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PREFACE

ORGANIZATION OF THE BOOK

Th is resource is intended to help teachers improve student success in learning 
algebra by sharing approaches that will lead to a deeper and richer understanding 
of the subject.

Th e resource is organized by grade level around the Common Core State Stan-
dards for Mathematics (CCSSM) that are related to algebraic thinking. Th e grades 
covered in this resource begin with Kindergarten, where the fi rst relevant standard 
is found in the Operations and Algebraic Th inking domain, and end with Grade 8, 
where the focus is on working with linear equations and functions. For each sec-
tion, a portion of the relevant standard is presented, followed by a delineation of 
important underlying ideas associated with that portion of the standard, as well 
as some Good Questions to Ask to bring those underlying ideas out. 

Th e discussions of underlying ideas include

•• background on the mathematics of the standard,
•• suggestions for appropriate representations of the specifi c mathematical 

ideas,
•• suggestions for explaining the ideas to students, and
•• cautions about misconceptions or situations to avoid.

Following each set of underlying ideas is a group of Good Questions to Ask 
that can be used for classroom instruction, student practice, or assessment. Among 
the questions are many open questions, as well as more directed conceptual ques-
tions that might be supplemental to what teachers normally are provided in the 
resources they use. Th e Common Core State Standards for Mathematical Practice 
underlie the content throughout and are explicitly mentioned in a number of 
instances.

For Whom Is Th is Book Useful and Why?

Th is resource is designed to aid math teachers of Kindergarten–Grade 5 in build-
ing a solid foundation for student work in algebra in the middle grades and to aid 
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teachers of Grades 6–8 in preparing students for work in algebra in the secondary 
grades. It is also intended to serve as a resource for math coaches in assisting class-
room teachers in their transition to teaching mathematics within the more demand-
ing framework of the Common Core State Standards. I expect this book to be help-
ful as well to preservice teachers as they prepare themselves to understand and 
teach math in a way that will foster a deep level of understanding in their students.

Considering the Bigger Picture

While I would hope that all users would read the entire book, I particularly en-
courage this approach for math coaches and preservice teachers. For grade-level 
or grade-band teachers, I suggest reading the Introduction and the grade-level 
sections that most directly apply for their particular groups of students, but also 
becoming acquainted with the mathematics related to algebra taught in grades 
directly below and above their groups. Because students in any classroom possess 
diff erent levels of knowledge, in order to diff erentiate instruction appropriately, 
teachers must be aware of missing prerequisite knowledge, as well as suitable di-
rections for moving forward. 

Lastly, I hope that using this book helps make algebra make more sense both 
to the readers and to their students.
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I wish to thank, too, several reviewers whose comments were very helpful in shap-
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matics teaching and learning. Th ese educators have continued to encourage me to 
write more. I thank these professionals for their personal support, as well as for 
sharing my work with their colleagues.
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INTRODUCTION

INCREASED FOCUS ON ALGEBRA

Students’ success or lack of success in early algebra can have a signifi cant eff ect on 
their futures (Usiskin, 1995). Algebra is oft en required for graduation from high 
school. It is also seen as a critical course for opening doors for many future careers. 
In fact, one of the tasks of the National Mathematics Advisory Panel to the presi-
dent of the United States was to identify the skills needed for students to learn 
algebra (National Mathematics Advisory Panel, 2008). It is widely accepted that to 
achieve the current U.S. goal of algebra for all, students in elementary and middle 
schools must have better preparatory experiences than has historically been the 
case (Cai & Knuth, 2005).

WHAT IS ALGEBRA?

Although many view algebra as math that you do with letters, the topic of algebra 
is much more complex than that. Th ere is value in looking at how diff erent re-
searchers defi ne algebra to make sense of how algebra manifests itself in the Com-
mon Core State Standards for Mathematics.

For example, Usiskin (1988) described four diff erent notions of what algebra is:

•• A way to generalize and formalize arithmetic: for example, using the alge-
braic equation ab = ba to indicate that any two numbers can be multiplied 
in either order; or a(–b) = –ab as a means to indicate that the product of 
any number and the opposite of another one is the opposite of the prod-
uct of the two numbers; or a

b × c
d = a

bd
c  as a way to indicate the rule for 

multiplying fractions, again no matter what the numerators and denomi-
nators are.

•• A procedure for solving certain kinds of problems (e.g., problems like this 
one: If one amount is 50 more than twice another, and the two amounts 
total 300, what is each amount?).

•• Th e study of relationships among quantities or variables, for example, 
a = 2p as a means of describing the number of arms, a, of p people; or 
P = 2(l + w) as a means of describing the perimeter of a rectangle as 
double the sum of its length and width. Also involved in working with these 
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relationships is insight into what they imply. For example, knowing that 
a = 2p tells us that as p increases, so does a. Knowing that P = 2(l + w) 
tells us that the sum of the length and width of a rectangle must be half its 
perimeter.

•• Th e study of structures with certain inherent rules, for example, we factor 
x2 – 9 by using the rules of symbol manipulation.

Some of these approaches to algebra manifest themselves in the CCSSM standards 
for grades K–8, particularly the generalizing of arithmetic concepts and the study 
of relationships among quantities and variables. Usiskin’s (1988) other notions of 
algebra tend to be more signifi cant in the secondary grades.

Generalization is a signifi cant focus even in the early grades. It involves a delib-
erate extension from particular situations and oft en involves justifi cation. For exam-
ple, students generalize when they realize that it is not just that 2 + 3 = 3 + 2 and 
5 + 8 = 8 + 5, but that any two numbers can be added in any order, and understand 
why. Or a student might notice that both 4 × 9 and 2 × 18 are ways to express 36, 
but then generalize to the concept that when we multiply two numbers to achieve a 
particular positive whole number product, if one factor increases, the other decreases. 
Ellis (2007) points out that generalization is complex, oft en involving reasoning and 
communication, and that the ability to generalize grows with more and more op-
portunities to generalize, which oft en occurs when students work with patterns.

Variables are related in the earlier grades not only when students create for-
mulas using some measurements of a shape to determine other measurements but 
also when they consider how various groups of numbers relate, for example, how 
the multiples of 5 relate to the multiples of 10.

Th e National Council of Teachers of Mathematics (NCTM, 2000) lists four 
somewhat diff erent organizing themes for algebra: (1) understanding patterns, 
relations, and functions; (2) representing and analyzing mathematical situations 
and structures; (3) using mathematical models to represent and understand quan-
titative relationships; and (4) analyzing change in various contexts. Th ese themes 
relate to and overlap Usiskin’s (1988) notions and manifest themselves clearly in 
the CCSSM. Work on pattern in Grades 3–5 leads to generalization, a hallmark of 
algebra. Using equations to describe both numerical and measurement situations 
even as early as Grade 1 eventually leads to an examination of how variables are 
related. Consideration of mathematical models and quantitative relationships 
occurs at almost all grade levels, with signifi cant attention to the meaning of equa-
tions. Analyzing change becomes more prominent in the middle grades, where 
students explore changes in variables, oft en using tables of values and graphs.

Because the various aspects of algebra touch on so many areas, standards that 
require algebraic thinking are found in many strands of the CCSSM, including 
Number and Measurement.
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GENERAL REASONS STUDENTS STRUGGLE WITH ALGEBRA

Historically, the separation of arithmetic and algebra in instructional resources 
and in teacher instruction for Grades K–8 might have unintentionally interfered 
with student success in algebra. Students did not really look at algebra as a way to 
generalize the concepts they dealt with in arithmetic, yet that is an important 
aspect of algebra, as discussed above. It is telling that the CCSSM, which have been 
formalized fairly recently, use the subdomain of Operations and Algebraic Th ink-
ing within the Number strand in Grades K–5, in recognition of the value of help-
ing teachers and students see the interconnection between number and algebra.

Kieran (2004) suggests that there are critical features that must be included 
in the integration of arithmetic and algebra to lead to student success in algebra. 
Th ese include

•• A focus on looking at relationships between values and not just on calcu-
lating answers,

•• A focus on the inverse relationships between addition and subtraction, 
and multiplication and division, to support equation solving,

•• A focus on representing problems and not just on solving them
•• A focus on the use of variables along with numbers from an early grade, 

and
•• More attention to the meaning of the equal sign as a description of a rela-

tionship or equivalence than as an instruction for getting an answer.

Students who do not develop these focuses will likely struggle more in alge-
braic situations than those who do. Th ese concepts are all addressed in the CCSSM 
to build the likelihood of developing success. Th ey are also specifi cally addressed 
in this resource in a number of the suggestions and questions provided.

Th ere are many other issues, too, that interfere with success when students are 
coming to grips with algebraic situations. Some of these issues are rooted in the 
nature of algebra, whereas others result from missing prerequisite knowledge.

Algebra is abstract from the point of view that it is about generalizations and 
not specifi cs. Knowing that 3 × 4 = 12, and so does 6 × 2, is specifi c. Realizing that, 
when any two numbers are multiplied, the fi rst can be doubled and the second 
halved without changing the product is a generalization. Many teachers focus on 
specifi cs, and many students do not get past this stage. Th e CCSSM suggest that 
teachers encourage generalization.

Students who approach problems in an unsystematic way will have more dif-
fi culty than students who are systematic in arriving at a generalization. Students 
who are scattered in their thinking simply do not recognize the patterns from 
which they might generalize. Teachers need to help students see the value of orga-
nization in detecting relationships.
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Algebra requires more abstract thinking than does much work with numbers. 
To effi  ciently fi gure out how to graph, for example, y = 3x – 2 requires an under-
standing of the role of the coeffi  cient of x and the constant in a linear equation. To 
go from tables of values to appropriate equations requires an ability to observe 
patterns, make sense of them, and then generalize. Th is type of abstract thinking 
requires careful development on the part of a teacher; it is not automatic for many 
students.

Another important prerequisite to success in algebra is a thorough under-
standing of addition, subtraction, multiplication, and division. To use an equation 
to model a problem such as “If I have 20 times as many stamps as Rachel, and I 
have 420 stamps, how many does Rachel have?” the student requires a deep under-
standing of what multiplication (or division) means, when it applies, and how to 
translate between natural language and algebra. In this case, a student without that 
knowledge might easily just multiply 20 × 420, seeing both of those numbers and 
the phrase “times as many” in the question, rather than realizing that the equation 
is actually 20r = 420, which makes the question essentially a division problem. 
Teachers must ensure that students meet and model problems involving all sorts of 
meanings of operations and experience many opportunities to translate between 
natural language and algebra.

Algebraic reasoning oft en requires deduction, that is, considering how know-
ing one piece of information leads to another. Students without practice in this 
habit of mind struggle in algebra. For example, students have to understand why, 
if they know that x + y = 20, they also implicitly know that 2x + 2y = 40, why x 
must be an integer if y is, and why, if y is a negative integer, then x must be a posi-
tive integer. Teachers can facilitate this habit of mind by regularly asking questions 
that require students to deduce.

Even relatively early work in algebra also requires some reasonable level of 
comfort with proportional reasoning. Th inking of 3x as 3 of the unit x, or of 3x + 2 
as just about the same as 3x for large values of x, are examples of thinking pro-
portionally. Th is ability is fundamental to making sense of even simple alge-
braic expressions. The literature indicates that many students lack even basic 
proportional reasoning (Dole, 2010). Development of proportional reasoning 
is aided by careful teacher attention to it while teaching number, algebra, and 
measurement.

Yet another reason for diffi  culties in algebra is students’ lack of understanding 
of the meaning of an equal sign, a critical part of algebraic thinking and a point 
very specifi cally addressed in the CCSSM. Many students think of the equal sign 
as a signal to perform some calculation, rather than seeing it as a way to describe 
two equivalent expressions or a balance. So, those students, when confronted with 
the equation 400 ÷ 2 = □ × 5, will assume that □ = 200, the answer to 400 ÷ 2, 
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rather than 40, the value that would make the two sides of the equation equal. As 
well, those students are totally confused by an equation like 3x + 2 = 2x + 6, since 
they are looking for an answer (i.e., a number) on the right-hand side (Carpenter, 
Franke, & Levi, 2003; Knuth, Stephens, McNeil, & Alibali, 2006).

Students might also be confused when variables are used in diff erent ways. For 
example, when a student sees 3 + k = 8, she or he is usually expected to determine 
the single unknown value that makes the equation true. However, this is not the 
case when the student sees any of the following:

•• Th e expression 3 + x, which describes an infi nite set of numbers;
•• Th e function f(x) = x + 3, which also describes an infi nite set of inputs/

outputs; or
•• Th e equation 3 + x = (5 – x) + (2x – 2), which is true for any value of x, 

not just one, since this is a statement of equivalence.

Teachers need to point out these diff erent uses of a variable.
Hallagan (2006) points out that variables make some students so uncom-

fortable they oft en do not know how to handle them when they are included in 
an answer to a question, for example, a question such as “Describe an algebraic 
expression which means three more than a number.” Th ey believe answers should 
be numbers. Perhaps this is why Booth (1998) indicated that students are less 
comfortable with algebraic expressions than with equations; with an equation, 
there is at least something to do. Th is phenomenon means that a teacher needs 
to spend extra time on expressions, making the meaning of expressions clear 
to students. Many suggestions for focusing on expressions are provided in this 
resource.

Additional obstacles to success in algebra are related to missing or faulty pre-
requisite knowledge in students. Oft en this missing knowledge is a solid number 
sense and/or comfort with operations involving particular types of numbers. For 
example, solving the equation 3

4 x = 5
8 requires competence with multiplication 

and/or division of fractions. Adding 3n to (–4n) requires competence with addi-
tion of integers. Solving 3x – 2 = 4(x + 3) requires competence with order of oper-
ations. Recognizing the diff erence between 2 – 3x and 3x – 2, or between 4(2x – 3) 
and 8x – 3, requires an understanding of properties of numbers. Teachers need to 
be realistic when selecting the algebraic situations they use with students in terms 
of the prerequisite knowledge possessed by the students.

At the middle school level, another problem for students in understanding 
algebra could be lack of comfort with graphing, an important aspect of an algebra 
program once students begin to explore relationships between two variables. Teach-
ers must provide students with experience in analyzing graphs and not just in cre-
ating them.
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Specifi c Types of Algebra Errors Students Make

Th ere are many well-documented specifi c errors that students make that get in 
the way of their success in algebra. Each of these errors is usually based on a 
faulty understanding of the equal sign, an incomplete understanding of what vari-
ables represent, or an inappropriate generalization of certain arithmetic ideas. Teach-
ers aware of these specifi c errors can be sure to bring them to students’ attention.

For example, Asquith, Stephens, Knuth, and Alibali (2007) point out that 
many students believe that n + 6 is more than 3n, most likely because they simply 
think about 6 being more than 3. Falle (2007) notes that many students would 
interpret, for example, 3x + 5 as 8x or 2(x + 5) as 10x, also inappropriate general-
izations of arithmetic. Teachers can make a point of having students consider such 
examples to illustrate appropriate reasoning.

Students are sometimes uncomfortable with notation or conventions. For 
example, some students do not realize that 3x means 3 multiplied by x, or do not 
understand what f(x) means (Arcavi, 1994), even though they know how to deal 
with these ideas once they get past the notation issues. Teachers can talk much 
more specifi cally about such conventions and should not assume that students will 
understand aft er being told only once.

Christou, Vosniadou, and Vamvakoussi (2007) point out other specifi c errors, 
which include the following:

•• Substituting 2 for a in 3a and coming up with the number 32;
•• Interpreting 12m as 12 meters instead of as 12 times as much as the num-

ber m;
•• Assuming that the letter j must be worth 10 since j is the 10th letter in the 

alphabet;
•• Believing that to represent an amount such as hours, it is essential to use 

the letter h;
•• Assuming that x is positive and that –x is negative, even though this may 

not be the case;
•• Assuming that in an expression such as 3x + 5, x has to be a whole num-

ber since the expression itself involves only whole numbers;
•• Believing that it is impossible for a + b to be equal to a + c since the let-

ters are diff erent, ignoring the fact that the values could be equal.
All of these misunderstandings show an underlying lack of comprehension of 
what variables are. Teachers can watch for these problems and address them when 
they arise or can illustrate the relevant concepts even in advance of a student 
exhibiting these misunderstandings.

Norton and Irvin (2007) point out even more errors. Th ese include
•• Rewriting 3x + 3 = 15 as 3x = 15, or x – 2 = 2x + 3 as x = 2x + 3, simply 

ignoring the 3 or –2;
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•• Being able to rename 3(a + b) as 3a + 3b, but not b(3 + a) as 3b + ab;
•• Adding 10 to h by writing h10 or subtracting 1 from y by writing 1y.

Th ese, too, show a lack of understanding of either what variables actually are or 
what an equation means.

Linchevski and Livneh (1999) note that students oft en have diffi  culty with 
subtraction and negative number issues. Many, for example, interpret 4 + n – 2 + 5 
as 4 + n – 7, attaching the – sign to the 5 as well as the 2. Perhaps this is not sur-
prising when one considers that when children do the subtraction 431 – 112 they 
are expected to apply the – to the 100 as well as to the 10 and the 2 in 112. A 
teacher might have students look specifi cally at the diff erence between 4 + n – 2 + 5 
and 4 + n – 2 – 5.

Arcavi (1994) describes somewhat more fundamental specifi c errors, which he 
refers to as a lack of symbol sense. For example, he notes that a student lacks sym-
bol sense when he or she fails to notice that it is impossible to determine a value to 
solve 2x+3

4x+6 = 2 by realizing that the left -hand side is another form of the fraction 1
2 

unless x = –3
2 , when the expression is not even defi ned, and 12 cannot be equal to 2, 

but instead must mechanically work through the expression trying to fi gure it out.
Arcavi (1994) also describes the very famous incorrect equation that students 

write to represent the relationship that there is a professor for every six students. 
Instead of writing s = 6p, which indicates that the number of students is 6 times 
the number of professors, which is correct, many students write 6s = p, translat-
ing the words directly into an untrue equation; writing 6s = p is wrong because 
that number sentence says that the number of professors is six times the number 
of students. Th is type of response, again, shows a lack of understanding of what a 
variable actually represents.

Similarly, MacGregor and Stacey (1993) point out that many students would 
write the equation s + 8 = r to indicate that s is 8 more than r, rather than the cor-
rect equation r + 8 = s. Th ese researchers attribute such errors to associating the 
6 times or the 8 more with the variable that is greater, instead of the variable worth 
less, as is correct.

Asquith et al. (2007) off er another example of lack of symbol sense. Th ey point 
out that many students decide whether two expressions are equivalent or not by 
substituting a few values to see if the results are equal and not by analyzing why 
the results have to be equal. For example, to decide if 3 – x = (4 + x) – (2x +1), 
students lacking symbol sense might note that if x = 0, 3 = 4 – 1; if x = 1, 2 = 5 – 3; 
and if x = 2, 1 = 6 – 5. Based on these three true statements, they conclude the 
expressions are equivalent. But, ideally, students should be able to interpret the 
symbols to see why the results had to be equal. In fact, students could draw incor-
rect conclusions sometimes by assuming that if the values of two expressions are 
equal a few times that the two expressions are always equal. Th is issue is addressed 
in suggestions made in this resource.
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Addressing Student Struggles

All of the suggestions in this volume are based on a substantial literature about 
algebra teaching and learning that has come to recognize that instruction can 
make a major diff erence in student success with algebra concepts. Although some 
of the needed improvements are already refl ected in the CCSSM, the delivery of 
these ideas through appropriate instruction and in an appropriate learning envi-
ronment is a crucial element in student understanding. I believe strongly that the 
approaches emphasized in this resource will help support student understanding 
and minimize misconceptions.

FOCUSING ON THE CCSSM STANDARDS 
FOR MATHEMATICAL PRACTICE

Th e CCSSM Standards for Mathematical Practice derive from the processes of the 
National Council of Teachers of Mathematics (NCTM, 2000) and the strands of 
mathematical profi ciency from Adding It Up (National Research Council, 2001). 
Th e standards for mathematical practice describe the mathematical environment 
in which it is intended that the CCSSM are learned. Th ese standards for mathe-
matical practice are meant to infl uence the instructional stance that teachers take 
when presenting tasks to help students grasp the content standards. Th e standards 
for mathematical practice are addressed in this resource both in the underlying 
ideas presented for each topic and in the types of Good Questions suggested.

Listed below are just a few examples of attention to each standard for mathe-
matical practice in this resource.

1. Make sense of problems and persevere in solving them. Th roughout the grades, 
many opportunities are suggested for students to use algebraic equations to repre-
sent real-life problems. It is important not only for students to be able to do this 
but also for them to see the value in doing so. A few very specifi c examples appear 
in the section for Grade 3, on page 24, where students represent and solve a prob-
lem relating the number of students who could be seated at a given number of 
tables; in the section for Grade 6, on page 85, where students create situations to 
match given equations; and in the section for Grade 8, on page 129, where diff er-
ent types of situations calling for solving two equations in two variables are 
described.

Th e issue of perseverance cannot be dealt with directly in this resource, but is 
critical for teachers to encourage and support perseverance in the classroom.

2. Reason abstractly and quantitatively. Reasoning is at the heart of mathematics. 
Th erefore, this resource provides a wealth of examples that focus on helping stu-
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dents reason. A few representatives are listed here. One is found in the section for 
Grade 2, on page 24, where students use equations to determine whether numbers 
are even or odd, and one in the section for Grade 4, on page 47, where students 
estimate solutions to equations. Two more examples are found in the section for 
Grade 7, on page 106, where students solve simple inequalities and make sense of 
why there is an infi nite number of solutions, and in the section for Grade 8, on 
page 115, where students make sense of how the slope of a graph relates to a unit 
rate description of a situation.

3. Construct viable arguments and critique the reasoning of others. Because this 
resource focuses on making sense of algebra, teachers are frequently encouraged 
to set up situations where students can make arguments as to why things happen 
the way they do. One example occurs in the section for Grade 1, on page 17, where 
students think about how actions on a physical balance match numerical situa-
tions. Another is in the section for Grade 6, on page 78, where students must cre-
ate an algebraic expression that includes certain words in its natural language 
translation, and a third is in the section for Grade 8, on page 123, where students 
estimate solutions to equations, even equations involving fractions.

