

Here are two examples.

Example 1

The following paragraph is from the beginning of “Don’t Ever Say ‘Subtract 
the Smaller Number from the Larger One’” in Chapter 4 (p. 27):

This is what Jane did in her classroom one day. She presented a 1-digit 
subtraction problem, 9 − 4, to her children and said, “Let’s solve this 
problem. Now subtract the smaller number from the larger number. 
Tell me your answer.”

Project the paragraph quoted on a smartboard. Lead the group discussion by 
asking these questions:

1. Is there anything problematic with what Jane said? Why or why 
not?

2. (If different opinions on this question have been voiced) Can you 
convince those holding the opposite idea from yours of why you 
think it’s (or not) problematic to say that?

3. Can you say something similar in division, as “For 12 ÷ 6, divide the 
larger number by the smaller number”?

After some discussion on these questions, possibly with different opinions 
expressed, devote about 30 minutes to reading the analysis part of the chosen 
section (pp. 27–28).

Before assigning the last part of the advice section, you may also want to 
conduct some discussion first. Pose such questions as:

◆◆ Now that we know what Jane said is problematic, can you suggest a 
proper way of explaining how to solve this problem?

◆◆ How can you avoid this way of teaching in the future?
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Example 2

The following problem is from the beginning of “Aunt Sally Is Evil—The 
Order of Operations” in Chapter 7 (p. 54):

7 − 2 + 3 = ?

Here’s a suggested sequence of steps for conducting the group study on 
this topic:

1. Pass a pencil and a small piece of paper to each group member.
2. Project the example problem (7 − 2 + 3 = ?) on the smartboard and 

ask your group members to solve it without using a calculator, 
searching on the Internet, or consulting with each other. Ask them 
to write the answer on the paper just distributed. Half a minute is 
sufficient.

3. Collect all the pieces of paper. If there are six, seven, or more mem-
bers in your study group, it is likely that while most members will 
arrive at the correct answer, a few may get it wrong.

4. Ask those who got the wrong answer to justify what they got, and 
this will invariably lead to the mention of “PEMDAS” or “Please 
Excuse My Dear Aunt Sally.”

5. Start book reading. Devote about 30 minutes to reading, individu-
ally, the analysis part of this section (pp. 54–56, from “But the right 
answer is not 2” till “you got the picture”).

6. As added proof, project the screen of a calculator showing the execu-
tion of 7 − 2 + 3 =. Most calculators designed for students, such 
as TI-15 or higher models, are good to use, but avoid using any 
primitive-type ones, usually the size of a sticky note or even smaller 
(such calculators may execute operations in a from-left-to-right 
 manner because they do not have sufficient memory).

7. Ask if the mnemonic “PEMDAS” is the primary reason for arriving 
at the wrong answer for 7 − 2 + 3 =.

8. Go back to the reading of the book, this time focusing on the last sec-
tion, on how to avoid making this mistake (p. 56).

9. Suggest these topics for discussion:
 – Why did “PEMDAS” lead some people to the wrong answer?
 – What effect does “PEMDAS” have on children if they are told this 

is the order of operations?
 – What’s the key difference between “PEMDAS” and the actual 

rules concerning the order of operations, presented on page 56?



Appendix ◆ 157

 – Can you solve the problems presented in the Math in Action boxes 
on pages 56–57 using these rules?

 – What lessons can you draw with regard to creating your own 
mnemonics on some mathematical rules?

All the other sections in this book can be handled in a similar manner. The 
idea is, discourage your group members from reading the selected section 
ahead of time such that the discussion will be more effective than when there 
is consensus. For a few sections, though, a little preparation on topics for dis-
cussion other than what’s suggested in this appendix may be necessary.




	Cover
	Title
	Copyright
	Dedication
	Contents
	Meet the Author
	eResources
	Preface
	1 Counting
	Counting Shouldn’t Start at 0
	What Are Tally Marks for?
	It May Not Be Fast—the Purpose of Skip-Counting
	Our Number System is Base-10, Not Base-12

	2 Number Properties
	A Red Marble Isn’t More Than a Blue One
	Playing Cards and Dice Aren’t Ideal Things to Make Multidigit Numbers With
	It’s Odd Not to Consider 0 as Even
	14 and 37 Don’t Belong in the Same List

	3 Addition
	4 + 4 Isn’t Simply 8 Bars Put Together
	Make Pictorial Representations More Than a “Literal” Translation
	Don’t Hop from Square One
	You Can’t Add Apples and Oranges Together

	4 Subtraction
	Don’t Make the Kittens Disappear
	Don’t Ever Say “Subtract the Smaller Number from the Larger One”
	“Neither a Borrower nor a Lender Be”—Why We Shouldn’t Borrow
	Can We Subtract a Larger Number from a Smaller One?
	10 + 5 − 7 = 15 − 7: No Way to Make It Easier?

	5 Multiplication
	The Formidable 169-Cell Multiplication Table
	“You Must Put a Zero in the Ones Place”
	Can You Move over One Place Value?
	Line Multiplication: Why It Doesn’t Work

	6 Division
	The Larger Number Doesn’t Always Go Inside
	What’s 0 ÷ 0?
	Division Isn’t Always Repeated Subtraction
	“Dad, Mom, Sister, Brother, Rover”: Where Is Dad?
	Division Doesn’t Always Yield a Smaller Number

	7 The Order of Operations
	Aunt Sally Is Evil—The Order of Operations
	The Order “M/D before A/S” Isn’t Haphazard
	Are Negative and Subtract Really Different?

	8 Algebra
	An Equal Sign Means Equal
	What Does Adding Up Numbers Landed Have to Do with Finding Factors?
	Timelines Aren’t Good Candidates for Teaching Negative Numbers
	The Worst Example in Teaching Exponents

	9 Geometry: Bits and Pieces
	Don’t Count the Diagonals on a Grid
	“All 3-D Shapes Have an Extra Third Dimension of Height”
	Don’t Use “Vertical” to Find the Horizontal Value
	The Two Sides of a Symmetrical Figure Aren’t Exactly the Same
	Don’t Use Tiles to Figure Out the Perimeter

	10 Geometry: Common Geometric Shapes
	Length Doesn’t Necessarily Mean Longer
	A Rectangle’s Orientation Doesn’t Matter Either
	“A Rectangle Has Two Longer Sides and Two Shorter Sides”
	What’s Wrong with Saying “Triangles, Rectangles, Squares, and Hexagons”?
	Base Doesn’t Necessarily Mean “Side at Bottom”
	Three Sides Don’t Necessarily Make a Triangle
	How Many Sides Does a Circle Have?

	11 Time-Telling
	“A Quarter in Time Means 15”
	Does 1 on Analog Clocks Mean 5 Minutes?
	“Why Does the Time on My Analog Clock Look Weird?”
	Which Hand Pointing to 12 Makes 12:00?
	Why We Shouldn’t Jump Around Between 8:00 and 9:00

	12 Fractions
	A Condition for Using Fractions: Equivalent Parts
	“Bottom Number” and “Top Number” Aren’t Nearly Sufficient for Defining Denominators and Numerators
	What Does 1/2x Mean?
	A Fraction Doesn’t Address “How Many”
	Denominators Should Be Substantially Different for Easy Comparison
	Percentage Shouldn’t Be Juxtaposed with Fractions and Decimals

	13 Decimals
	Changing the Value Scheme of Base-10 Blocks Is Not a Good Idea
	When Is It Appropriate to Read a Decimal as a Fraction?
	25.0 and 25 Aren’t Exactly the Same
	Keep a Few More Decimal Places when Rounding at Intermediate Steps

	14 Simple Statistics and Graphs
	Were the Children in Your Class Born, on Average, on the 12.8th?
	“The Mean Is the Average”
	Where in the World Does the Mode Ever Get Used?
	Do All Your Children Have an Equal Chance of Winning?
	Use Different Types of Data for a Beginning Lesson on Graphs

	15 Measurement
	Why Do We Need Nonstandard Measurement?
	What Is Standard Measurement?
	What Are Centimeters Used to Measure?
	Leave Out Units of Measure at Intermediate Steps
	How Do You Say the Word for “1000 Meters”?
	Fractions Don’t Belong with Metric Measurements

	16 Computational Estimation
	Is Computational Estimation an Educated Guess?
	Are All Estimates Good Ones?
	How Practical Is an Estimate If It Takes 4 Minutes?
	Be Extremely Careful When Rounding 1-Digit Numbers
	There Is Often More Than One Way to Round a Number

	17 Odds and Ends
	Circumference
	Clock Hands
	Commas
	Diameter
	Equation
	Lines (1)
	Lines (2)
	More Than
	Number
	Object
	Percent
	Sphere
	Times
	Units for Area and Volume

	Appendix: Suggestions for Using Common Mistakes in Teaching Elementary Math with Study Groups