4. Model with mathematics. Th is volume includes a number of instances where 
algebra is used to model real-world situations. One example appears in the Grade 
4 section, on page 45, where students choose appropriate equations and models 
for a situation. Another is in the Grade 5 section, on page 59, where students also 
use equations to model problems. A third example is found in the section for 
Grade 8, on page 120, where students model real-life relationships using a linear 
equation.

5. Use appropriate tools strategically. Because of the emphasis in this resource on 
understanding the math, there are many examples that describe the use of appro-
priate tools strategically. One example is in the Kindergarten section, on page 11, 
and another is in the Grade 1 section, on page 16, where students use a balance or 
Cuisenaire rods to model an equation. Discussion of the value of using the 100-
chart to solve simple addition and subtraction equations appears in the section for 
Grade 2, on page 25.

Even in the higher grades, manipulatives and other tools are useful. In the sec-
tion for Grade 6, on page 80, there is a description of the use of algebra tiles to 
create equivalent algebraic expressions. In the section for Grade 7, on page 104, a 
useful pictorial model for solving linear equations is described.

6. Attend to precision. Precision is sometimes an issue in algebra in terms of appro-
priate use of conventions. In the section for Grade 3, on page 30, there is discus-
sion of the diffi  culties students face with the convention used to describe division. 
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In the section for Grade 6, on page 74, the need for precise attention to order of 
operations when evaluating algebraic expressions is discussed. In the section for 
Grade 8, on page 154, an implicit issue of precision related to using the line of best 
fi t is examined.

7. Look for and make use of structure. Mathematics is built on structure, and this 
volume off ers many examples where structure is used to draw conclusions when 
studying algebra. One example is discussed in the Grade 4 section, on page 50, 
where students consider use of the structure of patterns to draw conclusions about 
their elements. Another example occurs in the Grade 5 section, on page 59, where 
students explore how the structure of math ensures that there are always many 
equations that represent a given situation. Another is in the Grade 6 section, on 
page 79, where students use properties of arithmetic and algebra to generate 
equivalent expressions.

8. Look for and express regularity in repeated reasoning. Th is standard for mathe-
matical practice is visible in a number of situations in this resource. One is in the 
Grade 3 section, on page 35, where students explore addition table patterns to cre-
ate generalizations. Another appears in the Grade 5 section, on page 57, where 
students use repeated reasoning to relate terms of two diff erent patterns. A third is 
in the Grade 6 section, on page 88, where students explore the regularity in tables 
of values to help them understand mathematical functions.

FOCUSING ON THE CCSSM STANDARDS 
FOR MATHEMATICAL CONTENT

Th is resource is organized around the specifi cs of the CCSSM content standards 
related to instruction about algebra. Most of the specifi cs are listed under Operations 
and Algebraic Th inking, Expressions and Equations, and Functions, but some of 
these specifi cs are also found in other domains, for example, Number and Opera-
tions—Fractions, Measurement and Data, Geometry, and Statistics and Probability.

SUMMARY

Because of long-documented student struggles with algebraic thinking and par-
ticularly in light of the new Common Core State Standards for Mathematics, par-
ticularly the Standards for Mathematical Practice, it is essential for teachers to 
have an opportunity to deconstruct their own understanding of algebra to set the 
stage for enabling them to instill deeper understanding in their students.

Th e next sections of this resource attempt to make that easier for teachers by 
digging deeply into the underlying ideas that inform the standards.
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KINDERGARTEN

Using Equations to Describe 
Addition and Subtraction

Operations and Algebraic Th inking CCSSM K.OA

Understand addition as putting together and adding to, 
and understand subtraction as taking apart and taking from.

3. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by 
using objects or drawings, and record each decomposition by a drawing or equation 
(e.g., 5 = 2 + 3 and 5 = 4 + 1).

4. For any number from 1 to 9, fi nd the number that makes 10 when added to the given 
number, e.g., by using objects or drawings, and record the answer with a drawing or 
equation.

IMPORTANT UNDERLYING IDEAS

x Equations describing a balance. An equation is a way to describe the same quan-
tity in two diff erent ways. Visually, it can be thought of as a balance, since neither 
of the two representations is worth more, or less, than the other.

For example, the equation 4 = 3 + 1 can be represented by showing how a 
quantity of 4 balances groups of 3 and 1 put together. In the left  picture below, the 
balance is a balance of weight; the 4 white cubes weigh the same as 3 gray cubes 
and 1 dark cube. Th e right picture represents a balance of length; the 4 white cubes 
are the same length as 3 gray cubes attached to 1 dark cube.
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At the Kindergarten level, equations representing decomposition typically show a 
single number on the left  being decomposed into parts, which appear on the right 
side of the equation, for example, 7 = 3 + 4 rather than 3 + 4 = 7, although clearly 
both equations are correct. Equations at this level typically show addition signs, 
but not subtraction signs, since the focus is on decomposition.

x Equations describing a relationship. As students work with decompositions of 
numbers and the related equations, they should begin to notice the sizes of the 
decomposed parts. For example, if 10 is decomposed, it could be decomposed into 
a large number and a small number (e.g., 9 and 1 or 8 and 2) or into two mid-sized 
numbers (e.g., 4 + 6 or 5 + 5).

Decompositions of 10 are particularly important in students’ number develop-
ment. Noticing that if one number is large, the other is small, is an example of the 
mathematical practice standards of looking for and making use of structure, of 
reasoning abstractly and quantitatively, and of looking for and expressing regular-
ity in repeated reasoning.

x Reading equations. Students benefi t by reading equations and having equations 
read to them in meaningful ways. Although we can read 5 = 2 + 3 as “5 equals 
2 plus 3,” there might be value in reading it as “5 can be separated into a 2 and a 3.” 
Th e latter phrasing carries more meaning for students.

Good Questions to Ask

•• Provide a pan balance and linking (snap) cubes. Ask students to use the balance to 
model the equation 10 = 6 + 4. Th en ask them to move cubes to demonstrate a 
diff erent way to show 10. [Answer: Th e student might put 10 cubes on one side of 
a balance and group 6 cubes and 4 cubes on the other side. All cubes must be the 
same size. Th en the student might move 1 cube out of the group of 6 cubes to join 
the group of 4 cubes and indicate how or why this shows 10 = 5 + 5.]

•• Ask students: I need 10 cubes, but I don’t have that many yet. If I only need a few 
more to have 10, how many might I have now? How many more would I need? 
What equation would I write? [Answer: Students are likely to suggest they have 8 
or 9 cubes and need 2 or 1 more, writing 10 = 8 + 2 or 10 = 9 + 1. But if a student 
says he or she has 5 cubes to begin because the additional 5 needed is only a few, 
that is not really incorrect.]

•• Ask students: Do you think there are more ways to write equations to show how 
you can separate a set of 8 cubes into two groups or to show how you can 
separate a set of 5 cubes into two groups? Why? [Answer: Th ere are more 
combinations for 8 than for 5. Th ere are combinations of 7 + 1 and 6 + 2 and 5 + 3 
and 4 + 4 for 8, but only 4 + 1 and 3 + 2 for 5. (Note, by the way, that even though 
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this is true for whole numbers, it is not true later on, once integers, fractions, and 
decimals are allowed.)]

•• Ask students: You break up a group of 9 cubes into two piles and write 9 = □ + ? 
to show what you did. If the fi rst number is really small, what do you know about 
the second one? [Answer: Th e second one is only a little less than 9, or maybe it is 
9 if the fi rst number is 0.]

•• On a pan balance, place 10 cubes on one side and 3 cubes of one color and 7 of 
another on the other side. Ask students what equation this shows. [Answer:  
10 = 3 + 7.]

Summary
By the end of Kindergarten, students should be familiar with the use of number 
equations to describe relationships between numbers based on addition. Th e 
metaphor of an equation as a balance is an important start for students’ algebraic 
development.
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GRADE 11
Using Equations to Describe Addition 

and Subtraction

Operations and Algebraic Th inking CCSSM 1.OA

Represent and solve problems involving addition and subtraction.

1. Use addition and subtraction within 20 to solve word problems involving situations of 
adding to, taking from, putting together, taking apart, and comparing, with unknowns 
in all positions, e.g., by using objects, drawings, and equations with a symbol for the 
unknown number to represent the problem.

2. Solve word problems that call for addition of three whole numbers whose sum is less 
than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for 
the unknown number to represent the problem.

Understand and apply properties of operations and the 
relationship between addition and subtraction.

3. Apply properties of operations as strategies to add and subtract. Examples: 
If 8 + 3 = 11 is known, then 3 + 8 = 11 is also known. (Commutative property of 
addition.) To add 2 + 6 + 4, the second two numbers can be added to make a ten, 
so 2 + 6 + 4 = 2 + 10 = 12. (Associative property of addition.)

4. Understand subtraction as an unknown-addend problem. For example, subtract 
10 – 8 by fi nding the number that makes 10 when added to 8.

Work with addition and subtraction equations.

7. Understand the meaning of the equal sign, and determine if equations involving 
addition and subtraction are true or false. For example, which of the following 
equations are true and which are false? 6 = 6, 7 = 8 – 1, 5 + 2 = 2 + 5, 4 + 1 = 5 + 2.

8. Determine the unknown whole number in an addition or subtraction equation 
relating three whole numbers. For example, determine the unknown number that 
makes the equation true in each of the equations 8 + ? = 11, 5 = □ – 3, 6 + 6 = □.
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IMPORTANT UNDERLYING IDEAS

x An equation as a balance. Rather than thinking of an equation like 5 + 3 = □ 
only as a way to describe the answer when 5 is added to 3, students should be 
encouraged to think of an equation as a statement that describes the same amount 
in two diff erent ways, one on one side of the equal sign and one on the other. 
Modeling an equation as a balance is particularly useful in preparing students for 
later grades when they will create a new equation from an existing one by either 
adding or subtracting the same amount on both sides. Th e concept of a balance 
supports the validity of these actions.

In 1st grade, equations typically involve either addition or subtraction signs, 
and there might be an operation sign on each side of the equal sign. Th is high-
lights the importance of thinking of the two sides of the equation as naming the 
same number. Otherwise, students might look at, for example, 4 + 3 = 5 + 2 and 
think it should have read 4 + 3 = 7 + 2 because they think of 7 as the “answer” 
when adding 4 + 3.

To model an equation like 4 + 3 = 5 + 2, students might put groups of 4 and 3 
cubes on one side of a pan balance and groups of 5 and 2 cubes on the other side 
to see if they balance.

Students might also look at a length “balance” by using Cuisenaire rods and seeing 
that a train made up of a 4-rod and a 3-rod matches, in length, a train made up of 
a 5-rod and a 2-rod.

In particular, students should have opportunities to consider models for equa-
tions that illustrate the commutative and associative principles of addition. Exam-
ples would be 8 + 3 = 3 + 8 or 4 + 8 = 2 + 10 (another way of saying that (2 + 2) + 
8 = 2 + (2 + 8)), where the same amount is removed from one addend and is 
added to the other. Th e Cuisenaire rod model is an excellent way to make sense of 
both of these equations, as shown on the next page. In the fi rst instance, the rod 
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pair can be viewed from the front as 8 + 3, but from the rear as 3 + 8. In the sec-
ond instance, it is important to line up two pairs of rods end-to-end.

Algebraic thinking is involved as students realize why these statements are 
true for any numbers at all. Generalization is foundational to algebra. Students can 
see in the fi rst model that turning the colors around does not change the total 
length: the total length has nothing to do with the order of the particular colors. 
Similarly, in the second model, they see that if two rods combine to make a par-
ticular length and one of those rods is a certain amount shorter than one of the 
rods in another pair of the same total length, that amount must be added to the 
“partner” of the shorter rod in order to keep the lengths of the two pairs equal. 
Again, the specifi c values are irrelevant.

Students could also consider how to model a subtraction equation with either 
a balance or rods. For example, for 5 = 7 – 2, students might put 5 cubes on one 
side of the balance and 7 on the other. Th e imbalance makes it easy to see the need 
to take away 2 from the 7 side to achieve balance.

With Cuisenaire rods, students can think of 7 – 2 as how much of a 7-rod is left  if 
2 is “used up,” or, in other words, how much longer a 7-rod is than a 2-rod.
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Since a 5-rod fi lls the missing space, 7 – 2 = 5.

Some students will see an equation like 7 – 2 = 5 and think, “If I count back 
2 spaces from 7 on a number line, I get to 5, so 7 – 2 is 5.”

0 21 3 4 65 7

It is important for students to be aware that an equation that is not true might 
be presented to them for the purpose of verifying its truth. Th is can be tricky for 
students if we overemphasize the idea that an equation is true, as we generally do 
when students are looking for a missing value, where we want the equation to be 
true.

x An equation as describing a relationship. Students might be encouraged to look 
at relationships between numbers as described in equations. For example, when 
they consider the equation 6 = 4 + 2 and recognize its truth, they might note that 
both 4 and 2 are less than 6, since the two numbers are put together to make 6. On 
the other hand, when considering the equation 8 = 10 – 2, students might note 
that 10 is more than 8 since part of the 10 is taken away to get to the 8, or they 
might see it as a way of saying that 10 is 2 more than 8.

With equations with operations on both sides, for example, 5 + 3 = 6 + 2, stu-
dents might note that since the 6 is more than the 5, the number added to the 6 
has to be less than the number added to the 5 in order for the values on the two 
sides to be equal. Th is is an example of the mathematical practice standard of rea-
soning abstractly and quantitatively.

x An equation as modeling a problem. Most of the equations students use at this 
level should describe real-life situations. For example, students might relate a 
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problem involving combining 3 children with 4 more children to the equation 
3 + 4 = □.

Subtraction equations are more complex for students because situations that 
sound quite diff erent might be modeled with the same equation. For example, the 
equation 5 – 2 = □ can represent any of these three problems:

•• If there were 5 children in the room and 2 left , how many would remain 
in the room?

•• How much older is Abbie than Liam if Abbie is 5 years old and Liam is 2?
•• If I have 2 stickers, how many more do I need to have 5 stickers?

Notice, too, that it might make sense to model the last two problems with the 
equation 2 + □ = 5.

x Meaning of an unknown. Grade 1 is the fi rst grade where variables are intro-
duced. Rather than using letters as variables, other symbols—frames, shapes, 
blanks, question marks, or some combination thereof—are used. Students need to 
learn that the goal is to fi gure out what the missing value is. Th ere is no need to 
call the missing value a “variable,” even though it is, although there is nothing 
wrong with using that term.

It is important that the missing value appear in diff erent positions in the equa-
tion, for example, □ + 4 = 6, 2 + □ = 6, 2 + 4 = □, 8 – 2 = □, 8 – □ = 2. Students 
typically struggle least with equations in the forms a + b = □ or a – b = □, more 
with equations of the form a + □ = c or a – □ = c, and most with equations of the 
form □ + b = c or □ – b = c. Th is might be because fi nding the result when all the 
information is given is what students are most accustomed to; they are less accus-
tomed to fi guring out what action took place to change one number to another 
and even less familiar with situations where they do not know how they started 
but have to fi gure out where they ended based on a described change.

When equations have operation signs on both sides, it is critical that students 
think of the equal sign as a description of a balance. For example, some students 
solve an equation like 5 + 8 = □ + 3 by indicating that □ is worth 13, since they 
see the equal sign as asking for an answer instead of indicating a balance.

When an equation involves the addition of three numbers, it might be easier 
for students if the unknown is alone on one side of the equal sign, either on the 
left  or on the right.

x Reading equations. Students benefi t by reading equations or having equations 
read to them in meaningful ways. Although we can read 7 = 10 – 3 as “7 equals 10 
minus 3,” there might be value in reading this equation as “7 is what is left  aft er 3 
is taken away from 10.” Th e latter phrasing carries more meaning for students.
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Similarly, reading an equation with an unknown should be done meaningfully. 
We might read, for example, 7 + 4 = □ as “What would balance a group of 7 put 
together with a group of 4 on the pan balance?” We might read 8 – □ = 2 as 
“What can I take away from 8 to be left  with 2?” or “What must I add to 2 to get 
8?” rather than as “8 minus what equals 2?”

Good Questions to Ask

•• Ask students to complete the other side of this equation two ways, fi rst to make it 
true and then to make it false: 6 + 3 = □ [Answer: Th e equation is true only if the 
question mark is replaced by 9; any other value makes it false.]

•• Ask students whether each of these equations is true or not, and whether it is easy 
to tell or not, and why:

9 + 1 = 8 + 1
8 + 5 = 6 + 7
5 + 5 = 6 + 4
1 + 1 = 2
3 = 5 + 2
8 – 1 = 9
7 – 1 = 6

[Answer: Diff erent opinions are possible, but many students fi nd the fi rst one easy 
since the next number after 9, which is what you get when you add 1, cannot be 
the same as the next number after 8. Some students might notice, in 8 + 5 = 6 + 7, 
that 2 of the 8 is just moved over to increase the 5 to 7, so the results are the 
same, but many will fi nd it more diffi  cult to decide whether the second equation 
is true than the fi rst equation. Some students will realize, in the equation 5 + 5 = 
6 + 4, that 1 is moved from the second 5 to increase the fi rst 5, so the equation is 
true, but others will likely not see that; they might, however, fi nd the equation easy 
to verify since both sides add to 10, a familiar sum for many students. In the next 
equation, most students know that 1 + 1 is 2 and will quickly recognize that the 
equation 1 + 1 = 2 is true. Some students will struggle with 3 = 5 + 2 because they 
will see the familiar numbers 3, 2, and 5 and will not think about the fact that the 
operations are wrongly placed. Th e same issue will arise with 8 – 1 = 9. Many, but 
not all, students will fi nd the equation 7 – 1 = 6 easy since they can just count 
back one number from 7.]

•• Provide either Cuisenaire rods or a pan balance and linking (snap) cubes and ask 
students to choose an equation to model. Students who are ready should be 
encouraged to consider equations with operation signs on both sides. [Answer:  
Th ere are many choices. Some examples are 4 + 3 = 7 or 4 + 2 = 5 + 1 or 8 – 2 = 6 
or 9 – 1 = 7 + 1.]
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•• Provide a selection of equations with missing values, such as the ones below. Ask 
students to explain how they know the missing value is less than 5 each time.

7 + □ = 10
8 = 4 + □
9 – 6 = □
10 – □ = 8

[Answer: Many students will simply solve the equation to see if the result is less 
than 5. Others will use the mathematical practice standard of reasoning abstractly 
and quantitatively. For example, they might say, in the fi rst case, that 7 + 5 = 12 
and since you only want 10, 5 is too much. Or they might say, for the last one, if 
you take away 5, you have 5 left. But you want 8 left, you have to take away less.]

•• Provide a variety of addition and subtraction stories and ask students to model 
them with equations.

•• Provide a simple equation such as 8 – 6 = □ and ask students to tell a story that 
goes with the equation.

Summary
By the end of Grade 1, students should be thinking of an equation as a balance. 
Th e idea of balance may be viewed as just two ways of saying the same amount 
and/or as a physical balance of mass or length. Students should be able to interpret 
simple addition and subtraction equations with or without unknowns and, ideally, 
should be able to model those equations in some ways. Equations with unknowns 
should include each of these types: a + b = □, a + □ = c, □ + b = c, a – b = □, 
a – □ = c, and □ – b = c.
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GRADE 22
Using Equations to Represent Problems 

and Relationships

Operations and Algebraic Th inking CCSSM 2.OA

Represent and solve problems involving addition and subtraction.

1. Use addition and subtraction within 100 to solve one- and two-step word problems 
involving situations of adding to, taking from, putting together, taking apart, and 
comparing, with unknowns in all positions, e.g., by using drawings and equations with 
a symbol for the unknown number to represent the problem.

Work with equal groups of objects to gain foundations for multiplication.

3. Determine whether a group of objects (up to 20) has an odd or even number of 
members, e.g., by pairing objects or counting them by 2s; write an equation to express 
an even number as a sum of two equal addends.

4. Use addition to fi nd the total number of objects arranged in rectangular arrays with 
up to 5 rows and up to 5 columns; write an equation to express the total as a sum of 
equal addends.

IMPORTANT UNDERLYING IDEAS

x Flexibility in equations used. Although students in earlier grades will have met 
equations, there is more expectation of using equations to represent problems in 
Grade 2 than there was previously. Th e problems students model at this level could 
involve addition or subtraction or both. A useful tool for modeling either addition 
or subtraction situations is shown below.

Whole

Part Part

Either the whole is missing (an addition situation) or one part is missing (a sub-
traction situation). Using a representation like this involves the mathematical 
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practice standard of using appropriate tools strategically; modeling problems with 
equations involves using the practice standard of modeling.

It is important that students realize that there are always choices in how to 
represent a problem with an equation. For example, for a problem such as “Th ere 
were 23 students in one class and 28 in another. How many were there altogether?” 
the equation might be 23 + 28 = □ or 28 + 23 = □.

For a problem such as “One table was 60" long and another was 42" long. 
How much longer was the longer table?” the equation might be 60 – 42 = □ or 
42 + □ = 60 or 60 – □ = 42. It is for this reason that it is particularly important 
that students not be asked to identify whether a problem is an addition problem 
or a subtraction problem. Any subtraction equation can also be written as an 
addition equation.

It is valuable to use problems that lead to equations where the missing number 
appears in diff erent positions in the equation, for example, □ + 42 = 65, 23 + □ = 64, 
23 + 47 = □, 82 – 24 = □, 84 – □ = 26, and □ – 35 = 34.

Students also need experiences to show them that the same equation can model 
very diff erent situations. For example, the equation 31 – □ = 17 could model a 
problem such as “It is the 17th of the month. How many more days until the end 
of the month?” Or it could model “I had $31. I spent some money and there was 
$17 left . How much did I spend?”

x Reading equations. Students benefi t by reading equations or having equations 
read to them in meaningful ways. Although we can read □ = 30 – 3 as “What 
equals 30 minus 3?” there might be value in reading this equation as “How much 
more is 30 than 3?” or “How much is left  if 3 is removed from 30?” or “How much 
must I add to 3 to get up to 30?”

x Th e concept of “even.” When a student is asked to show that a number is even by 
writing an appropriate equation, he or she needs to realize that there are two pos-
sibilities. Oft en, a student will write a number added to itself, for example, 42 is 
even since 42 = 21 + 21, the sum of two identical numbers. Because the fi rst 21 
matches the second 21, the parts of 42 are paired up, which is what evenness is all 
about. However, if a student chooses to write 42 = 2 + 2 + 2 + 2 + . . . + 2 + 2 (21 
times), this is another legitimate way to show that the number 42 is even, since, 
again, the number is broken up into matching pairs. In general, a whole number is 
even if it is the sum of many 2s or the sum of two of the same whole number.

x Th e 100-chart as a tool for solving equations. It is assumed that 2nd-grade stu-
dents will still oft en use concrete materials and/or diagrams to solve an equation, 
although some will be able to work more symbolically.
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A useful tool might be a 100-chart. To solve an equation like 42 + □ = 60, 
students might start at 42 and see how many spaces they must move to get to 60.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

To solve an equation like 28 + 42 = □, students could start at 28, add 42 by adding 
4 tens (going down 4 rows) and 2 more, and look for the landing spot.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Students might also use other tools, such as base-ten blocks or ten-frames and 
counters, to solve these problems. For example, to solve 28 + 42 with base-ten 
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blocks, the student might represent each amount and combine 10-blocks and 
1-blocks.

To model 28 + □ = 42 with ten-frames and counters, students might represent 
28 on ten-frames and pay attention to how many counters must be added to get to 
42.

Th e focus, though, should be on thinking about what the equation says. For 
example, students should realize that the equation 90 – 24 = □ is asking how 
much more 90 is than 24, what to add to 24 to get 90, or what is left  if 24 is 
removed from 90. Which language is used should depend on the nature of the 
problem—whether it is a comparison, a missing addend, or a take-away problem.

At this stage it would be inappropriate to provide rules to students for solving 
equations. Th ey should be working their way to the solution by thinking about 
what the equation means or says.

Although standard 2.OA.1 makes a distinction between one-step and two-step 
problems, there is no need for students to note these distinctions so long as the 
teacher ensures that both types of problems are encountered.

x Foundations for multiplication. As students in higher grades develop their multi-
plication skills, an array is one of the suggested tools. An array makes it easy for 
students to see how many equal groups there are.
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To prepare for application of arrays to multiplication, arrays might be intro-
duced at the 2nd-grade level. Although students will still use addition (rather than 
multiplication) to describe the total number of items in the array, familiarity with 
arrays can be useful.

For example, to determine how the number of stars below, students would 
write 4 + 4 + 4 = 12.

Good Questions to Ask

•• Ask students for alternate ways to write a given equation, for example, 14 + □ = 28. 
[Answer: 28 – □ = 14 or 7 + 7 + □ = 28 or . . . .]

•• Provide a comparison problem and ask students to write the equation that 
matches it fi rst by using an addition sign in the equation and then by using a 
subtraction sign in an alternate equation. An example of such a problem is “Your 
mom is 12 years older than her sister. If your mom is 39, how old is her sister?” 
[Answer: 12 + □ = 39 or □ + 12 = 39 or 39 – 12 = □ or 39 – □ = 12.]

•• Ask students to describe two completely diff erent-sounding problems that might 
be modeled by the equation 20 – 12 = □. [Answer (examples): I had 20 cookies 
and we ate 12. How many are left? OR My brother is 20 years old and my sister is 
12 years old. How much older is my brother than my sister? OR I have $12 already 
but need more to buy a $20 game. How much more do I need?]

•• Ask students to describe how they would solve the equation 37 + □ = 81. Provide 
any tools they might need (e.g., ten-frames and counters or base-ten blocks). 
[Answer: Some might suggest that they try adding diff erent numbers to 37 until 
one works. Others might subtract 37 from 81 by using a particular strategy or 
algorithm. Others might count up on a 100-chart, realizing they might begin at 37 
and go 5 lines down and 6 spaces back.]

•• Ask students to write an equation involving numbers greater than 10 that 
they think would be easy to solve and then to explain why their equation is 
easy to solve. Explaining why an equation is easy to solve is an example of the 
mathematical practice standard of constructing a viable argument. Encouraging 
students to share their ideas with others provides an opportunity for students to 
critique the reasoning of others. [Answer: Th ere are many possible answers, for 
example, 20 + □ = 40. Students might say that this equation is easy to solve since 
they know that 20 and 20 is 40 or they know that 2 and 2 is 4, so 20 and 20 is 40.]
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•• Ask students what each of these equations tells about whether the number on the 
left is even or odd.

Equation 1: 22 = 11 + 11
Equation 2: 31 = 15 + 16
Equation 3: 12 = 2 + 2 + 2 + 2 + 2 + 2
Equation 4: 15 = 2 + 2 + 2 + 2 + 2 + 2 + 2 +1

[Answer: Equations 1 and 3 show even numbers since there are either two of the 
same number or lots of 2s. Equations 2 and 4 show that the numbers are odd. 
Equation 2 shows that 31 is odd since the fact that 15 and 16 are next to each 
other means it is impossible to write 31 as the sum of two of the same whole 
number. Equation 4 shows that 15 is odd since it is made up of a lot of 2s but 
then there is still a 1 left over.]

•• Ask students to draw an array and use an addition sentence to describe the total 
number of items in the array.

Summary
By the end of Grade 2, students should show fl exibility in the addition and sub-
traction equations they use to model problems, generally involving one-digit or 
two-digit numbers, and they should recognize that the same equation could model 
many diff erent situations. Th ey should use a variety of tools for solving addition 
and subtraction equations involving one-digit and two-digit numbers, including 
the 100-chart. Th ey also get ready for multiplication by recognizing addition sen-
tences that describe arrays or addition sentences that describe whether numbers 
are even or not.
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GRADE 33
Using Equations to Represent Problems

Operations and Algebraic Th inking CCSSM 3.OA

Represent and solve problems involving multiplication and division.

3. Use multiplication and division within 100 to solve word problems in situations 
involving equal groups, arrays, and measurement quantities, e.g., by using drawings 
and equations with a symbol for the unknown number to represent the problem.

4. Determine the unknown whole number in a multiplication or division equation 
relating three whole numbers. For example, determine the unknown number that 
makes the equation true in each of the equations 8 × ? = 48, 5 = □ ÷ 3, 6 × 6 = ?.

Understand properties of multiplication and the relationship 
between multiplication and division.

5. Apply properties of operations as strategies to multiply and divide. Examples: 
If 6 × 4 = 24 is known, then 4 × 6 = 24 is also known. (Commutative property of 
multiplication.) 3 × 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30, or by 5 × 2 = 10, 
then 3 × 10 = 30. (Associative property of multiplication.) Knowing that 8 × 5 = 40 and 
8 × 2 = 16, one can fi nd 8 × 7 as 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56. 
(Distributive property.)

6. Understand division as an unknown-factor problem. For example, fi nd 32 ÷ 8 by 
fi nding the number that makes 32 when multiplied by 8.

Solve problems involving the four operations, and 
identify and explain patterns in arithmetic.

8. Solve two-step word problems using the four operations. Represent these problems 
using equations with a letter standing for the unknown quantity. Assess the 
reasonableness of answers using mental computation and estimation strategies 
including rounding.
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IMPORTANT UNDERLYING IDEAS

x Conventions in multiplication and division expressions. Having already experi-
enced addition and subtraction equations, students move at this level to multipli-
cation and division equations.

Students must become familiar with certain conventions. For example, in 
North America, b × c normally means b groups of size c, rather than c groups of 
size b. (Th is is not the standard convention in all countries.) Although students 
eventually learn that the expressions b × c and c × b are interchangeable, consis-
tency in what the expressions mean is valuable, particularly initially.

So, for example, students would be encouraged to represent the problem 
“Th ere are 3 baskets of apples with 7 apples in each basket. How many apples are 
there?” with the equation 3 × 7 = ?. However, if a student writes 7 × 3 = ?, this is 
not incorrect but merely inconsistent with a convention.

Because multiplication is defi ned on two numbers, students might wonder 
about the convention for multiplying three numbers, e.g., 5 × 2 × 9. Th ey need to 
learn that they can approach that problem in either of two ways: they can fi rst 
multiply 5 × 2 and then multiply that product by 9, or they can multiply 5 by the 
product of 2 and 9. Sometimes the choice is based on convenience. For example, it 
is easier mentally to multiply 5 × 2 and then the product by 9 than it is to multiply 
5 by the product of 2 and 9. One way for a student to realize why the associative 
property makes sense might be to consider a 5 × 2 × 9 block and realize that 
counting individual cubes making up the block could be done as 5 strips of 2 × 9 
cubes or as 9 strips of 5 × 2 cubes.

Th e equation b ÷ c = ? might be interpreted as asking for the group size if 
there are b items being distributed into c equal groups, but it might also be inter-
preted as asking for the number of groups if b items are being grouped c at a time. 
In either case, the total of b items is formed into equal groups and either how 
many groups or the size of each group is known.

When representing equations, many students write 3 ÷ 15 = ? when they actu-
ally mean 15 ÷ 3 = ?. Th is becomes even more common later on, when long divi-
sion is introduced and the divisor is seen to the left . Again, it is helpful to treat this 
as a misunderstanding of convention rather than as a real error. Later, as students 
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work with fractional values, the distinction between 15 ÷ 3 and 3 ÷ 15 becomes 
even more important to clarify.

x Flexibility in equations used. As with the addition and subtraction situations met 
earlier, it is important that students realize that there are always choices in how to 
represent a multiplication or division problem with an equation. For example, for 
a problem such as “Th ere were 15 cookies being shared equally by 5 children. How 
many does each get?” the equation might be 5 × ? = 15 or it might be 15 ÷ 5 = □ 
or it might be 15 ÷ □ = 5.

x Letter variables for the unknown. At the 3rd-grade level, students are expected 
to begin to use letters rather than symbols such as question marks, open boxes, 
shapes, etc. to represent an unknown.

For some students, letters are more challenging and the transition might be 
slower. Students should realize that a letter really is equivalent to a question mark 
or an open box.

Students need to become aware that any letter they choose is acceptable, and 
no one letter is preferable to another. Many teachers and students advocate using a 
letter that helps the student remember what the value represents. For example, in 
the problem “Th ere were 24 students at 4 tables. Th e same number of students was 
at each table. How many were at each table?” students might use s in the equation 
24 ÷ 4 = s to represent students in the problem. Many students just pick any word 
in the problem to suggest a letter and might use t from table. Th is, again, is not 
incorrect, but in the end it is critical that the students understand what their 
answer represents—the number of students at each table, not the number of tables.

x Using manipulatives to solve equations based on real-life problems. At this level, 
it is assumed that students are allowed to use concrete materials and/or diagrams 
to solve an equation, although some will choose to work symbolically. Especially 
for multiplication and division, which are still relatively new, students should be 
encouraged to use materials such as counters.

In general, multiplication and division equations should come from appropri-
ate problems involving equal groups, arrays, or measurement situations. For exam-
ple, the equation 3 × 5 = □ might describe the total number of items in a 3 by 5 
array, the total number of items in 3 groups of 5, or the total measure of 3 units of 
5 (e.g., 3 distances of 5" or the area of 3 tiles each made up of 5 squares). Th e equa-
tion 15 ÷ 3 = □ might describe the size of each group if 15 is separated into 3 equal 
groups. Or 15 ÷ 3 = □ might describe the number of groups of 3 that can be cre-
ated from a total of 15 items.

Th ird-grade students should continue to solve addition and subtraction prob-
lems, too, although the numbers involved might be more complex than was the 
case in 2nd grade.
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x Using personal strategies to solve equations. It is still too early to impose “meth-
ods” to solve equations. Students should be encouraged to use personal strategies 
to make sense of what the equations say. For example, for w × 7 = 35 (to solve a 
problem asking how many weeks in 35 days), students should be thinking, “How 
many 7s make 35? Is it as many as 10? Is it just a few? How many make sense?” 
Th is is preferable to simply telling students to divide if they see a multiplication 
sign (which could lead to trouble in the equation 4 × 3 = □) or to multiply if they 
see a division sign.

Good Questions to Ask

•• Ask students for alternate ways to write a given equation, for example, 
3 × m = 24. [Answer: Possibly m × 3 = 24, but also 24 ÷ 3 = m or 24 ÷ m = 3 
or m + m + m = 24.]

•• Provide a sharing problem and (before it is actually solved) ask students to write 
an equation that matches it, fi rst by using a division sign in the equation and then 
by using a multiplication sign in another equation. A sample sharing problem 
might involve a certain number of children sharing a certain number of cookies. 
[Answer (examples): 12 ÷ 3 = c or 12 ÷ c = 3 or 3 × c = 12.]

•• Ask students how they could rewrite the multiplication equation 4 × m = 12 as 
an addition equation. Recognizing that any multiplication can be written as an 
addition is an example of the mathematical practice standard of looking for and 
expressing regularity in repeated reasoning. [Answer: m + m + m + m = 12 or 
2 × m + 2 × m = 12 or 3 × m + m = 12 or even 0 + 4 × m = 12.]

•• Ask students to describe how they would solve the equation 37 + k = 81 + 12. 
Provide any tools they might need, such as 100-charts, ten-frames and counters, 
or base-ten blocks. [Answer: Some students might use a 100-chart, start at 81, go 
down 1 and over 2 to land at 93, and then fi gure out how to start at 37 and end at 
93. Some students might take 8 base-ten rods and 1 one-block, add that to 1 base-
ten rod and 2 one-blocks, and then separate the total into a group of 4 rods and the 
rest. Th ey could realize that the answer is the rest plus 3 ones, because the group of 
4 rods (40) is 3 more than the 37 in the equation they are solving. Some students 
will just add 81 + 12 to get 93 and then subtract 37 using some known strategy.]

•• Tell students that someone solved a division problem and the answer was 8. Have 
them write a possible problem and its equation. [Answer: One example is a 
problem where 3 children share 24 books and we want to know how many each 
gets. Th e equation might be 24 ÷ 3 = b.]

•• Tell students that someone solved a problem involving both addition and 
subtraction. Th e answer was 24. Have them write a possible problem and its 
equation. [Answer: One example is a problem where a group of 13 children and a 
group of 12 children joined up. Th en 1 child left and we want to know how many 
children remained. Th e equation might be 13 + 12 – 1 = c, or 13 – 1 + 12 = c, etc.]
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Patterns in the Addition and 
Multiplication Tables

Operations and Algebraic Th inking CCSSM 3.OA

Solve problems involving the four operations, and 
identify and explain patterns in arithmetic.

9. Identify arithmetic patterns (including patterns in the addition table or multiplication 
table), and explain them using properties of operations. For example, observe that 
4 times a number is always even, and explain why 4 times a number can be 
decomposed into two equal addends.

IMPORTANT UNDERLYING IDEAS

x Changing order of addends in the addition table. Th e commutative property of 
addition, one that is very useful, states that numbers can be added in any order. To 
see this on the addition table, students need to compare sums such as 4 + 3 to 
3 + 4 and 8 + 2 to 2 + 8. Ultimately, students should see that it is the symmetry of 
the addition table along the diagonal that shows us this equality.

For example, in the table below, 4 + 3 and 3 + 4, as well as 8 + 2 and 2 + 8, are 
highlighted. In both cases, the two sums are equally distant from the diagonal 
refl ection line.

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18
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It is important that students understand that the table shows that the commu-
tative property seems to hold, but not why. Other methods focused on the mean-
ing of addition are needed to explain why.

It is also useful for students to understand when the commutative property is 
useful. For example, it is easier to mentally consider 1 + 8 by starting at 8 and 
moving forward 1 number (which is 8 + 1) than by starting at 1 and counting for-
ward 8 numbers.

x Showing subtraction in the addition table. Students might recognize that since, if 
a + b = c, then c – a = b, they could solve a subtraction problem such as 17 – 8 by 
locating the sum 17 in the row for 8 and then determining the column heading, in 
this case, 9.

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Students should recognize, therefore, why there is no need for a subtraction 
table. Addition and subtraction are so intertwined that each is embedded in the 
other.

x Increasing an addend by a fi xed amount in the addition table. Students should 
observe that choosing any position in the table and increasing one addend by 
some amount (either by going down or across a certain number of rows or col-
umns) leads to a sum that is that amount greater.

For example, at the top of the next page one can see that 5 + 5 is 2 more than 
5 + 3 since 5 is 2 more than 3. Similarly, 4 + 8 is 2 more than 2 + 8 since 4 is 
2 more than 2. In other words, moving 2 spaces down increases a sum by 2; mov-
ing 2 spaces to the right increases a sum by 2.
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+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Increasing one addend by some selected amount and decreasing the other 
addend by the same amount has the eff ect of moving diagonally up to the right or 
down to the left  on the addition table. Notice that these diagonals have identical 
values all the way up and down the diagonal, so the sums are equal. Th is is, in fact, 
a description of the associative property for addition.

For example, the sums for 7 + 5 and 4 + 8 (notice that 7 is decreased by 3 and 
5 is increased by 3) are highlighted below.

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18
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x Adding 0 and adding 1 in the addition table. Students might examine the sums 
in the fi rst row (or column) of the table to observe that the numbers match the 
row (or column) headings. Th is shows that adding 0 does not change a number.

Students might examine the sums in the second row (or column) and notice 
that the values are one greater than the row (or column) headings. Th is shows the 
eff ect of adding 1.

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

x Order of numbers in the multiplication table. Th e commutative property of mul-
tiplication states that numbers can be multiplied in any order. To see this in the 
multiplication table, students need to compare products such as 4 × 3 to 3 × 4 or 
8 × 2 to 2 × 8. Ultimately, students should see that it is the symmetry of the multi-
plication table along the diagonal that shows this equivalence.

For example, in the table at the top of the next page, 4 × 3 and 3 × 4, as well as 
8 × 2 and 2 × 8, are highlighted. Each product within a pair is an equal distance 
from the diagonal line drawn on the table. Th is is an example of the mathematical 
practice standard of looking for and expressing regularity in repeated reasoning.
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× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 33 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

x Embedded division in the multiplication table. Students might recognize that 
since, if a × b = c, then c ÷ a = b, they could solve a division problem such as 
56 ÷ 8 by locating the product 56 in the row for 8 and then determining the col-
umn heading, in this case 7.

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 33 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

x Increasing a factor by 1 in the multiplication table. Increasing a factor by 1 
results in an increase in the product, specifi cally an increase that is the size of the 
other factor. For example, 3 × 8 is 3 more than 3 × 7 since there is 1 extra in each 
of the 3 groups; 3 × 8 is 8 more than 2 × 8 since there is 1 extra group of 8. Th ese 
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are special cases of the distributive property, that is, a × (b + 1) = a × b + a or 
(a + 1) × b = a × b + b.

Students see this in the table by examining the products in any row and the 
row below it or in any column and the column next to it. For example, in the dia-
gram below one sees that each value in the row for 4 is more than the value in the 
row for 3; the amount more is the column heading, which is the other factor. One 
also sees that each value in the column for 7 is more than the value in the column 
for 6; the amount more is the row heading, which is the other factor.

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 33 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

x Adding rows or columns in the multiplication table. Adding matching numbers 
in any two rows (or any two columns) results in the numbers in another row (or 
column). In essence, this is a description of the distributive property. For example, 
adding the numbers in the row for 2 with the matching numbers in the row for 3 
results in the numbers that appear in the row for 5 (as shown at the top of the next 
page). Th is is because if 2 of something is added to 3 of that thing, you end up 
with 5 of that thing.
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× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 33 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

Similarly, adding products in the column for 2 to the corresponding products 
in the column for 3 results in the products in the column for 5 (as shown below). 
Th is is because having a number of 2s and the same number of 3s is equivalent to 
having that number of 5s (by combining each 2 with a 3).

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 33 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

x Multiplying a factor in the multiplication table. Students might notice that if the 
column (or row) header is doubled, so are the values of the products in that col-
umn (or row).
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In the diagram below, for example, the rows for 4 and 8 are highlighted; all 
values in the row for 8 are double the corresponding values in the row for 4. Th is 
is because 8 groups of something is twice as much as 4 groups of that thing. Simi-
larly, the values for the column for 6 are double the corresponding values in the 
column for 3. Th is is because a bunch of 6s can be subdivided into twice as many 
bunches of 3s. For example, 8 × 5 = 2 × (4 × 5) or 7 × 6 = (7 × 3) × 2.

Th ese equations illustrate a special case of the associative property for mul-
tiplication, which states that a × (b × c) = (a × b) × c. Specifi cally, in this case, 
(2 × 4) × b = 2 × (4 × b) or a × (3 × 2) = (a × 3) × 2.

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 33 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

Students can notice, too, that multiplying a factor by n and dividing the other 
factor by that same amount n results in the same product. Th is is another way of 
stating the associative property, (a × b) × c = a × (b × c), since to get from the left  
side of the equation to the right side, one divides the fi rst factor, a × b, by b to get 
a, and one multiplies the second factor, c, by b to get b × c.

To see this principle in the table, a student might observe that the values in 
the 6 row (at least the multiples of 6 that are less than 20) appear in the 2 row 
as well, but are more spaced out in the 2 row. Highlighted on the next page, one 
sees that 6 × 0 = 2 × 0 (since (2 × 3) × 0 = 2 × (3 × 0)), 6 × 1 = 2 × 3 (since 
(2 × 3) × 1 = 2 × (3 × 1)), that 6 × 2 = 2 × 6 (since (2 × 3) × 2) = 2 × (3 × 2)), and 
that 6 × 3 = 2 × 9 (since (2 × 3) × 3) = 2 × (3 × 3)). Students could recognize that 
the products that are 1 space apart in the 6 row are 3 spaces apart in the 2 row 
(since the other factor was tripled).
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× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 33 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

Good Questions to Ask

•• Ask students to examine the addition table to see how each of these ideas shows 
up in the table:

◆◆ Th at adding 9 is the same as adding 8 and then 1,
◆◆ Th at adding two odd numbers results in an even number,
◆◆ Th at adding 8 to a number results in a sum that is 4 more than adding 4 to the 

original number, and
◆◆ Th at there are lots of combinations of two counting numbers that add to 10, 

but fewer combinations of two counting numbers that add to 6.

[Answer: For the fi rst example, students might compare the numbers in the 
column under 9 to the numbers in the column under 8 and realize that they are 
1 more each time. For the second example, students might notice that in any row 
starting with an odd number, every other number is even and those numbers are 
all in columns where the heading number is odd. For the third example, students 
might compare the values of the numbers in the column under 8 to those in the 
column under 4 and see that each number in the 8 column is 4 more than the 
number in the 4 column. For the fourth example, students might count how many 
10s, versus 6s, appear in the body of the table.]

•• Ask students to examine the multiplication table to see how each of these ideas 
shows up in the table. Th ey should choose two of the patterns to explain.

◆◆ Th at multiplying by 4 results in twice as much as multiplying by 2,
◆◆ Th at multiplying an even number by an odd number results in an even number,
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◆◆ Th at the products that result from multiplying numbers greater than 0 by 9 are 
numbers for which the sum of the digits is 9, and

◆◆ Th at 3 × a number less than 10 added to 4 × that same number less than 10 is 
always in the 7 row.

[Answer: For the fi rst example, students might compare the numbers in the row 
labeled 4 to those in the row labeled 2 and see that the fi rst number is always 
double the second. Th ey can explain this because 4 groups of something is twice 
as much as 2 groups. For the second example, students might notice that all the 
numbers in a column with an even heading or a row with an even heading are 
even, even if the other heading is odd. For the third example, students might 
observe that the sum of the digits is 9 for all numbers in the 9 column or the 
9 row. For the last example, students might add corresponding numbers in the 
3 row and the 4 row and fi nd the result in the 7 row. Th ey might explain this using 
the distributive property.]

•• Ask students why the numbers in the 6 row are 6 apart. [Answer: Students should 
realize that any number in the 6 row represents the total amount in 6 groups; if 
the group size is increased by 1 (which means going to the next column), there are 
6 more 1s, which is a total of 6 more.]

•• Ask students why the same numbers are in the 5 row as in the 5 column. [Answer:  
Students should realize, perhaps using an array model, that the order of numbers 
does not matter when one multiplies.]

Summary
By the end of Grade 3, students use equations to model adding and subtracting 
situations as well as multiplying and dividing situations or combinations involving 
several operations. Th ese students are comfortable using letters to represent vari-
ables and solve equations in a variety of ways. Th ey also recognize how patterns in 
arithmetic, particularly in the addition and multiplication tables, relate to the 
properties of the operations.
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GRADE 44
Arithmetic Generalizations

Number and Operations—Fractions CCSSM 4.NF

Extend understanding of fraction equivalence and ordering.

1. Explain why a fraction ab is equivalent to a fraction n×a
n×b by using visual fraction models, 

with attention to how the number and size of the parts diff er even though the two 
fractions themselves are the same size. Use this principle to recognize and generate 
equivalent fractions.

IMPORTANT UNDERLYING IDEAS

x Generating equivalent fractions. In earlier grades, students learned generaliza-
tions that allow them to rename numbers or expressions with other numbers or 
expressions. For example, they learned that a × b can be renamed as b × a and that 
a + b can be renamed as (a + c) + (b – c) regardless of the values of a, b, and c. 
Th ese sorts of generalizations are an important component of algebraic thinking.

At this level, they learn another generalization—that any fraction a
b can be 

renamed as n×a
n×b for any values of a, b, and n other than a 0 value for n. Th is equiv-

alence is, of course, useful when comparing fractions, adding them, subtracting 
them, or even multiplying or dividing them.

Th is concept can be explained to students using visuals that show how any 
equal subdivisions of the parts of a fraction leads to another name for that frac-
tion. For example, 3

5 becomes 1
6
0 or 1

9
5 in the diagram below by multiplying both 

numerator and denominator by either 2 or 3.

Notice that looking in reverse shows that the numerator and denominator can 
also be divided by the same amount to get an equivalent fraction, for example, 
dividing both numerator and denominator of 1

6
0 by 2 to get 3

5 .
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Good Questions to Ask

•• We know that it is true that ab = n×a
n×b. Is it also true that ab = a+n

b+n? [Answer: No. 
For example, 2

3 is not equal to 3
4 (adding 1 to both numerator and denominator). 

But sometimes it is true, since 2
2 = 3

3 .]
•• Why is every fraction with a numerator and a denominator that are even 

equivalent to a fraction where that is not true? [Answer: If the numerator and 
denominator are both even, one could keep dividing by 2 as many times as 
necessary until one of them becomes odd. For example, for 48 , one would divide 
by 2 to get 2

4 and then again to get 1
2 . For 3

16
0 , one would divide by 2 to get 1

8
5 .]

Representing Situations Using Equations

Operations and Algebraic Th inking CCSSM 4.OA

Use the four operations with whole numbers to solve problems.

1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a 
statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal 
statements of multiplicative comparisons as multiplication equations.

2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., 
by using drawings and equations with a symbol for the unknown number to represent 
the problem, distinguishing multiplicative comparison from additive comparison.

3. Solve multistep word problems posed with whole numbers and having whole-number 
answers using the four operations, including problems in which remainders must be 
interpreted. Represent these problems using equations with a letter standing for the 
unknown quantity. Assess the reasonableness of answers using mental computation 
and estimation strategies including rounding.

Number and Operations—Fractions CCSSM 4.NF

Build fractions from unit fractions by applying and extending previous 
understandings of operations on whole numbers.

3. d. Solve word problems involving addition and subtraction of fractions referring 
to the same whole and having like denominators, e.g., by using visual fraction 
models and equations to represent the problem.

4. c. Solve word problems involving multiplication of a fraction by a whole number, 
e.g., by using visual fraction models and equations to represent the problem. For 
example, if each person at a party will eat 3

8 of a pound of roast beef, and there 
will be 5 people at the party, how many pounds of roast beef will be needed? 
Between what two whole numbers does your answer lie?
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IMPORTANT UNDERLYING IDEAS

x Interpreting multiplication as comparison. Although students are introduced to 
multiplication equations as a way of describing equal groups, they must broaden 
their understanding to other nuances of the concept of equal groups. For example, 
if one says that Paul has four times as many stickers as Alicia, the expression 4 × a 
describes how many stickers Paul has. Th e equation 4 × a = 20 suggests that Paul 
has 20 stickers, and we want to know how many stickers Alicia has. Th e equation 
4 × 5 = p suggests that Alicia has 5 stickers and we want to know how many stick-
ers Paul has.

Th e reason this multiplicative comparison is a “nuance” of equal groups is that 
we can think of Paul’s amount as 4 equal groups of Alicia’s amount even though, 
technically, there are no groups.

x Choosing an appropriate equation. When a student attempts to use an equation 
to describe a problem involving one of the four operations, she or he reveals an 
understanding of what the operations of addition, subtraction, multiplication, and 
division mean. Flexibility in interpretation of operations is important. Although 
subtraction can represent a take-away situation, it might also describe a compar-
ison situation or a how-many-more-are-needed situation. Multiplication is oft en 
about a situation involving equal groups, but considering a multiplicative com-
parison is a slightly diff erent interpretation. Division can be about sharing, but it 
can also be used in a multiplicative comparison. Th ese operation meanings are 
consistent, whether the numbers involved are fractions or whole numbers.

Once a problem is modeled with an equation, students generally solve the 
equation to solve the problem. Th e process of solving the equation should involve 
using a model that refl ects both the situation and the equation.

For example, for the equation 2
3 + □ = 4

3 , the student might be thinking about 
how much more fl our is needed than sugar if 2

3 cup of fl our and 11
3 cups of sugar 

are needed. Th e student is likely to model 23 and add to it until 43 is achieved. Alter-
nately, the student might be thinking about how much fl our is left  if there was 
11

3 cups initially and 2
3 cup was used. Th is time, the student might choose to start 

with 11
3 cups and remove 2

3 cup, but not necessarily.
For the equation 50 = 2 × s, the student should be realizing that 50 counters 

might be formed into 2 equal groups. However, for the equation 60 = g × 4, it 
makes sense to model lots of 4s being put together to make 60; the number of 
groups of 4 is counted.

For the equation c × 35 = 15
8 , the student might be modeling enough jumps of 3

5 
on a number line to get from 0 to 1

5
8 . But for the equation 3

5 × c = 1
5
8 , the student 

could be thinking about the size of a number that would allow 3
5 of it to be a little 

more than 31
2 .
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If the equation comes from a word problem, the story can help the student 
make sense of what the equation means; if there is no story problem, the student 
essentially has to invent meaning when he or she sees an equation. For example, 
40 – s = 10 could mean that there were 40, some were taken away, 10 were left , and 
one wants to know how many were removed. But it could be asking how far to go 
back on a number line from 40 to get to 10. Or it could be asking how old some-
one is if someone who is 10 years older is 40.

x Interpreting remainders. Some students are comfortable solving equations such 
as 21 ÷ 3 = a, but would argue that 22 ÷ 3 = a is not solvable. Such students simply 
do not understand how to handle a remainder in solving an equation. Th ey are not 
aware of the conventions for expressing remainders.

Students need to gain experience in dealing with such equations. Th ey might 
solve the equation as “about 7” or as 71

3 or perhaps as “7 Remainder 1.”

x Position of the unknown in an equation. Students should have experiences solv-
ing multiplication equations of the form a × b = c, where each of the variables 
a, b, or c is the unknown. For example, they might solve a × 4 = 20, 4 × b = 20, 
or 4 × 5 = c.

Th e interpretation of these three equations is somewhat diff erent. In the fi rst 
instance, a × 4 = 20, the student knows there are 20 items in groups of 4 and wants 
to know how many groups, or knows that one person has 4 items and one has 20 
items and is looking for the “scale factor,” that is, how many times as many as 4 the 
number 20 is. A model to show this could involve creating groups of 4 counters 
until 20 counters have been used and then counting the number of groups. Essen-
tially this is a division question that asks how many of one unit in another.

In the second instance, 4 × b = 20, the student knows that there are 4 groups 
with a total of 20 items and wants to know how many are in a group, or knows that 
someone who has 20 items has 4 times as many as someone else and wants to 
know how many that other person has. Th is model involves building 4 groups and 
distributing items equally among the groups to determine how many items are in 
each group. Essentially, this is a division question involving sharing.

In the third instance, 4 × 5 = c, the student knows that there are 4 groups with 
5 items in a group and wonders how many items there are in total, or knows that 
someone has 4 times as many items as someone with 5 items. Th is model involves 
building the groups and keeping count.

x Importance of estimating solutions. Just as it is valuable for students to estimate 
when performing a calculation to check the reasonableness of a calculated answer, 
it makes sense to encourage estimation of a solution to an equation as an impor-
tant step in solving the equation.
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For example, imagine that a student is solving this equation: 4 × q + 3 = 31. 
It would make sense for that student to fi rst think: “q must be less than 10 since 
4 × 10 is already 40 and that’s too much. q must be more than 5 since 4 × 5 is 20, 
and 3 more is not 31. Th en the actual answer of 7 seems reasonable.”

If the equation were 3 × p + 18 = 2 × p + 47, a student might realize that 
adding 47 to 2p gets one about 17 past 3p, so the extra p must be worth about 30 
(47 – 17).

If the equation were 3
5 + j = 1, the student might recognize that if a fraction 

greater than 1
2 is added to another fraction and the result is 1, the other fraction 

must be less than 1
2 .

Estimation can be used either in place of, or in addition to, substituting the 
resulting solution in the equation to see if the equation is true. Substitution alone 
is not as good as also doing an estimation, since the student could make the same 
calculation error during the process of substituting and checking as was made 
during the process of solving. Such an error is less likely to go undetected if esti-
mation is also used.

Good Questions to Ask

•• Ask students to write an equation or an expression that would describe each 
situation:

◆◆ Connor has three times as many cards as Liam.
◆◆ Jenni has 80 stamps. Th at’s 5 times as many as Sara. How many does Sara have?
◆◆ Aisha has 5 times as many books as Laura. If Laura has 8, how many does Aisha 

have?
◆◆ Th e perimeter of a certain square is 8 times as much as the perimeter of another 

square.
◆◆ Some juice is added to 2

3 cup to end up with 2 cups. How much was added?
◆◆ You combine lots of 3

4 cup of fl our.

[Answer (examples): Th e fi rst statement might be written as the expression 3 × l 
or as the equation c = 3 × l. Th e second one might be written as 80 = 5 × s or as 
s = 80 ÷ 5 or as 5 = 80 ÷ s. Th e third one might be written as 5 × 8 = a or as 
8 × 5 = a or as a = 8 + 8 + 8 + 8 + 8 or . . . . Th e fourth one might be written as 
the expression 8 × p or as n = 8 × p. Th e fi fth one might be written as 2

3 + j = 2. 
Th e last one might be written as j × 3

4 . Notice that equations are used, rather than 
expressions, when specifi c amounts are indicated as the results.]

•• Ask a student to explain why 4 × 8 could mean the total count of 4 groups of 8 
but could also mean 4 times as much as 8. [Answer: If you show 4 groups of 8, 
you are automatically showing 8 four times, and that is what “4 times as much 
as 8” means.]
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•• Ask students to model each equation:

4 × s = 20
t × 7 = 42
8 = 32 ÷ m
p = 50 ÷ 10

[Answer: For 4 × s = 20, the student might put out 20 items and try to form 
4 groups. For t × 7 = 42, the student might make groups of 7 out of 42 items and 
count the number of groups. For 8 = 32 ÷ m, the student might put out 32 items 
and try to form 8 groups, counting the size of each group. For p = 50 ÷ 10, the 
student might draw a number line and hop back from 50 to 0, in hops of 10, 
counting the number of hops.]

•• Ask students how the solutions for 24 ÷ 3 = n and 26 ÷ 3 = n are alike and 
diff erent. [Answer: Th ere are about 8 in a group each time, but in the fi rst case all 
of the items are used up in making equal groups, and in the second case there are 
2 items left over when the group sizes are equal.]

•• Tell students that a problem is represented by the equation 4 × t = 64. Ask what 
the problem might have been. [Answer: One possibility is this: Jane had $64. Th at 
is 4 times as much as she used to have. How much did she have before?]

•• Ask students to provide a good estimate for the solution of each equation. Instruct 
them not to solve the equation fi rst. Also ask them to explain the reason for their 
estimate.

3 × j – 4 = 26
52 + k = 94
103 – k = 22
96 ÷ s = 6
50 + 2 × k = 32 + 4 × k
3
5 + s = 1

5
2

6 × ab = 4

[Answer: Th e solution to 3 × j – 4 = 26 might be around 9, since 3 × 9 is close to 
26 and 4 less is not that much less. Th e solution to 52 + k = 94 might be about 40 
since 52 + 40 is close to 94. Th e solution to 103 – k = 22 might be about 80 since if 
you take 80 from 100 you get 20. Th e solution to 96 ÷ s = 6 might be about 15 since 
96 is about halfway between 60 and 120, which are 6 × 10 and 6 × 20, and 15 is 
halfway between 10 and 20). Th e solution to 50 + 2 × k = 32 + 4 × k might be about 
10 since having 2 more ks meant having a number about 20 less. Th e solution to 
3
5 + s = 1

5
2 might be about 2 since 1

5
2 is more than 2 and 3

5 is a little more than 1
2 . 

Th e solution to 6 × ab = 4 might be a fraction a little more than 1
2 , such as 2

3 , since 
6 × 1

2 would not be enough and 6 × 1 would be too much.]
•• Ask students for a multiplication equation where the solution is close to 5, but not 

exactly 5. [Answer: Some possibilities are 5 × j = 26; 4 × k = 24; 100 × l = 510.]
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Pattern Rules

Operations and Algebraic Th inking CCSSM 4.OA

Generate and analyze patterns.

5. Generate a number or shape pattern that follows a given rule. Identify apparent 
features of the pattern that were not explicit in the rule itself. For example, given the 
rule “Add 3” and the starting number 1, generate terms in the resulting sequence and 
observe that the terms appear to alternate between odd and even numbers. Explain 
informally why the numbers will continue to alternate in this way.

IMPORTANT UNDERLYING IDEAS

x Describing rules in alternate ways. What makes a pattern a pattern is its regular-
ity, or predictability. It is the rule that describes a mathematical pattern that makes 
its regularity apparent.

For example, the pattern 5, 8, 11, 14, 17, . . . can be described by the rule “Start 
with 5 and keep adding 3.” Th e regularity is in the repeated addition of 3. An alter-
nate description of this same pattern, which usually would be off ered in a later 
grade, is that any term in the pattern can be determined by multiplying its posi-
tion in the pattern by 3 and adding 2; for example, the 6th term is 3 × 6 + 2 = 20. 
Again, the predictability comes from the rule; knowing the rule allows you to pre-
dict any term in the pattern.

Just as the pattern 5, 8, 11, 14, 17, . . . above was described with two diff erent 
rules, any pattern can be described in more than one way. For example, the pattern 
2, 4, 6, 8, 10, .  .  . can be described with these pattern rules: “Start at 2 and keep 
adding 2” or “Multiply the position number by 2 to determine the term value” or 
“Start at 2, and each time add 3 and then subtract 1.”

x Deducing from pattern rules. How a pattern rule is described always explicitly or 
implicitly tells us how that pattern grows. For example, the rule “Start at 5 and 
keep adding 2” explicitly tells us that the pattern grows by a value of 2 each time. 
Th e rule “Multiply the term position by 2 and then add 3” implicitly tells us that 
the pattern grows by a value of 2 each time. Th is is because 2 × (n + 1) + 3 is 
2 more than 2 × n + 3.

Knowing how a pattern grows can tell us a number of things about it, for 
example:

•• Which terms are odd or even,
•• Whether the terms, or which terms, are multiples of 3, and
•• When the pattern reaches a particular value, for example, 100.
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For example, consider the pattern “Start at 6 and add 4 each time.” Since you 
start at an even number and keep adding even numbers, all the terms have to be 
even. Th at is because any even number is made up of groups of 2, so starting with 
groups of 2 and adding more groups of 2 ensures that the result will be groups of 2.

Since you start at 6, and 6 is a multiple of 3, you know that there are some 
multiples of 3 in the pattern. But the pattern goes 6, 10, 14, 18, . . . , so once you 
are at a multiple of 3, you will not reach another multiple of 3 for another 3 terms. 
Notice that this fi nding continues: 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, .  .  .  . Th is 
makes sense; adding 4 three times is like adding 12. Since 12 is a multiple of 3, it is 
made up of groups of 3. If you keep adding groups of 3 to a number that is already 
made up of 3s, you have another multiple of 3. A student could conclude that the 
fi rst number and every subsequent third number is a multiple of 3.

Since you start at 6, and keep adding 4 each time, you will not get to 100 until 
the 25th term. Th at is because if you add 23 fours to 6 (to get to the 24th term), 
you are up to 6 + 23 × 4 = 98, so you need one more term to get to 100.

Other patterns involving whole numbers can be analyzed in similar ways to 
look for multiples of other numbers (not necessarily 2 or 3), as well. For example, 
you know that the pattern 7, 13, 19, 25, 31, . . . contains no multiples of 6 since it 
begins at 1 more than a multiple of 6 and you keep adding 6s; there will always be 
a remainder of 1 when you divide by 6.

x Comparing patterns. One of the aspects of patterns mathematicians are particu-
larly interested in studying is how fast they grow. Patterns are oft en compared in 
terms of how fast they grow rather than where they begin. For example, eventually 
students need to realize that no matter where a pattern starts, a pattern that grows 
by 3 ultimately surpasses a pattern that grows by 2, or that a pattern that grows by 
multiplying by a positive whole number greater than 1 ultimately surpasses a pat-
tern that grows by adding a positive whole number.

Th ese examples of pattern growth could be explored by having students com-
pare, for example, the pattern 4, 7, 10, 13, 16, . . . to the pattern 100, 102, 104, 106, 
. . . or the pattern 1, 2, 4, 8, 16, 32, . . . to the pattern 200, 206, 212, 218, 224, . . . .

In the first case, 4, 7, 10, 13, .  .  . starts behind 100, 102, .  .  .  . but by the 
100th term, the fi rst pattern gets to 4 + 99 × 3 = 301 and the second gets to only 
100 + 99 × 2 = 298. Since the fi rst pattern grows faster, it will stay ahead aft er 
the 100th term.

In the second case, 1, 2, 4, 8, 16, 32, . . . surpasses 200, 206, 212, 218, 224, . . . 
by the 10th term. The 10th term in the first pattern has already reached 512, 
whereas the second pattern’s 10th term is only 254.

Th is sort of pattern exploration provides a good opportunity for students to 
practice computational skills as well as to make mathematical generalizations.
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Good Questions to Ask

•• Ask students to describe at least one or two alternative rules for each pattern:

◆◆ Pattern 1: Start at 6 and keep adding 6.
◆◆ Pattern 2: Start at 4 and keep adding 9.
◆◆ Pattern 3: Start at 10 and keep adding 5.

[Answer (examples): Pattern 1: Start at 6, add 3 and then 3 more to get the next 
term each time. Multiply the position of the number in the pattern by 6.

Pattern 2: Start at 4 and add 10 and then subtract 1 to get the next number 
each time. Multiply the position of the number in the pattern by 9 and then 
subtract 5.

Pattern 3: Add 1 to the position of the number in the pattern and then multiply 
by 5. Multiply the position of the number in the pattern by 5 and then add 5.]

•• Provide several pattern rules to students. Ask them to tell as much as they can 
about what they notice about the numbers in the pattern. Suggest that they 
consider both size (how big the numbers are) and properties of the numbers such 
as whether they are even or odd, multiples of 10 or not, etc. Th ey should explain 
why what they notice happens.

◆◆ Pattern 1: Start at 8 and keep adding 5.
◆◆ Pattern 2: Start at 4 and keep adding 7.
◆◆ Pattern 3: Start at 100 and keep subtracting 3.
◆◆ Pattern 4: Start at 4 and keep doubling.

[Answer (examples): Pattern 1: Numbers alternate between even and odd since 
they start even. By adding 5, the next term switches to odd, but adding 5 again is 
like adding 10, so the result is back to even. Th ere are no multiples of 5 or 10 since 
the starting number is a non-multiple and the added groups are 5s. It takes 20 
terms to get up to 100 since 19 × 5 = 95 and 95 + 8 is more than 100. Th at means 
that 5 has to be added 19 times, getting to the 20th term.]

•• Ask students to compare the pattern 5, 8, 11, 14, 17, 20, . . . (Start at 5 and keep 
adding 3) to each of the patterns below. Th ey should talk about how the patterns 
are alike and how they diff er, considering how fast they grow, what kinds of 
numbers the patterns include, and how knowing about one pattern helps one 
to know about the other. Th is will be an example of the mathematical practice 
standard of reasoning abstractly and quantitatively.

◆◆ Pattern 1: 7, 10, 13, 16, 19, . . . (Start at 7 and keep adding 3)
◆◆ Pattern 2: 5, 7, 9, 11, 13, 15, . . . (Start at 5 and keep adding 2)
◆◆ Pattern 3: 5, 15, 45, 135, . . . (Start at 5 and keep multiplying by 3)

[Answer (examples): Pattern 1: Th e 7, 10, 13, . . . pattern is always 2 ahead of 
the 5, 8, 11, . . . pattern. Both patterns alternate between odd numbers and even 
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numbers in the same way. Th e pattern starting at 7 gets to 10 and 100 one term 
before the pattern that starts at 5. Both patterns have no multiples of 3. Both 
patterns have multiples of 4 that are 4 apart.

Pattern 2: Th e 5, 8, 11, . . . pattern starts at the same place as the 5, 7, 9, . . . 
pattern but grows faster. Th e 5, 8, 11, . . . pattern alternates between even and odd 
numbers, but the 5, 7, 9, . . . pattern is all odd numbers. Th e 5, 8, 11, . . . pattern has 
no multiples of 3 in it, but the 5, 7, 9, . . . pattern does (e.g., 9 and 15).

Pattern 3: Th e 5, 15, 45, 135, . . . pattern starts at the same place as the 
5, 8, 11, 14, . . . pattern, but the multiplying pattern gets bigger much faster. Th e 
multiplying pattern has only odd numbers in it, but the adding pattern has odds 
and evens.]

Solving Measurement Problems with Equations

Measurement and Data CCSSM 4.MD

Solve problems involving measurement and conversion of measurements 
from a larger unit to a smaller unit.

1. Know relative sizes of measurement units within one system of units including 
km, m, cm; kg, g; lb, oz; l, ml; hr, min, sec. Within a single system of measurement, 
express measurements in a larger unit in terms of a smaller unit. Record measurement 
equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 
1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet 
and inches listing the number pairs (1, 12), (2, 24), (3, 36), . . . .

2. Use the four operations to solve word problems involving distances, intervals of time, 
liquid volumes, masses of objects, and money, including problems involving simple 
fractions or decimals, and problems that require expressing measurements given in 
a larger unit in terms of a smaller unit. Represent measurement quantities using 
diagrams such as number line diagrams that feature a measurement scale.

3. Apply the area and perimeter formulas for rectangles in real world and mathematical 
problems. For example, fi nd the width of a rectangular room given the area of the 
fl ooring and the length, by viewing the area formula as a multiplication equation with 
an unknown factor.

IMPORTANT UNDERLYING IDEAS

x Converting from one unit to another. Th e relationship between two measurement 
units can be thought of in terms of solving an equation with a missing term. For 
example, since 1 foot = 12 inches, if one knows that the number of inches is 150 
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and wants the number of feet, one would be solving the equation f = 150 ÷ 12 or 
the equation 12 × f = 150.

Although expressing such a conversion as an equation might seem to be over-
complicating a simple calculation, it will be helpful as the student goes up the 
grades to know how to algebraically model a wide variety of situations, including 
these measurement situations.

x Modeling measurement problems. Many word problems involve measurement 
situations. As with other story problems, students can oft en solve the problems by 
fi rst modeling them with an equation and then solving the equation. A few exam-
ples of modeling problems with equations are shown below:

•• Th e perimeter of a square is 84 inches. What is the side length? (Example: 
84 = 4 × s)

•• Jane’s mother drove 52 miles to her job and the same distance home. How 
far did she drive in total? (Example: d = 52 + 52)

•• Th ree identical boxes were placed on a scale, and the total weight was 
78 pounds. How much did each box weigh? (Example: 3 × b = 78)

x Formulas for area and perimeter of rectangles. Essentially, measurement formu-
las are equations that relate diff erent variables, which happen to be measures. We 
oft en substitute known values of certain variables to get unknown values of 
another variable.

For example, the formula P = 2 × l + 2 × w is an equation that relates the 
perimeter to the length and width of a rectangle. It is a statement that is true for 
any values of P, l, and w. If one knows two of the values, the equation can be 
used to help determine the third. For example, if one knows that a rectangle has 
width 4" and perimeter 20", one can determine length by solving the equation 
20 = 2 × l + 2 × 4, or 20 = 2 × l + 8.

Applying measurement formulas is a very useful way to practice algebraic 
skills. Using formulas helps students not only to calculate measurements but also 
to see when equations are used, to practice how they are solved, and to recognize 
the diff erence between equations that state a relationship between variables and 
those with a focus on solving for a missing value.

Good Questions to Ask

•• Ask students to describe what table of values they might create to convert cubic 
yards to cubic feet. Th en ask if they think the table would be more useful or less 
useful than an equation relating cubic yards to cubic feet. [Answer (example):  
I would make a table with 1 matching 27, 2 matching 54, 3 matching 81, etc. 
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I think the equation is easier since it works even if the numbers are not whole 
numbers, such as 21

2 or 31
4 .]

•• Ask students to describe an equation they might use to convert kilometers to 
meters. Ask why the equation is correct. [Answer (example): meters = 1,000 × 
kilometers. I used this equation because 1 km = 1,000 m, so you multiply the 
number of kilometers you have by 1,000 to get the number of meters.]

•• Ask students for two diff erent equations to model this measurement problem: 
Kyle walked 11

2 miles on Monday and double that on Tuesday. How far did he walk 
altogether? [Answer: One of the equations could be 11

2 + 2 × 11
2 = d.]

•• Tell students you used the equation d = 250 ÷ 5 to model a problem about 
distance. Ask what the problem might have been. [Answer (example): We drove 
250 miles in 5 hours. How far did we drive each hour?]

•• Ask students to create a measurement problem involving capacity in quarts. Th en 
ask them to create and solve an equation that would model the problem. [Answer 
(example): A pot held 41

4 quarts of water. How many cups of water is that? 
Equation: 41

4 × 4 = c. Th e answer is 17 cups.]
•• Ask students for an equation they could solve to determine the length of a room 

with a width of 12 feet and an area of 180 square feet. [Answer (example): 180 = 
12 × l.]

•• Ask students to explain why the formula for the area of a rectangle involves two 
variables (length and width) but the formula for the area of a square involves only 
one variable (side length). [Answer: For a rectangle that is not a square, the length 
and width are diff erent, so the area formula has to consider both of those 
amounts. But since a square has a length that is the same as its width, once one is 
known the other is automatically known, so both are not needed in the formula.]

Summary
By the end of Grade 4, students use equations to represent more complex prob-
lems and a wider variety of problems than in earlier grades. Th ese problems could 
involve fractions or whole numbers and they could involve combinations of opera-
tions. Students are comfortable solving equations involving multiple meanings of 
multiplication and division of whole numbers, as well as equations involving addi-
tion and subtraction of fractions where the missing unknown is located in diff er-
ent spots in the equation.

Grade 4 students might use equations to help them convert measurements or 
describe measurement formulas. Th ey also see the relationship between the specif-
ics of the pattern rule for a particular pattern and the types of numbers that appear 
in that pattern as well as the pattern’s growth.
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GRADE 55
Analyzing Patterns

Operations and Algebraic Th inking CCSSM 5.OA

Analyze patterns and relationships.

3. Generate two numerical patterns using two given rules. Identify apparent 
relationships between corresponding terms. Form ordered pairs consisting of 
corresponding terms from the two patterns, and graph the ordered pairs on a 
coordinate plane. For example, given the rule “Add 3” and the starting number 0, and 
given the rule “Add 6” and the starting number 0, generate terms in the resulting 
sequences, and observe that the terms in one sequence are twice the corresponding 
terms in the other sequence. Explain informally why this is so.

IMPORTANT UNDERLYING IDEAS

x Comparing patterns numerically. Linear patterns are ones that increase by the 
same amount each term. Th ese patterns are particularly useful in describing many 
real-world situations. Th ey diff er only in where they start and how fast they grow.

Eventually students should realize that no matter where a pattern starts, a pat-
tern that grows more quickly ultimately surpasses a pattern that grows more slowly. 
Th is could be explored by having students compare, for example, the pattern 1, 6, 
11, 16, 21, 26, . . . , which grows by 5 but starts at 1, with the pattern 100, 102, 104, 
106, . . . , which grows by only 2 but starts all the way at 100. Eventually, the fi rst 
pattern surpasses the second. In this case, the 35th number in the fi rst pattern is 
171 and the 35th number in the second pattern is 168. Once that point is reached, 
the numbers in the fi rst pattern remain greater since they increase faster.

Notice that it might be diffi  cult, in this case, for students to use the values in 
one pattern to predict the matching values in the second pattern. (Th ere is in fact 
a way, but it is fairly complicated—add 4 to the number in Pattern 1, take 2

5 of it, 
and then add 98. For example, the third number in Pattern 1 is 11, so the third 
number in the second pattern would be 2

5 of (4 + 11) + 98 = 104.)
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However, if both patterns start at 0, predicting the terms of one linear pattern 
by knowing the matching term in another is much easier. For example, when com-
paring 3, 6, 9, 12, 15, . . . to 5, 10, 15, 20, . . . , a student might realize that dividing 
by 3 and then multiplying by 5 matches any number in Pattern 1 to its counterpart 
in Pattern 2. Th is is because the rule for Pattern 1 is 3 × n, where n is the term 
position, and the rule for Pattern 2 is 5 × n, where n is the term position. Notice 
that dividing 3 × n by 3 results in n and multiplying that result by 5 leads to 5 × n.

x Comparing patterns graphically. Oft en a visual representation of a mathematical 
relationship is more compelling for students than a tabular or numeric represen-
tation. If, for example, one wants students to understand that one pattern grows 
more quickly than another or to understand the relationship between two pat-
terns, a graphical representation can be helpful.

For example, the graph below makes it quite visible that the values in the 
numerical pattern 4, 8, 12, 16, 20, . . . , which grows by 4s and is shown using black 
dots, are exactly 2

3 of the values in the numerical pattern 6, 12, 18, 24, . . . , which 
grows by 6s and is shown using gray dots. Notice that in each vertical column, the 
black dot is 2

3 of the way from the horizontal axis to the gray dot.

1 2 3 4 5 6 Term position

1

Although the graph on the next page does not make it as clear how the two 
matching pattern values are related, it does clarify when the pattern 1, 4, 7, 10, 
. . . , which grows by 3s, will overtake the pattern 23, 25, 27, 29, . . . , which grows 
by 2s.
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2 4 6 8 10 Term position

3

30

60

Good Questions to Ask

•• Ask students to create two patterns, one of which whose terms are exactly three 
times the matching terms in the other one. Th en ask them to make observations 
about how the patterns are alike and diff erent. [Answer (example): Th e patterns 
might be 3, 6, 9, 12, 15, . . . and 9, 18, 27, 36, . . . . Both patterns alternate odd and 
even values. Both patterns grow by a constant amount. Both patterns are 
multiplication tables. Every number in the second pattern is in the fi rst one, but 
later in the pattern.]

•• Ask students to create two patterns such that the values in the second pattern 
can easily be predicted by knowing the values in the fi rst one and to tell how the 
prediction is made. Th en have them graph both patterns, and ask them how the 
graphs are useful in making the prediction. Point out how this is an example of 
the mathematical practice standard of reasoning abstractly and quantitatively. 
[Answer (example): 4, 7, 10, 13, 16, . . . and 14, 17, 20, 23, 26, . . . . One only needs 
to add 10 to the number in the fi rst pattern to get the number in the second 
pattern. On the graphs, the second pattern’s values are consistently 10 above the 
fi rst pattern’s values.]

•• Ask students to tell as much as they can about the pattern 4, 9, 14, 19, 24, 29, . . . . 
Th en ask them to create another pattern by adding 1 to each value and taking 3

5 of 
the new amount. Ask what they notice about this new pattern. Finally, have them 
graph both patterns, and ask how the graphs show the relationship between the 
two and why this makes sense. [Answer (example): Th e fi rst pattern’s values 
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increase by 5 each time; the terms alternate between even and odd. Th e ones digit 
is always 4 or 9. Th e second pattern is 3, 6, 9, 12, 15, 18, . . . . Th e values increase by 
3 each time. Th e terms alternate between odd and even. Th e ones digit could be 
anything. Th e same tens digits appears in at least three terms. On the graphs, the 
fi rst pattern is above the second one each time, and the diff erence keeps getting 
larger. Th is makes sense because if the second number is close to 35 of the fi rst one, 
instead of going up by 5s, it should go up by 3

5 of 5, which is 3. Since the second 
pattern goes up more slowly, the fi rst pattern will keep getting more and more 
ahead of the second one.]

Using Equations to Represent and Solve Problems

Number and Operations—Fractions CCSSM 5.NF

Use equivalent fractions as a strategy to add and subtract fractions.

2. Solve word problems involving addition and subtraction of fractions referring to the 
same whole, including cases of unlike denominators, e.g., by using visual fraction 
models or equations to represent the problem. Use benchmark fractions and number 
sense of fractions to estimate mentally and assess the reasonableness of answers. For 
example, recognize an incorrect result 2

5 + 1
2 = 3

7 , by observing that 3
7 < 1

2 .

Apply and extend previous understandings of multiplication 
and division to multiply and divide fractions.

6. Solve real world problems involving multiplication of fractions and mixed numbers, 
e.g., by using visual fraction models or equations to represent the problem.

7. c. Solve real world problems involving division of unit fractions by non-zero whole 
numbers and division of whole numbers by unit fractions, e.g., by using visual 
fraction models and equations to represent the problem. For example, how much 
chocolate will each person get if 3 people share 1

2 lb of chocolate equally? How 
many 13 -cup servings are in 2 cups of raisins?

IMPORTANT UNDERLYING IDEAS

x Representing a problem with an equation. Although students learn the operations 
of addition, subtraction, multiplication, and division with fractions and mixed 
numbers, they oft en do not know when to apply those operations. Th at is probably 
the most important thing to learn—when does it make sense to subtract two frac-
tions? to multiply two fractions? to divide a whole number by a fraction? to divide 
a fraction by a whole number?
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As students write equations to solve problems, it is useful if the equation 
closely matches the situation described in the problem. For example, if a problem 
states that a gas tank is 1

3 full and asks how much more is needed to make a trip 
that takes about 7

8 tank of gas, the student might write 1
3 + □ = 7

8 .
If a problem inquires about the number of 1

3 cupfuls of fl our required to mea-
sure out 2 cups of fl our, then the equation 2 ÷ 1

3 = □ would make sense. If a prob-
lem asks how 4 people might equally share a prize that is 1

5 of the entire raffl  e 
winnings, the student could use the equation 1

5 ÷ 4 = □. If a problem asks about 
the area of a closet that is 31

3 feet by 41
2 feet, the equation 31

3 × 41
2 = □ would be 

appropriate.
A student might choose a situation involving multiplication as comparison. 

A problem might be, for example, determining the amount of liquid needed in a 
recipe that normally requires 31

2 cups of water if the amounts are all multiplied 
by 2

3 . Th e equation would be 2
3 × 31

2 = □.

x Flexibility in representations. It should be a goal that students realize that any 
word problem that can be represented by an equation can be represented by more 
than one possible equation. For example, a problem that asks how many ribbons 
8" long could be cut from a piece of ribbon 4' long could be modeled in terms of 
feet as 4 ÷ 2

3 = □ or as □ × 2
3 = 4; alternatively, using inches instead of feet, possi-

ble models are 48 ÷ 8 = □ or 8 × □ = 48.
One way to encourage this fl exibility among students is to regularly ask them 

to provide alternate equations.

Good Questions to Ask

•• Ask students to create real-life problems to match fraction equations. For example, 
ask students what situation would have led one to write each of these equations.

3
4 + 2

3 = □
3
4 – 2

3 = □
2
3 + □ = 3

4
2
3 × 3

4 = □

3 ÷ 1
3 = □

4
5 × □ = 16
1
8 ÷ 3 = □

[Answer (examples):
◆◆ I used 3

4 cup of fl our and then added 2
3 cup more fl our. How much fl our did I use?

◆◆ I had two recipes. One used 3
4 cup of sugar and one used 2

3 cup. How much more 
sugar did the fi rst recipe use?
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◆◆ My gas tank was 2
3 full. I didn’t have much money, and I put in a bit of gas. Now 

the tank is 3
4 full. What fraction of a tank of gas did I add?

◆◆ 3
4 of the kids in the school decided to participate in some intramurals. 2

3 of those 
kids were boys. What fraction of students in the whole school were boys playing 
intramurals?

◆◆ I was cooking a turkey for 3 hours and checked it every 1
3 of an hour. How many 

times did I check it?
◆◆ Only 4

5 of the houses on the street were brick. If there were 16 brick houses, how 
many houses were on the street?

◆◆ A big urn was 1
8 full, but I only used 1

3 of what was in it. What fraction of the 
whole urn’s capacity did I use?]

•• Provide various fractional equations of the forms ab + cd = □, ab – cd = □, ab × cd = □, 
1
b ÷ c = □, and c ÷ 1

b = □. Ask students to write several equivalent equations for 
each. [Answer (examples): 6 ÷ 1

2 = □ could be rewritten as 1
2 × □ = 6. 5

8 – 1
3 = □ 

could be rewritten as 1
3 + □ = 5

8 . 3
5 + 1

4 = □ could be rewritten as □ – 1
4 = 3

5 .]
•• Tell students that various problems were created to match the equation 

10 ÷ 1
5 = □. Ask what has to be the same about all of those problems, as well as 

what could be diff erent. [Answer (example): All of the problems involved the 
number 10 and the number 1

5 in some fashion. Somehow the 10 was the whole 
and there were groups of 1

5 . Either we were counting how many groups of 1
5 we 

had or we knew the size of 1
5 of a unit and wanted to know the size of the whole 

unit. For example, a problem could have been about how many batches of a recipe 
that required 1

5 cup of something we could make if we had a total of 10 cups. 
Or a problem could involve knowing we could do 10 things in 1

5 of an hour and 
wondering how many things we could do in a whole hour (assuming we did the 
same thing over and over).]

Solving Measurement Problems with Equations

Measurement and Data CCSSM 5.MD

Geometric measurement: understand concepts of volume and 
relate volume to multiplication and to addition.

5. Relate volume to the operations of multiplication and addition and solve real world 
and mathematical problems involving volume.
b. Apply the formulas V = l × w × h and V = b × h for rectangular prisms to fi nd 

volumes of right rectangular prisms with whole-number edge lengths in the 
context of solving real world and mathematical problems.
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IMPORTANT UNDERLYING IDEAS

x Formulas for volumes of rectangular prisms. Essentially, measurement formulas 
are equations that relate diff erent variables. Known values of certain variables are 
oft en substituted to get unknown values of another variable.

For example, the formula V = l × w × h is an equation that is true for any val-
ues of V, l, w, and h for a rectangular prism. However, if one knows three specifi c 
values, the equation can be used to help determine the fourth. For example, if a 
rectangular prism has a volume of 60 cubic inches, a width of 3 inches, and a 
height of 5 inches, one can deduce that 60 = l × 15, so the length must be 4 inches.

Students might solve multiplication or division questions involving volumes of 
rectangular prisms. Th ey are likely to use multiplication when they know the three 
linear dimensions, or the area of the base and the height, and want to fi nd the vol-
ume. Th ey are likely to use division when they know the volume and some of the 
linear dimensions or the area of the base and want the other dimensions.

Using measurement formulas is a very useful way to practice algebraic skills. It 
helps students not only to calculate measurements but also to see when equations 
are used, practice how they are solved, and recognize the diff erence between equa-
tions that state a relationship between variables and those in which the focus is 
solving for a missing value.

Good Questions to Ask
•• Ask students for an equation to model the following measurement problem: A 

rectangular prism has a volume of 30 in3. If the length and width are doubled, but 
the height remains the same, what is the volume of the new prism? [Answer 
(example): V (of the larger prism) = 2 × l × 2 × w × h. Since V (of the original 
prism) = l × w × h = 30, for the larger prism V = 2 × 2 × 30.]

•• Tell students you used the equation d = 250 ÷ 5 to model a problem about the 
volume of a rectangular prism. Ask what the problem might have been. [Answer 
(example): A rectangular prism has a volume of 250 cubic units. If the height is 
5 units, what is the area of the base?]

•• Ask students to create a measurement problem involving the volume of a 
rectangular prism that does not simply give the specifi c values of the length, width, 
and height. Th en ask them to create and solve an equation that would model the 
problem. [Answer (example): I built a rectangular prism whose height is double 
its width. If the length of the base is 10 inches and the volume is 180 cubic inches, 
what are the width and the height? Equation: 180 = 10 × w × 2 × w or 
180 = 20 × w × w; the answer is 3 inches for the width and 6 inches for the height.]

•• Ask students for an equation they might solve to determine the height of a 
rectangular prism that is very tall and has a volume of 100 cubic units. Ask them 
to explain the equation. [Answer (example): 100 = h × 2. I knew that the base 
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area had to be small for the height to be tall, so I used a length of 2 and width of 1 
for the base.]

•• Ask students to explain why the formula for the volume of a rectangular prism 
involves three variables (length, width, and height) but the formula for the volume 
of a cube could be stated using only one variable (side length). [Answer (example):  
For a prism that is not a cube, the length, width, and height could be diff erent, so 
the volume formula has to consider all three of those amounts. But since the length 
of a cube has to be the same as its width and height, once one of the measurements 
is known, the others are automatically also known, so all three are not needed in 
the formula.]

Using a Coordinate Grid to Visualize 
Algebraic Relationships

Geometry CCSSM 5.G

Graph points on the coordinate plane to solve 
real world and mathematical problems.

1. Use a pair of perpendicular number lines, called axes, to defi ne a coordinate system, 
with the intersection of the lines (the origin) arranged to coincide with the 0 on each 
line and a given point in the plane located by using an ordered pair of numbers, called 
its coordinates. Understand that the fi rst number indicates how far to travel from the 
origin in the direction of one axis, and the second number indicates how far to travel 
in the direction of the second axis, with the convention that the names of the two axes 
and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).

2. Represent real world and mathematical problems by graphing points in the fi rst 
quadrant of the coordinate plane, and interpret coordinate values of points in the 
context of the situation.

IMPORTANT UNDERLYING IDEAS

x Direction of travel from the origin. When students consider plotting the ordered 
pair (a, b), they need to realize that they have choices about how to move to that 
position from the origin. Th ey could, for example:

•• Start at (0,0), move a spaces to the right and then b spaces directly up 
from that position,

•• Start at (0,0), move b spaces up and then a spaces directly to the right 
from that position,
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•• Start at (a,0) and then move b spaces directly up, or
•• Start at (0,b) and then move a spaces directly to the right.

Although one might think it best to be consistent, eventually students will want 
the fl exibility of moving in any of these four ways to locate a point.

Students can then starting moving from one point to another. For example, 
they might move from (5,1) to (7,3) by plotting both points and noticing that 7 is 
2 spaces to the right and 3 is 2 spaces up. Or they might just plot (5,1) and imme-
diately realize they could go 2 spaces to the right and 2 spaces up to reach (7,3).

It is equally important that the students recognize that the position of (a,b) is 
typically not the same as the position of (b,a). Th e only exception is when a = b.

x Representing problems on a coordinate plane. Problems that are suitable for 
graphing in the fi rst quadrant of a coordinate plane involve situations in which the 
values of two variables are related and each value is positive. Th e purpose of the 
graph is to display that relationship, as well as to serve as a tool for solving prob-
lems involving the two variables in the relationship. At the 5th-grade level, simple 
linear relationships make the most sense to investigate.

Oft en tables of values are created to describe specifi c instances of a relation-
ship, those values are used to plot some points, and then students use the graph to 
interpolate and extrapolate.

For example, to show the relationship between the number of days in a certain 
number of weeks, students might create a table that pairs diff erent numbers of 
weeks with the corresponding numbers of days and then plot those points as 
ordered pairs, using the two values in each row of the table as the coordinates.

Weeks Days

1 7

2 14

3 21

4 28

5 35

6 42

7 49

Students need to learn that they have choices about which variable to put in 
which column, but that the choice aff ects the look of the graph. Th ey also need to 
learn that they have choices in how the values of the variable in any column 
increase, but that oft en it is easier to notice patterns if those values increase in 
consistent ways, for example, by 1 each time or by 2 each time.
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For example, none of the tables of values below is incorrect, even though some 
reveal patterns in the relationship between days and weeks better than others.

Days Weeks Weeks Days Weeks Days

7 1 1 7 1 7

14 2 3 21 2 14

21 3 5 35 4 28

28 4 7 49 5 35

35 5 9 63 10 70

42 6 11 77 12 84

49 7 13 91 20 140

Once the points are plotted, students will likely notice the “linear” pattern and 
then can apply that pattern to extend the graph and use it to determine specifi c 
values of one variable in terms of the other.

Number of weeks

Number of days

1 2 3 4 5 7 8 9 100

7

14

21

28

35

49

56

63

70

6

42

For example, as shown at the top of the next page, students could move di-
rectly up from (8,0) to look for the y-coordinate that is on the line by looking over 
to the left ; that tells them how many days there are in 8 weeks.
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Number of weeks

Number of days

1 2 3 4 5 7 8 9 100

7

14

21

28

35

49

56

63

70

6

42

Students could also start at a y-value (number of days), move across to intersect 
the line, and determine the number of weeks for that number of days (see below). 
For example, by starting at (0,63) and going over and down, a student could deter-
mine that 63 days is 9 weeks.

Number of weeks

Number of days

1 2 3 4 5 7 8 9 100

7

14

21

28

35

49

56

63

70

6

42

Many students are more comfortable using tables of values than graphs, but 
the graphical approach should be encouraged to get them accustomed to it. Later, 
graphs will be very valuable and useful to students.
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Good Questions to Ask

•• Ask students to describe how they would move:

◆◆ To the point (3,4) from (0,0),
◆◆ To the point (5,1) from (4,0), and
◆◆ To the point (6,3) from the point (8,4).

•• Ask students to describe how the position of (5,2) is diff erent from the position of 
(2,5). [Answer (example): (5,2) is farther to the right and farther down than (2,5).]

•• Ask students to consider the relationship between a number of people and the 
number of eyes that many people have. Encourage them to create a table of values 
and plot some of the points on a graph to model the relationship. Th en ask them 
to create and solve a problem by using their graph. [Answer (example): If students 
plot the points (1,2), (2,4), and (3,6) for the number of eyes for 1, 2, and 3 people, 
they might graph a line where the y-coordinate is twice the x-coordinate and 
determine that there are 20 people if there are 40 eyes.]

•• Ask students to create a table of values relating the number of nickels to the 
number of cents they are worth. Th en have them switch which variable is 
represented by the x-coordinate and which by the y-coordinate. Have them decide 
whether a problem asking about that relationship can be solved using either graph 
and explain why. [Answer: Students should note that either graph can be used. 
For example, to decide how many cents correspond to 12 nickels, on one graph 
one can begin at (12,0), go up to the “line,” and look across to fi nd the number of 
cents. On the other graph, one can begin at (0,12), go to the right to the “line,” and 
look down to fi nd the number of cents.]

Summary
By the end of Grade 5, students use equations to represent situations involving 
addition, subtraction, and multiplication of fractions (even with diff erent denomi-
nators), as well as limited situations involving fraction division. Th ey use equa-
tions to describe measurement situations involving volumes of rectangular prisms. 
Th ey show increasingly more fl exibility in working with equations by representing 
problems in diff erent ways and solving equations in diff erent ways.

Th ese students also use algebraic thinking to compare patterns both numeri-
cally and graphically by using properties of operations and to model relationships 
between variables by using coordinate grids.
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GRADE 66
Observing Proportional Relationships

Ratios and Proportional Relationships CCSSM 6.RP

Understand ratio concepts and use ratio reasoning to solve problems.

2. Understand the concept of a unit rate ab associated with a ratio a:b with b ≠ 0, and 
use rate language in the context of a ratio relationship. For example, “Th is recipe has 
a ratio of 3 cups of fl our to 4 cups of sugar, so there is 3

4 cup of fl our for each cup of 
sugar.” “We paid $75 for 15 hamburgers, which is a rate of $5 per hamburger.”

3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., 
by reasoning about tables of equivalent ratios, tape diagrams, double number line 
diagrams, or equations.
a. Make tables of equivalent ratios relating quantities with whole-number 

measurements, fi nd missing values in the tables, and plot the pairs of values 
on the coordinate plane. Use tables to compare ratios.

IMPORTANT UNDERLYING IDEAS

x Using tables of values. Students are exposed to many linear relationships in their 
study of mathematics. For example, they might use the idea that each minute is 
60 seconds, that each week is 7 days, that each foot is 12 inches, that each meter is 
100 cm, that each mile is 5,280 feet, that each dollar is 4 quarters, etc.

Equivalent ratios or rates can be used to describe any one of these linear rela-
tionships in a variety of ways. For example, when comparing minutes to seconds, 
the rates 60:1, 120:2, and 180:3 all appropriately describe the relationship between 
seconds and minutes, although the unit rate 60:1 is oft en favored. Equivalent ratios 
or rates are oft en generated by using tables of values. For example, the relationship 
between dollars and the equivalent number of quarters might be represented as 
shown at the top of the next page. Th e equivalent ratios are 1:4, 2:8, 3:12, etc., or 
4:1, 8:2, 12:3, etc.
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Dollars Quarters

0 0

1 4

2 8

3 12

4 16

5 20

Students might use the ratios in a table of values as sets of ordered pairs to 
graph on a coordinate grid. When these sorts of relationships are used, the graphs 
always form lines that go through the origin. In this particular case, a continuous 
line would not make sense since there can only be whole numbers of quarters.

Dollars

Quarters

If, however, the relationship between minutes and hours were shown, it would make 
sense to use a continuous line; fractions of minutes and hours are meaningful.

In 6th grade, it is appropriate to provide students with some values for the 
equivalent ratios or rates in a table of values, but not all of them. Students could be 
asked to determine missing values. For example, in the table at the top of the next 
page, students might be asked to determine the values for the ?s if the values in the 
table describe equivalent ratios.
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Miles Feet

0 0

1 5,280

2 ?

3 ?

? 21,120

x Comparing ratios numerically. Students might explore several tables of values 
describing equivalent ratios to compare them. For example, the two tables below 
describe library fi nes per day charged by two libraries. Students should be able to 
determine which library charges more per day either by looking at the unit rate 
when the number of days overdue is 1 or by observing the growth factor in each 
table.

Library A Library B

Days overdue Total fi ne Days overdue Total fi ne

0 0 0 0

1 $0.50 1 $0.20

2 $1.00 2 $0.40

3 $1.50 3 $0.60

4 $2.00 4 $0.80

When relationships describe one variable as a multiple of another, the rate of 
growth in a table of values in which the independent variable increases by 1 each 
time is, in fact, the unit rate.

Good Questions to Ask

•• Ask students to describe the relationship between inches and feet in at least three 
diff erent ways. [Answer (example): 1 foot = 12 inches, 1 inch = 1

1
2 foot, 2 feet = 

24 inches.]
•• Provide a table of values showing a proportional relationship, for example, number 

of legs for a given number of cows or number of eggs in a given number of egg 
cartons. Provide some of the data but not all, and ask students to fi rst determine 
the missing pieces and then plot the data from the table as ordered pairs on a 
coordinate grid. Have the students describe the plot. [Answer: Th e plot should be 
a line through the origin.]

•• Ask students to describe a variety of non-unit-rate situations using unit rates, for 
example, 3 grapefruit for $1.99 as 1 grapefruit for $0.67.
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•• Ask students to create a table of values showing equivalent ratios or rates that 
grow much more quickly than those in the table given below. Th en ask for a table 
of values showing equivalent ratios or rates that grow slightly less quickly.

Feet Inches

1 12

2 24

3 36

4 48

5 60

[Answer (example): A table relating yards to inches could be provided as one 
growing more quickly, and a table describing the number of toes for diff erent 
numbers of people could be an example of one growing slightly less quickly.]

Using a Coordinate Grid to Visualize 
Algebraic Relationships

Th e Number System CCSSM 6.NS

Apply and extend previous understandings of numbers to 
the system of rational numbers.

8. Solve real-world and mathematical problems by graphing points in all four quadrants 
of the coordinate plane. Include use of coordinates and absolute value to fi nd 
distances between points with the same fi rst coordinate or the same second 
coordinate.

IMPORTANT UNDERLYING IDEAS

x Representing distances on a coordinate plane. Students can use their knowledge 
of operations with integers or rational numbers to determine the distance between 
points with the same fi rst or last coordinate on a coordinate grid. For example, the 
distance between (–1,3) and (4,3) = 4 – (–1) = 5, or the distance between (–2,4) 
and (–2,–2) = 4 – (–2) = 6.
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6

1 2 3 4–3 –2 –1 0

1

2

3

4

–2

–1

(4,3)(–1,3)

(–2,–2)

(–2,4)

5

We want students to realize, more generally, that the undirected distance 
between (a,b) and (a,c) = b – c, or c – b, whichever is positive. Similarly, the undi-
rected distance between (a,b) and (c,b) = a – c, or c – a, whichever is positive. If 
students are specifi cally instructed as to which is the starting point and which the 
ending point, a directed distance can be determined. Students should associate 
going right or up as moving in a positive direction and going down or left  as mov-
ing in a negative direction. In the situation plotted above, the directed distance 
from (–2,–2) to (–2,4) is +6, but the directed distance from (–2,4) to (–2,–2) is –6.

x Representing problems on a coordinate plane. Problems that are suitable for 
graphing in all four quadrants of the coordinate plane are introduced at the 6th-
grade level. Th e purpose of the graph is to display relationships between two vari-
ables described in the problem, as well as to serve as a tool to solve the problem. 
Simple linear relationships are the most likely ones to be explored at this level.

Oft en, tables of values are created to describe specifi c instances of the relation-
ship, those tables of values are then used to plot some points, and a broader rela-
tionship is extrapolated and used. For example, to show the relationship between 
Fahrenheit and Celsius temperatures, students might create a table that pairs diff er-
ent Fahrenheit temperatures with the corresponding Celsius temperatures (rounded 
to the nearest whole degree) and then plot those points as ordered pairs, using the 
two values in each row of the table as the coordinates.

°F °C

0 –18

10 –12

20 –7

30 –1

40 4

50 10

60 16
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Students need to learn that they have choices about which variable to put in 
which column, but that the choice aff ects the look of the graph.

Once the points are plotted, students will likely notice the “linear” pattern. 
Th ey can then use that pattern to extrapolate or interpolate to determine addi-
tional specifi c values of one variable for particular values of the other variable.

10 20 30 40 50–30 –20 –10 0

10

20

30

40

–30

–20

–10

60 70 80
Degrees Fahrenheit

Degrees Celsius

For example, students could use the graph above to estimate the Celsius tempera-
ture for 45°F as about 7°C or the Fahrenheit temperature for 0°C as 32°F.

Other real-world relationships involving negative numbers that students 
might graph involve the results when 10 is subtracted from double a number (i.e., 
y = 2x – 10), the amount of money more or less than $500 a person has in any 
particular month if he or she begins with $1,000 and withdraws $40 a month, or 
the distance between x and –x on a number line. Th e latter case is shown below.

x

Distance between x and –x

5 10 15–15 –10 –5 0

10

20

30

40

Many students are more comfortable using tables of values than graphs, but 
the graphical approach should be encouraged to allow students to become accus-
tomed to it. Later, graphs will be particularly valuable and useful to students.
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Good Questions to Ask
•• Ask students to draw a horizontal line through Quadrants I and II. Th en ask them 

to identify two points, one in Quadrant I and one in Quadrant II, that are exactly 
10 units apart. [Answer (example): (–4,3) and (6,3).]

•• Ask students to draw a vertical line through Quadrants I and IV. Th en ask them to 
identify two points, one in Quadrant I and one in Quadrant IV, that are exactly 
4.5 units apart. [Answer (example): (4,0.5) and (4,–4).]

•• Ask students to consider the relationship between the amount of money more or 
less than $200 they have and the numbers of weeks of withdrawal if they start 
with $300 and withdraw $25 a week. Encourage them to create a table of values 
and plot some of the points to model the relationship. Th en ask them to create 
and solve a problem using their graph. [Answer (example): If students plot the 
points (0,100), (1,75), (2,50), they might graph points on the line y = 100 – 25x 
and fi gure out that after 8 weeks, they would be $100 below the $200 mark.]

•• Ask students to redraw the graph they created for the preceding question by 
reversing the order of columns in their table of values (i.e., reversing the values 
plotted as x and y). Have them decide whether a problem asking about the 
relationship can be solved using either graph and explain why. [Answer: Students 
should note that either graph can be used. For example, to decide how many 
weeks it would take them to get to $300 less than $200, they could start with the 
point (0,100) and move right and down on the fi rst graph to fi nd the value x at 
the point (x,–300) on the graph, or they could start with the point (100,0) and 
move left and up on the second graph to fi nd the value y at the point (–300,y).]

Variables to Describe Generalizations

Expressions and Equations CCSSM 6.EE

Apply and extend previous understandings of arithmetic 
to algebraic expressions.

1. Write and evaluate numerical expressions involving whole-number exponents.

2. Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing 

for numbers. For example, express the calculation “Subtract y from 5” as 5 – y.
c. Evaluate expressions at specifi c values of their variables. Include expressions that 

arise from formulas used in real-world problems. Perform arithmetic operations, 
including those involving whole-number exponents, in the conventional order 
when there are no parentheses to specify a particular order (Order of Operations). 
For example, use the formulas V = s3 and A = 6s2 to fi nd the volume and surface 
area of a cube with sides of length s = 1

2 .
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IMPORTANT UNDERLYING IDEAS

x Translating from natural language into algebraic expressions and equations.  
Since early grades, students have been translating from natural language into alge-
braic equations. Although they typically used symbols, rather than letters, in ear-
lier grades, by 6th grade they have been using letters for some time. What students 
are less likely to be comfortable with is translating natural language into expres-
sions. Many students are comfortable writing 3 + n = 10 to ask what number to 
add to 3 to get to 10; fewer students are comfortable writing 3 + n to describe, 
more generally, the result of adding a number to 3.

Sometimes teachers familiarize students with some “key words” to assist them 
in translating from natural language into algebraic form, for example, suggesting 
that “groups of ” becomes a multiplication sign or “shared” becomes a division 
sign. But that may not be enough and it may mislead. For example, the situation in 
which 30 more than an amount is shared by 4 might be translated as 30 + n ÷ 4 
instead of (30 + n) ÷ 4, or the situation where 36 is arranged into groups of 4 
might, incorrectly, be written as 36 × 4.

A common error that students make is to mix up the algebraic expressions for 
the phrase “subtract a number from 10” and “subtract 10 from a number.” Th is is 
viewed by some as an issue of order of operations, but in fact it is really an issue of 
the non-commutativity of subtraction. In one case, we start with 10 and then sub-
tract the number n (10 – n), and in the other we start with the number n and then 
subtract 10 (n – 10).

x Algebraic conventions. Students must learn certain conventions that impact their 
comfort with writing and interpreting algebraic expressions. One is the fact that 
the multiplication sign is not used when a constant is multiplied by a variable, that 
is, rather than writing 3 × n, one would write 3n. One reason relates to the fact 
that it could be unclear whether the multiplication sign is the variable x or a mul-
tiplication sign. It might be appropriate, when this convention is being discussed, 
to familiarize students with the term “coeffi  cient.”

Students must learn that one might write an expression such as x
4 or x/4 to 

mean x ÷ 4. Th is is unfamiliar to many students who have not yet recognized the 
relationship between fractions and division, that is, that a ÷ b is a

b or a/b, and vice 
versa. Th ey also need to learn the meaning of an exponent, for example, that 35 
means 3 × 3 × 3 × 3 × 3 or b2 means b × b.

Yet another convention students must learn is how parentheses (or brackets) 
are used as a way to turn multiple terms into what is eff ectively a single term. For 
example, the expression 4(n + 3) is telling the reader to treat the n + 3 as a single 
entity. In fact, the order of operations rule that says that “one does what is in 
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parentheses fi rst” is based on the fact that the terms inside parentheses are being 
treated as a single entity. Students need to learn this. Th ey also need to learn about 
“nesting” parentheses, that is, that one works from the inner parentheses outward. 
Applying this convention is the only way that they would know that they need to 
write “Start with a number. Add 3. Double that. Th en subtract 5, and fi nally dou-
ble the result.” as 2[2(n + 3) – 5].

Another situation in which the importance of order of operations is apparent 
is in interpreting or evaluating an expression such as 3x2 – 4. Th is expression 
instructs the reader to square a number, then multiply by 3, and then subtract 4. 
Th is is quite diff erent from instructions to fi rst triple a number, then square it, and 
then subtract 4, which would be written (3x)2 – 4.

x Translating from algebraic expressions into natural language. Just as it is impor-
tant for students to go from natural language to algebra, it is equally important 
that students be able to interpret algebraic expressions in meaningful natural lan-
guage. For example, consider the expression 3x + 8. One way to view the expres-
sion is as shorthand for a set of instructions—“multiply a number by 3 and then 
add 8.” Th e type of number x that is used is irrelevant. If, however, only integer 
substitutions are used, the expression could also be translated as “a number that is 
8 more than a multiple of 3.” Th is translation feels less like a set of instructions and 
more like a description of a type of number.  Ideally, students should develop the 
ability to view the expression in either way, as appropriate.

Another example of an expression that can be interpreted in two ways is 
30 – 2j, which could be a set of instructions—“Choose a number, double it, and 
subtract it from 30”—or, if j is an integer, a description—“Numbers that are even,” 
since every even number can be written in the form 30 – 2j, for example, 
2 = 30 – 2 × 14 or 20 = 30 – 2 × 5 or 40 = 30 – 2 × (–5). Notice how reading the 
expression 30 – 2j as a set of instructions involves thinking holistically, not neces-
sarily from left  to right. A student could say “Start at 30 and then subtract double 
some amount,” but somehow it feels more natural to start the description of the 
procedure with the amount j, which occurs at the end of the set of instructions.

It is useful for students to learn the word “term” to describe the separate com-
ponents of an algebraic expression that are added together to make the expression. 
For example, 3j – 2 has two terms, the 3j term and the –2 term, since this is really 
3j added to –2. Notice that 3j is considered one term even though the 3 and j are 
combined through multiplication. Th is is disconcerting for some students; it seems 
odd to them that j + 3 is two terms, but 3j is only one.

x Valuing the efficiency of variables. Students should engage with the notion that 
algebraic symbolism is usually more effi  cient (in terms of length of expression 
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required) than natural language. Writing 2n – 4 takes a lot less space than writing 
“Double a number and then subtract 4.” Th is is one of the attractions of using 
variables.

But what students may not realize, but should be led to see, is that describing 
situations algebraically can actually make it easier to uncover new facts or relation-
ships, as was discussed in the Introduction. For example, knowing that 3c + 4 = 6 
can lead students to other relationships through adding, subtracting, multiplying, 
or dividing the terms on both sides of the equation, for example, they can discover 
that 3c = 2 or that 6c + 8 = 12.

x Substituting to evaluate expressions. Students are sometimes given or sometimes 
generate algebraic expressions that must be evaluated for specifi c values of the 
variable. For example, students might be required to evaluate 40 – j2 for various 
values of j.

It is essential that students are confi dent with the order of operations conven-
tions so that they will correctly evaluate expressions. For example, when j = 10, the 
expression 40 – j2 has the value of 40 – 100, not (40 – 10)2.

Substitution is an essential part of creating tables of values to uncover pat-
terns. For example, by substituting diff erent values for j, students might better 
understand why j2 describes square numbers if j is an integer (substitution yields 
0, 1, 4, 9, 16, . . . when using whole numbers) or that 2j + 1 is a way to describe all 
odd integers if j is an integer (substitution yields 1, 3, 5, 7, .  .  . if positive whole 
numbers are used for j or –1, –3, –5, –7, . . . if negative integers are used for j).

Students should always pay attention to what values are legitimate to substi-
tute. For example, does it make sense for the variable to be a fraction or not, to be 
a negative number or not, etc.?

x Algebraic expressions as generalizations. Although many look at an expression 
such as 2n + 3 as just something one substitutes numbers into, students should 
also look at an expression as a generalization, or statement of a general rule. In this 
particular case, no matter what number one begins with, the rule indicates that 
one should double that number and add 3. It is a way to describe an infi nite set of 
numbers, all in one fell swoop. Similarly, the expression 3x2 – 4 describes an infi -
nite set of numbers; no matter what number one has, one should square it, multi-
ply it by 3, and then subtract 4.

Recognizing an algebraic expression as a generalization allows students to 
think of classes of numbers. For example, if n is an integer, writing the expression 
3n – 5 is another way of describing all numbers that happen to be 5 less than a 
multiple of 3, which also happens to be all numbers that are 2 less than a multiple 
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of 3 (e.g., –17, –14, –11, –8, –5, –2, 1, 4, 7, . . .). Some algebraic expressions describe 
classes of numbers that are more familiar to students using other terminology, for 
example, numbers of the form 3n, if n is an integer, are also called “multiples of 3.” 
Numbers of the form 2n + 1, if n is an integer, are also called “odd numbers.”

x Viewing an algebraic expression as a pattern rule. It might be useful for students—
particularly to connect with later learning about sequences and series—to recognize 
that an algebraic expression can be viewed as the rule for a pattern when positive 
integers are substituted for the variable.

For example, consider the pattern 2, 4, 6, 8, 10, . . . , which increases by 2 each 
time. Any term in the pattern can be calculating by multiplying the term position 
by 2. For example, the 15th number in the pattern is 2 × 15 (or 30). Th erefore, the 
general rule for this pattern is that the nth term is 2n. Looking at this in the oppo-
site way, the algebraic expression 2n can be associated with the pattern 2, 4, 6, 8, 
10, . . . because it is that pattern’s rule.

Th e expression 4j – 2 can be associated with the pattern 2, 6, 10, 14, 18, . . . , 
the expression j2 + 8 with the pattern 9, 12, 17, 24, . . . , and the expression 5j with 
the pattern 5, 10, 15, 20, . . . . Some students might notice that the 4j – 2 pattern 
increases by 4 each time, the 5j pattern increases by 5 each time, and the pattern 
associated with 6k + 3 (9, 15, 21, 27, .  .  .) increases by 6 each time; they might 
notice that the coeffi  cient of the variable tells how the pattern increases when there 
is no power associated with the variable.

Good Questions to Ask
•• Ask students: How are the algebraic expressions you would write for each pair 

alike and how are they diff erent?

◆◆ Subtract 30 from double a number, as compared to double a number and then 
subtract 30.

◆◆ Multiply a number by 4 and add 3, as compared to add 3 to a number and then 
multiply by 4.

◆◆ Add 5 to triple a number, as compared to add 3 to 5 times a number.

[Answer (example): Th e fi rst two expressions are exactly the same. Both times 
one would write 2j – 30. Th e next two translate to 4n + 3 and 4(n + 3). Th ey both 
involve multiplication and addition and 4 and 3, but the second expression is 
always 9 greater. For example, 4(2 + 3) = 20, but 4 × 2 + 3 is only 11. Th e last two 
expressions are 3j + 5, as compared to 5j + 3, so both involve multiplying and 
adding, but in one case the multiplication is by 3 and 5 is then added, and in the 
other case the multiplication is by 5 and 3 is added.]
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•• Tell students to imagine they had translated an algebraic expression into everyday 
words and some of the words they used were “triple,” “less,” and “fi ve.” Ask what 
the expression might have been. Encourage them to think of a few possibilities. 
[Answer (example): 3n – 5, 20 – 5(3n). Th e fi rst one reads “fi ve less than triple a 
number.” Th e second one reads “fi ve times triple a number less than 20.”]

•• Ask students whether they think it is a good idea to write 4k + 1 = 17 instead of 
“If you add 1 to 4 times a number, you get 17.” [Answer (example):

◆◆ I think it’s better to use algebra because it takes less space.
◆◆ I think it’s better to use words because then I know exactly what it means.
◆◆ I think the equation is good because then you could solve it by doing the same 

thing to both sides.]

•• Have students write an expression where each of these results would occur:

◆◆ If you evaluate it when n = 5, you would get 30.
◆◆ If you evaluate it when n = 5, you would get –3.
◆◆ If you evaluate it when n = 10, you get less than if you evaluate it when n = 5.
◆◆ If you evaluate it when n = 10, you get twice as much as when n = 5.

[Answer (example):

◆◆ 6n OR 4n + 10
◆◆ n – 8 OR 3n – 18
◆◆ 20 – n OR 2

n
◆◆ 3n OR 8n.]

•• Ask students to write a pattern that each algebraic expression describes: 4n – 2, 
6n + 1, 3n2. [Answer: 2, 6, 10, 14, 18, . . . ; 7, 13, 19, 25, 31, . . . ; 3, 12, 27, 48, . . . .]

•• Ask students how the possible values of 5n – 2 would be diff erent if n could only 
be a positive whole number than if n could be any fraction? [Answer (example): If 
n is a positive whole number, the only possible values are numbers that are 3 more 
than a multiple of 5, such as 3 or 8 or 13, so they are 5 apart. If n can be a fraction, 
one could get values such as 1 or 10 by just using the right fractions.]

•• Ask students when they could interpret the expression 1 – 2n as the set of 
negative odd integers. [Answer: When only positive integers are substituted for n.]

•• Ask students how they might use an algebraic expression to describe all multiples 
of 5. [Answer (example): 5n if n is an integer.]



Grade 6 79

Equivalent Expressions

Expressions and Equations CCSSM 6.EE

Apply and extend previous understandings of arithmetic 
to algebraic expressions.

3. Apply the properties of operations to generate equivalent expressions. For example, 
apply the distributive property to the expression 3(2 + x) to produce the equivalent 
expression 6 + 3x; apply the distributive property to the expression 24x + 18y to 
produce the equivalent expression 6(4x + 3y); apply properties of operations to 
y + y + y to produce the equivalent expression 3y.

4. Identify when two expressions are equivalent (i.e., when the two expressions name the 
same number regardless of which value is substituted into them). For example, the 
expressions y + y + y and 3y are equivalent because they name the same number 
regardless of which number y stands for.

IMPORTANT UNDERLYING IDEAS

x Using properties of operations to generate equivalent expressions. Knowing the 
various properties of operations allows students to generate equivalent expressions. 
For example, because of the commutative property of addition, the expression 
2j + 5 is equivalent to the expression 5 + 2j. Because of the associative property of 
multiplication, the expression 5(3c) is equivalent to the expression 15c (which is 
(5 × 3)c). Because of the multiplication by one property, the expression 1 × (4x) is 
equivalent to the expression 4x. Because of the distributive property of multiplica-
tion over subtraction, the expression 5(x – 2) is equivalent to 5x – 10. Sometimes 
the equivalent expressions involve fewer terms and sometimes not, as can be seen 
from these examples.

Oft en a number of properties are used to generate equivalent expressions. 
It can seem laborious for the student if each property must be cited each time it 
is used, but initially this process might be useful. For example, the reason that 
(j + 4) + (2j + 5) = 3j + 9 involves using a combination of the associative, distrib-
utive, and commutative properties:

•• (j + 4) + (2j + 5) = (j + 4) + (5 + 2j), using the commutative property,
•• (j + 4) + (5 + 2j) = j + (4 + (5 + 2j)), using the associative property,
•• j + (4 + (5 + 2j)) = j + ((4 + 5) + 2j), which is j + (9 + 2j), using the 

associative property,
•• j + (9 + 2j) = j + (2j + 9), using the commutative property,
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•• j + (2j + 9) = (j + 2j) + 9, using the associative property,
•• (j + 2j) + 9 = (1j + 2j) + 9 = (1 + 2)j + 9 = 3j + 9, using the distributive 

property.

If two expressions are equivalent, when one is evaluated for a particular value 
of a variable, the result is exactly the same as when the other is evaluated for that 
same value for the variable, no matter what value is used. For example, 3j – 2 is 
equivalent to –2 + 3j, so if j = 0, both are worth –2; if j = 2, both are worth 4; and 
if j = 10, both are worth 28.

x Using models. At some point, students might use concrete models to help them 
create equivalent expressions. For example, if one has 4 more than a number and 
5 more than twice that number, one has a total of 9 more than the number added 
to twice that number, or 9 more than 3 of that number. So (j + 4) + (2j + 5) = 3j + 9. 
Th is could be modeled as shown below:

j

jj

At this level, when student work with integers is limited, models might be best 
for only positive values of variables and constants.

x Simplifying expressions. When using properties to determine equivalent expres-
sions involves reducing the number of terms, the term “simplifying” might be 
applied. For example, since j + j is actually 1j + 1j = (1 + 1)j, or 2j, one might say 
that j + j was simplifi ed to 2j; what was two terms became only one term.

Frequently students simplify expressions to have a clearer understanding of 
what those expressions really mean. For example, it is hard to recognize that 
2m – 6 + 3(2m +2) is actually just 8 times a number (8m) until the expression has 
been simplifi ed. It would take a lot more work to evaluate the expression in its fi rst 
form than in the form 8m.

Sometimes students simplify expressions to make it easier to solve equations. 
Using the equivalent expressions in the previous paragraph, one sees it would be 
much quicker to solve 8m = 64 than to solve 2m – 6 + 3(2m + 2) = 64.

Students should be led to see why they are simplifying and not just be told to 
simplify.

Using models can oft en help students to simplify, as shown in the preceding 
section, where (j + 4) + (2j + 5) was simplifi ed to 3j + 9.
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x Testing for equivalence. It is essential that students realize that two expressions 
are equivalent only if they lead to the same value when they are evaluated, no mat-
ter what value is used. For example, 3m + 2 and 2m + 4 have the same value if m 
happens to be 2, but since they do not have the same value in lots of other situa-
tions (e.g., if m = 0 or m = 1 or m = 1

2 , etc.), they cannot be equivalent.
Because all substitutions for a variable must result in equal values if expres-

sions are to be judged equivalent, it is impossible to test whether two expressions 
are equivalent only by substitution. Reasoning about properties of operations must 
be used to test for equivalence. So, for example, 3m – 2 is equivalent to 2m + (m – 2) 
not because they have the same value when m = 0 or 1 or 2 but because the asso-
ciative property for addition says that 2m + (m – 2) = (2m + m) – 2, which, using 
the distributive property, is (2 +1)m – 2, or 3m – 2. Th is is an example of the 
mathematical practice standard of reasoning abstractly.

Good Questions to Ask

•• Ask students to generate a number of equivalent expressions for the given one, 
indicating what properties of operations they are using to generate those 
expressions.

3m + 8
5 – 4m
6m

[Answer (example):

◆◆ For the fi rst expression, I could show that it is equivalent to (2m + 3) + (m + 5). 
Th e associative property could make this 2m + (3 + (m + 5)), and then the 
commutative property could make it 2m + ((m + 5) + 3)). Using the associative 
property again makes it 2m + (m + 8) and then (2m + m) + 8, and then the 
distributive property makes it (2 + 1)m + 8, which is 3m + 8.

◆◆ For the second expression, 3 + (2 – 4m) is equivalent, using the associative 
property of addition, by thinking of 5 as 3 + 2. 

◆◆ For the third expression, 5m + m is equivalent, using the distributive property.]

•• Ask students to use algebra models to simplify expressions such as (3 + 2j) + (5 + j). 
[Answer (example): I see 3j + 8. Th at can be diagrammed as shown below.]

j

jj
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•• Provide examples of expressions that can be simplifi ed to exactly one term, 
without telling students that this is the case, then ask students what the 
simplifi cations have in common. For example, provide expressions such as 
(c – 4) + (3c + 4) or 2m – 3 + 5m + 3. [Answer: Th e two expressions simplify 
to 4c and 7m. Both of these expressions have only one term.]

•• Ask students to choose two equivalent expressions and show that their values are 
the same for at least fi ve diff erent values of the variable. [Answer (example):  
3k + 2k and 5k. When k = 0, I get 3 × 0 + 2 × 0 = 0 + 0 = 0 and 5 × 0 = 0; when 
k = 1, I get 3 × 1 + 2 × 1 = 3 + 2 = 5 and 5 × 1 = 5, etc.]

•• Ask students to create two expressions that are not equivalent but are equal for at 
least some values of a variable. [Answer (example): 3k + 2k and 4k are equal when 
k = 0 but not when k = 1.]

•• Ask students how they might prove that the expressions 2k + 3 and 3k + 4 are not 
equivalent. [Answer (examples):

◆◆ I would substitute for k = 0 and see that they are not equal, so they are not 
equivalent.

◆◆ I would model them and see that one model has 2 variable tiles and 3 number 
ones, but the other has 3 variable tiles, so they are not the same.

◆◆ I would use properties to show that 3k + 4 is actually 2k + 3 added to k + 1. 2k + 3 
cannot be the same as (2k + 3) and some more.]

•• Request that students use the picture below to explain how each expression 
equivalently describes the area of the shaded shape.

3(n + 6) + 3n + 3(n + 6) + 3n
6(n + 6) + 6n
(n + 6)(n + 6) – n2

4{3[(n+6)+n]
2 }

3

n

[Answer (example):

◆◆ Th e fi rst expression divides the shaded area into 4 rectangles—a rectangle across 
the top, which is 3 by (n + 6); one at the middle right, which is 3 × n; one across 
the bottom, which is 3 by (n + 6); and one at the middle left, which is 3 × n.
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◆◆ Th e second expression pretends that the top and bottom rectangles are put 
together into a 6 by (n + 6) rectangle and the left and right ones are put 
together into a 6 by n rectangle.

◆◆ Th e third expression takes the length × width of the big square (i.e., its area) and 
subtracts the area of the inner white square.

◆◆ Th e last expression divides the gray area into 4 trapezoids with a short base from 
a side of the white square and a long base from the side of the gray square and a 
height of 3.]

Equations and Inequalities Involving 
Rational Numbers

Expressions and Equations CCSSM 6.EE

Reason about and solve one-variable equations and inequalities.

5. Understand solving an equation or inequality as a process of answering a question: 
which values from a specifi ed set, if any, make the equation or inequality true? Use 
substitution to determine whether a given number in a specifi ed set makes an 
equation or inequality true.

6. Use variables to represent numbers and write expressions when solving a real-world 
or mathematical problem; understand that a variable can represent an unknown 
number, or, depending on the purpose at hand, any number in a specifi ed set.

7. Solve real-world and mathematical problems by writing and solving equations of the 
form x + p = q and px = q for cases in which p, q, and x are all nonnegative rational 
numbers.

8. Write an inequality of the form x > c or x < c to represent a constraint or condition in 
a real-world or mathematical problem. Recognize that inequalities of the form x > c or 
x < c have infi nitely many solutions; represent solutions of such inequalities on 
number line diagrams.

IMPORTANT UNDERLYING IDEAS

x Testing the potential solution of an equality or inequality. Students need to learn 
that an equation or inequality is solved by a particular value when that particular 
value makes the equation or inequality true. For example, 4 is not a solution to 
3j = 8 since it is not true that 3 × 4 = 8. But 83 is a solution, because 3 × 83 = 8. Simi-
larly, 5 is not a solution of t > 10 since 5 is not greater than 10. However, 12 is a 
solution (and only one of many) of t > 10 since 12 is more than 10.
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x Representing real-life situations with simple equations. At the 6th-grade level, 
students extend their previous work with modeling problems involving all four 
whole number operations with equations and solving those equations to work with 
modeling problems involving operations with fractions.

Such problems might include, for example:
•• You exercise 2

3 of an hour a day. How many days will it be before you 
have exercised 21

2 hours? Th is problem could be modeled by the equation 
2
3 d = 52 .

•• You had some lemonade. You added 22
3 cups of lemonade to it. Now you 

have 31
3 cups of lemonade. How much did you start with? Th is problem 

could be modeled by the equation 22
3 + l = 31

3 .
•• You had 31

2 pounds of meat. If it was packaged into packages of 3
4 pound, 

how many packages did you get? Th is problem could be modeled by the 
equation 3

4 x = 31
2 .

x Solving simple equations. Students should recognize that the solution to ax = b, 
when a and b are fractions, is the fraction b ÷ a and that the solution to x + a = b 
is the fraction b – a. In order to solve these equations, skills with dividing fractions 
and subtracting fractions with unlike denominators must be in place.

Analogies to or relationships to equations involving whole numbers can help 
students solve equations with fractions. For example, confronted with the equa-
tion 2

3 k = 4, it might be useful for students to think about how they would solve 
2k = 4 and simply use an analogous process—division. Or they might realize that 
if 23 k = 4, then 3 × 23 k would be 3 × 4. Since 3 × 23 = 2, the equation is really equiva-
lent to the equation 2k = 12.

Some students might benefi t from using diagrams. Th e diagram below shows 
that 2

3 k = 4, so it is fairly clear that another 1
3 k (to make a whole k) would be 

another 2; the total of 2
3 k + 1

3 k, which is k, must be 6.

k

1
3 k 1

3 k 1
3 k

4

x Distinguishing between equations and inequalities. Students are more familiar 
with using and solving equations than with using and solving inequalities. It takes 
some students a bit of time to recognize why inequalities always have an infi nite 
number of solutions, even though equations do not. For example, if a problem 
suggests that the temperature on a particular day was 50°F and the temperature 
another day was less, the equation t < 50 would describe all the possible tempera-
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tures for the other day. Th ere is an infi nite number of solutions, since there is an 
infi nite number of numbers less than 50. Th ese could be shown on a number line 
by darkening the entire number line less than 50. Oft en an open dot is marked at 
50 to show that it is not included.

50

If the problem had stated that the temperature was not more than 50°F, then 50 
could also be included and the dot would be fi lled.

50

Sometimes inequalities have a fi nite number of solutions, rather than an infi -
nite number, if the solutions have to be, for example, only positive whole numbers 
or only positive decimal tenths or hundredths within a certain range. An example 
like this might be something like the following: Jason had $100. His brother had 
less money. How much might his brother have had? Th e inequality b < 100 can 
describe possible situations for the brother’s amount of money, and there are many 
solutions (e.g., $0, $0.01, $0.02, $0.03, $0.04, . . . , $99, $99.01, $99.02, $99.03, . . . , 
$99.98, $99.99) but not an infi nite number.

Good Questions to Ask

•• Ask students: Janelle told her friend that 4 is a solution of the equation 3
2 y = 8

3 . 
Do you agree or disagree? Explain your reasons. Th is could be a good example 
of the mathematical practice standard of constructing viable arguments and 
critiquing the reasoning of others. [Answer: It is not, since 3

2 × 4 = 1
2
2 , which is 

6 and not 8
3 .]

•• Ask students: Are there many solutions to 3
4 j = 5

8 ? Explain why or why not. [Answer 
(example): No, there is only one number that you can multiply by 3

4 to get 5
8 . Th at 

number is 5
8 ÷ 3

4 , which is 5
6 .]

•• Ask students to create an equation of the form j + a = b, where a and b are fractions, 
that has a greater solution than the equation j + 2

3 = 9
2 . [Answer (example):  

j + 1
3 = 9

2 OR j + 2
3 = 1

2
1 .]

•• Ask students to create a story that would match each equation. Th en they should 
solve the problem.

5j = 1
3
0

2
5 k = 4

5
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[Answer (examples): For the fi rst equation, 1
3
0 cups of juice were divided up equally 

into 5 glasses. How much juice was in each glass? For the second equation, Jane and 
her best friend live 2

5 of a mile apart. Jane and her grandmother live 4
5 of a mile 

apart. How many times as far away does Jane’s grandmother live as her best friend?]
•• Ask: How are the solutions alike and diff erent for the each of the members of the 

following pairs of inequalities?

For x < 10 and x ≤ 10?
For x < 10 and x < 5?
For x < 10 and x > 20?

[Answer (example): Th ere is only one extra solution for x ≤ 10, and it is the 
number 10. All of the solutions to x < 5 are automatically solutions to x < 10, but 
there are a lot more solutions for x < 10—all the numbers between 5 and 10, 
including 5. For the third pair, the solutions are totally diff erent; nothing that is 
less than 10 is also more than 20.]

•• Ask students: Which problem has more solutions? Why?

◆◆ A pitcher held 250 mL. Another pitcher held less. How much might the second 
pitcher hold?

◆◆ A school had 250 students. Another school had fewer students. How many 
students might the second school have?

[Answer: Th e fi rst problem has more solutions because a solution could be any 
fraction of a milliliter below 250. For the second problem there are only 250 
answers—0, 1, 2, 3, . . . , 249. A unit of measure can be divided; a student cannot.]

Representing Linear Relationships

Expressions and Equations CCSSM 6.EE

Represent and analyze quantitative relationships between 
dependent and independent variables.

9. Use variables to represent two quantities in a real-world problem that change in 
relationship to one another; write an equation to express one quantity, thought of as 
the dependent variable, in terms of the other quantity, thought of as the independent 
variable. Analyze the relationship between the dependent and independent variables 
using graphs and tables, and relate these to the equation. For example, in a problem 
involving motion at constant speed, list and graph ordered pairs of distances and 
times, and write the equation d = 65t to represent the relationship between distance 
and time.
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IMPORTANT UNDERLYING IDEAS

x Distinguishing between dependent and independent variables. Much of the math 
students will learn in higher grades relates to functions in which one variable is 
related to another. Relationships between variables are useful because they allow 
one to fi gure out new information from given information. Initially, linear rela-
tionships are highlighted.

Normally, one thinks of one of the variables as aff ecting the other, although it 
can be a matter of perspective. For example, considering the relationship d = 50t 
to describe how many miles (d) one might go in t hours if traveling at 50 mph, we 
usually think of the amount of time as what we control, the independent variable; 
the independent variable aff ects the value of the variable based on it, the depen-
dent variable.

In a scientifi c experiment it is oft en clearer which variable is being controlled 
and which, therefore, is the independent variable. When looking at the equation 
d = 50t, knowing either variable’s value gives information about the other variable’s 
value. One is more likely to think of distance depending on time rather than time 
depending on distance, but if one thinks about varying distance and determining 
the required time to travel that distance, it is distance that is treated as the inde-
pendent variable.

x Expressing a linear relationship by using an equation. At the 6th-grade level, 
equations relating variables are fairly simple, for example, a = kb or a + k = b (in 
both cases, k is a constant). In the fi rst case, one variable is an exact multiple of 
another; another way to express this is to say that the two variables are directly pro-
portional. For example, if 2

3 of a recipe were being made, the amount of ingredient 
in the reduced recipe is exactly 23 of the amount in the original recipe; the equation 
might be n = 2

3 o. In the second case, a constant is added to one variable to get the 
other. For example, if a bank increased all of its fees by $5, the new fee for any 
transaction would be $5 more than the old fee; the equation would be n = 5 + o.

Each of these equations could be described a diff erent way as well. For exam-
ple, n = 23 o could be described as o = 32 n. Th e equation n = 5 + o could be described 
as o = n – 5.

Students need to attend to which variable is multiplied or added to when cre-
ating the equation to describe a story. For example, there is a well-known miscon-
ception, discussed in the Introduction, where students express the situation “Th ere 
is a professor for every 20 students.” with the equation p = 20s instead of s = 20p. 
To see that fi rst equation is incorrect, some students might need to substitute val-
ues, for example if there were 40 students, most students would realize there 
should be two professors. But if we substitute s = 40 into p = 20s, the number of 
professors would be 800.
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x Expressing a linear relationship by using tables and graphs. Oft en students col-
lect data about two variables, record the data in tables, and then use the tables to 
help them graph the data to see the relationship visually. For example, suppose the 
data below describe how the variable h relates to the variable m.

h m

1 60

2 120

3 180

4 240

Th e student might draw the graph below and notice that the relationship, should 
the table of values continue in the same way, forms a line.

1 2 3 40

60

120

180

240

h

m

Good Questions to Ask

•• Have students describe a situation in which one variable depends on another one. 
[Answer (examples): How much you pay for movie tickets depends on how many 
tickets you buy. How many days have passed depends on how many weeks have 
passed.]

•• Remind students that the number of seconds that have passed is always 60 times 
the number of minutes. Th en ask them to describe the relationship between the 
two variables—seconds and minutes—in two diff erent ways. [Answer (examples):  
s = 60m or m = 6

s
0 or the table below.]

s m

60 1

120 2

180 3

240 4
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•• Request that students create a table of values that would describe the relationship 
between h and c if h = 25c. Th en they should graph the ordered pairs on a 
coordinate grid and tell what they notice. [Answer (example): I noticed that 
the pairs formed a line.]

c h

1 25

2 50

3 75

4 100
 1 2 3 40

50

100

150

c

h

•• Ask students what equation they would write to describe each situation:

◆◆ Th e number of days is 7 times the number of weeks.
◆◆ Th e number of heartbeats is 72 times per minute.
◆◆ Th e download speed is 1.5 Mb per second.

[Answer (example): For the fi rst situation, d = 7w. In the second case, h = 72m. 
For the third situation, a = 1.5 t.]

Solving Measurement Problems with Equations

Geometry CCSSM 6.G

Solve real-world and mathematical problems involving area, 
surface area, and volume.

2. Find the volume of a right rectangular prism with fractional edge lengths by packing 
it with unit cubes of the appropriate unit fraction edge lengths, and show that the 
volume is the same as would be found by multiplying the edge lengths of the prism. 
Apply the formulas V = lwh and V = bh to fi nd volumes of right rectangular prisms 
with fractional edge lengths in the context of solving real-world and mathematical 
problems.

IMPORTANT UNDERLYING IDEAS

x Formulas for volumes of rectangular prisms. Essentially, measurement formulas 
are equations that relate diff erent variables. We oft en substitute known values of 
certain variables to get unknown values of another variable.
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For example, the formula V = lwh is an equation that is true for any values of 
V, l, w, and h for a rectangular prism. If we know three of the values, we can use 
the equation to help us determine the fourth. If we know that a rectangular prism 
has a volume of 301

2 cubic inches, a width of 21
2 inches, and a height of 31

2 inches, 
we can deduce that 301

2 = l × 83
4 , so the length is 31

35
7 inches.

Students might solve multiplication or division questions involving volumes of 
rectangular prisms. Th ey are likely to use multiplication when they know the linear 
dimensions or the area of the base and the height and want to fi nd the volume. 
Th ey are likely to use division when they know the volume and some of the linear 
or area of base dimensions and want the others. In 6th grade, the focus is on prisms 
with linear and area dimensions that are fractions rather than whole numbers.

Using measurement formulas is a very useful way to practice algebraic skills. It 
helps students not only to calculate measurements but also to see when equations 
are used, practice how they are solved, and recognize the diff erence between equa-
tions that state a relationship between variables and those in which the focus is 
solving for a missing value.

Good Questions to Ask

•• Ask students for an equation to model this measurement problem: A rectangular 
prism has a volume of 203

4 in3. If the length and width are doubled, but the height 
remains the same, what is the volume of the new prism? [Answer (example):  
V (of the new large prism) = 2 × l × 2 × w × h. Since V (of the original small prism) = 
l × w × h, the large prism’s volume is really V = 2 × 2 × 203

4 .]
•• Tell students you used the equation d = 241

2 ÷ 5 to model a problem about the 
volume of a rectangular prism. Ask what the problem might have been. [Answer 
(example): A rectangular prism has a volume of 241

2 cubic units. If the height is 
5 units, what is the area of the base?]

•• Ask students to create a measurement problem involving the volume of a 
rectangular prism. Th en ask them to create and solve an equation that would 
model the problem. [Answer (example): I built a rectangular prism whose height 
was half its width. If the length of the base was 41

2 inches and the volume was 100 
cubic inches, what were the width and the height? Equation: 100 = 41

2 × w × 1
2 × w 

or 100 = 21
4 × w × w. Th e width is 62

3 inches and the height is 31
3 inches.]

•• Ask students for the equation they could solve to determine the width of a 
rectangular prism that is very tall with a volume of 241

2 cubic units and explain the 
equation. [Answer (example): 241

2 = 20 × l × w; I decided to use a height of 20 
and a length of 2 inches, so the width was 8

49
0 of an inch.]

•• Ask students to explain why the formula for the volume of a rectangular prism 
involves three variables (length, width, and height) but the formula for the volume 
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of a cube can be stated using only one variable (side length). [Answer (example):  
When one has a prism that is not a cube, the length, width, and height could be 
diff erent, so the volume formula has to consider all three of those values. But since 
a cube has a length and a width and a height that all have to be the same, once 
you know one of the values, you automatically know the others, so you don’t need 
all three listed separately in the formula.]

Summary
By the end of Grade 6, students are able to translate fairly eff ectively between natu-
ral language descriptions of generalizations and algebraic expressions, and they 
can also view algebraic expressions as generalizations that describe sets of rules or 
sets of numbers. Students realize that algebraic expressions that appear diff erent 
can be equivalent, describing the same generalization, and they realize that some-
times one form can be much simpler than another.

Students at this level can represent certain linear relationships with tables of 
values, graphs, and equations; can describe horizontal and vertical distances on a 
coordinate plane; and can solve simple linear equations with rational coeffi  cients 
and/or constants. Th ey can also use equations to solve simple measurement for-
mulas involving volumes of rectangular prisms.
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GRADE 77
Recognizing Proportionality

Ratios and Proportional Relationships CCSSM 7.RP

Analyze proportional relationships and use them to solve 
real-world and mathematical problems.

2. Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing 

for equivalent ratios in a table or graphing on a coordinate plane and observing 
whether the graph is a straight line through the origin.

b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, 
diagrams, and verbal descriptions of proportional relationships.

c. Represent proportional relationships by equations. For example, if total cost t 
is proportional to the number n of items purchased at a constant price p, the 
relationship between the total cost and the number of items can be expressed 
as t = pn.

d. Explain what a point (x,y) on the graph of a proportional relationship means in 
terms of the situation, with special attention to the points (0,0) and (1,r) where 
r is the unit rate.

IMPORTANT UNDERLYING IDEAS

x Recognizing proportionality using tables of values. Students in earlier grades 
have met situations where unit rates are involved, for example, the number of min-
utes in a given number of hours (the unit rate is 1 hour = 60 minutes), the number 
of inches for a given number of centimeters (the unit rate is 1 inch = 2.54 cm), or 
the cost of diff erent numbers of boxes of a particular cereal (the unit rate is cost of 
one box).

Th ey have had experience creating tables of values describing the relationship 
between the two variables involved. For example, if a box of cereal costs $2.97, 
they might have created the table at the top of the next page to show the cost for 
diff erent numbers of boxes of that cereal.
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Number of boxes Cost

0 $0

1 $2.97

2 $5.94

3 $8.91

4 $11.88

5 $14.85

When the table is created so that the value of the independent variable (in this 
case, the number of boxes) increases by 1, the dependent variable (in this case, the 
cost) increases by the unit rate. Th at makes sense because one more item results in 
one more unit. In 7th grade, the term “proportional” is introduced, and students 
learn that variables are proportional when a unit rate situation occurs. Students 
should notice that when the independent variable is 0, so is the dependent vari-
able. If there are no boxes, there is no cost; if there are no hours, there are no min-
utes; if there are no centimeters, there are no inches.

Another way for students to test whether two variables are proportional is 
more indirect, but it is useful. If doubling the independent variable always doubles 
the dependent variable, the variables are also proportional.

x Recognizing proportionality using graphs. If students use a table of values as 
described above and graph each (independent variable, dependent variable) com-
bination as an ordered pair, they will observe that the graph is always a straight 
line that goes through the point (0,0). Conversely, when they see such a graph, 
they should be able to create the related table of values.

If they observe a linear graph that does not go through (0,0), the two variables 
represented by x and y are not proportional. For example, consider the graph com-
paring Celsius temperatures to Fahrenheit temperatures (where 0°C matches 32°F).

0.8 1.6 2.4 3.2–0.8 0

10

20

30

40

50

60

°C

°F
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Even though temperatures on the two scales are not proportional, it is true that 
the Celsius temperature is proportional to a variable that represents 32 less than 
the Fahrenheit temperature.

Th e table below shows that °F is not proportional to °C, but °F – 32 is propor-
tional to °C, since the values of that expression go up by a unit rate, specifi cally 
1.8, and if the Celsius temperature is 0°, so is the Fahrenheit – 32 temperature.

Celsius Fahrenheit Fahrenheit – 32

0 32 0

1 33.8 1.8

2 35.6 3.6

3 37.4 5.4

4 39.2 7.2

Because a unit rate is always involved in proportional situations, students 
might observe that the y-value associated with the x-value of 1 is that unit rate. 
Th us the graph always goes through (1,r), where r is the unit rate. For example, if 
one graphs the number of seconds in diff erent numbers of hours, the graph goes 
through (0,0), since 0 hours is also 0 seconds, but the graph also goes through 
(1,3600) since there are 3600 seconds in 1 hour, that is, the unit rate. Students 
should notice that the increase in the y-coordinate for each increase of 1 in the 
x-coordinate anywhere in the graph is the unit rate.

x Recognizing proportionality using equations. Students, upon looking at a table of 
values showing a proportional relationship, should notice that the y-coordinate is 
always a multiple of the x-coordinate. Th e multiplier is the unit rate. For example, 
if one relates the number of people to the number of eyes those people have, the 
number of eyes is always double the number of people. Th is can be described in an 
equation as e = 2p. In the case of the cost of diff erent numbers of boxes of cereal 
described earlier, the cost is 2.97 multiplied by the number of boxes. Th e equation 
would be c = 2.97n.

Students should notice that all of these equations are of the form y = rx, where 
x is the value of the independent variable, r is the unit rate, and y is the value of the 
associated dependent variable.

Good Questions to Ask

•• Ask students why, if y = 3x, the following are true:

◆◆ y is proportional to x.
◆◆ If x is doubled, y is doubled.
◆◆ If x is tripled, y is tripled.
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[Answer (example): y is proportional to x because if you create a table of values, 0 
matches 0 and the increase when x increases by 1 is always 3. If y = 3(2x), then y = 
6x, which is double 3x. If y = 3(3x), then y = 9x, which is triple 3x.]

•• Ask students to indicate what variables x and y might represent if y = 4x. Th en 
have them describe why it makes sense that those variables are proportional. 
[Answer (example): x could be the side length of a square and y could be the 
perimeter. It makes sense that when the side length increases by 1, the perimeter 
increases by exactly 4 every time.]

•• Ask students why the variables represented by x and y in the graph shown below 
cannot be proportional. Th en ask why the variables x and (y – 5) are proportional.

1 2 3 40

5

10

15

20

25

[Answer (example): Th ey are not proportional since the graph does not go 
through (0,0) even though it is a line. If one decreased each y-coordinate by 5, 
then the graph would go through (0,0) and it would still be a line; the variables 
would then be proportional.]

•• Ask students to describe several pairs of proportional variables. Have them prove 
why the pairs are correct. [Answer (example): Th e number of shoes and the 
number of pairs; these are proportional since the number of pairs is exactly half of 
the number of shoes, so the equation is p = 0.5s. Another example is the cost of 
diff erent numbers of the same kind of candy bar since the price of the candy bar is 
a unit rate.]
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Properties of Operations with Rational Numbers

Th e Number System CCSSM 7.NS

Apply and extend previous understandings of operations with fractions 
to add, subtract, multiply, and divide rational numbers.

1. Apply and extend previous understandings of addition and subtraction to add and 
subtract rational numbers; represent addition and subtraction on a horizontal or 
vertical number line diagram.
d. Apply properties of operations as strategies to add and subtract rational numbers.

2. Apply and extend previous understandings of multiplication and division and of 
fractions to multiply and divide rational numbers.
a. Understand that multiplication is extended from fractions to rational numbers 

by requiring that operations continue to satisfy the properties of operations, 
particularly the distributive property, leading to products such as (–1)(–1) = 1 
and the rules for multiplying signed numbers. Interpret products of rational 
numbers by describing real-world contexts.

b. Understand that integers can be divided, provided that the divisor is not zero, 
and every quotient of integers (with non-zero divisor) is a rational number. 
If p and q are integers, then –( pq ) = –q

p = –
p
q . Interpret quotients of rational 

numbers by describing real-world contexts.
c. Apply properties of operations as strategies to multiply and divide rational 

numbers.

3. Solve real-world and mathematical problems involving the four operations with 
rational numbers.

IMPORTANT UNDERLYING IDEAS

x Using number properties to defi ne sums and diff erences involving negative num-
bers. Students already know how to add positive numbers. Th ey need to extend 
their repertoire to the ability to add two negatives or a positive and a negative.

Adding a negative number to another negative or a negative to a positive is oft en 
explained to students by using a contextual or a visual model. For example, if –1 is 
defi ned to be 1 less than 0, then it makes sense on a number line that –1 + 1 = 0 
since if one starts at –1 and goes right 1, which is what +1 usually means, then one 
lands at 0.

–1 0 1
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Similarly, if –1 represents the situation that someone owes another person $1, then 
paying that person $1 brings the debt to 0, so, again, –1 + 1 = 0.

Visual or contextual models can also be used to add values other than –1 and 
1, but ultimately, it is valuable for students to see how the number properties make 
these results make sense, as described below.

Th e statement that –1 + 1 = 0, oft en referred to as the “zero principle,” is the 
algebraic foundation, along with the number properties, for defi ning how addi-
tion with negative rational numbers works. For example, the expression –3 + 4 is 
equivalent to the expression –3 + (3 + 1). Th e associative property of addition tells 
us that this is the same as (–3 + 3) + 1. But (–3) + 3 is equivalent to 0 since it is 
–1 + –1 + –1 + 1 + 1 + 1, which, based on the commutative and associative prop-
erties of addition, is 0 + 0 + 0 = 0. Th at means that –3 + 4 = 0 + 1 = 1.

Students should come to realize that –a = (–1)a. Th is is based on the fact that 
since 1 + (–1) = 0, then the distributive principle tells us that a[1 + (–1)] = a + (–1)a = 0; 
in other words, (–1)a is what is added to a to get 0. But since 0 – a = –a, it is also 
–a that is added to a to get 0. Th erefore, –a = (–1)a.

As a consequence of the fact that –a = (–1)a, we can add two negatives using 
the distributive principle. For example, –4 + (–3) = (–1)4 + (–1)3 = (–1)(4 + 3) = –7. 
More generally, –a + (–b) = –(a + b), when a and b are positive.

Similarly, the number properties, along with the zero principle, defi ne how 
subtraction works. Th e expression –0.5 – (0.2) represents the value that must be 
added to 0.2 to get to –0.5. What must be added is –0.2 to get to 0, as well as 
another –0.5, that is, –0.5 – (0.2) = – 0.5 + (–0.2).

Th e expression 0.5 – (–0.2) represents the value that must be added to –0.2 to 
get to 0.5. What must be added is 0.2 to get to 0, and then another 0.5, which is 
why 0.5 – (–0.2) = 0.5 + 0.2. More generally, a – b = a + (–b), whether b is positive 
or negative.

x Using number properties to define products and quotients involving negative 
numbers. To multiply a positive number by a negative number, students can use 
a variety of visual models or they can use algebraic thinking. Although the models 
may seem easier for students as they acquire these skills, the models are in fact fun-
damentally built on algebraic principles. Th e algebraic approach is discussed here.

Using the fact that –a = (–1)a and the associative and commutative proper-
ties for multiplication, it is clear that a(–b) = a[(–1)b] = [(–1)a]b = (–1)ab = –ab. 
Th at means that 3(–5) = –15 and that (–3)5 = –15. It also means that (–3)(–5) = 
–[3(–5)] = –(–15) = 15. In other words, the fact that –a = (–1)a, along with the 
number properties, explains the rules for multiplying negative numbers.

Th e rules for dividing negative numbers fall out of the rules for multiplying 
negative numbers, since multiplication is division in reverse. For example, since 
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negative × positive = negative, that means that negative ÷ positive = negative or 
negative ÷ negative = positive. Since negative × negative = positive, that means 
that positive ÷ negative = negative.

It is also important for students to realize that the rules for multiplying and 
dividing signed numbers explain why a fraction such as –

4
3 is equivalent to –

3
4 and 

also equivalent to –( 34 ).
Students can use what they know about equivalent fractions to show that –4

3 = 
(–1)(–3)

(–1)4  = –
3
4 .

Knowing that (–3) = (–1)3, the student can think of –
4
3 as (–1)3

4  , which is 
(–1)3 ÷ 4. By defi nition, multiplying by 4 should lead to (–1)3, so if 4x = (–1)3, 
then x = –1( 34 ) = –( 34 ).

x Modeling and solving problems involving rational numbers with equations.  
Although students learn operations of addition, subtraction, multiplication, and 
division with rational numbers, they oft en do not know when to apply those oper-
ations. Th at is probably the most important thing for them to learn.

As students write equations to solve problems, it is useful if the equation closely 
matches the situation in the problem. For example, if the problem states that someone 
paid back $45.20 on a debt of $100.30, the student might write –100.30 + 45.20 = □. 
But if the problem states that someone who had $150 in assets now has a debt of 
$40 and asks how much money he had paid out, the equation 150 – □ = –40 makes 
sense.

If the problem inquires about how many losses of $4 would lead to a total loss 
of $96, the equation –96 ÷ (–4) = □ would make sense. If the problem asks how 
4 people might equally share a debt that is $142, a student might use the equation 
(–142) ÷ 4 = □.

Good Questions to Ask
•• Ask students why it makes sense that –10 + 10 = 0. [Answer (example): I would 

add –1 + –1 + –1 + –1+ –1 + –1 + –1 + –1+ –1 + –1 + 1 + 1 + 1 + 1 + 1 + + 1 + 
1 + 1 + 1 + 1. Using the commutative and associative properties over and over, the 
result is 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0.]

•• Ask students why –8 = (–1)8. [Answer (example): I would use the distributive 
principle with –1 + 1 = 0. I multiply 8(–1 + 1) to get 8(–1) + 8. Since this is 0, 
0 – 8 = 8(–1), but 0 – 8 is also equal to –8, so the two expressions are equal.]

•• Ask students to use number properties and the zero principle to explain why:

(–5) + 3 = –2
(–3) – (–2) = –1
(–4)(–3) = 12
–
9
6 = –( 23 )
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[Answer (example):

◆◆ (–5) + 3 = [(–2) + (–3)] + 3. Use the associative property to rename this 
expression as (–2) + [(–3) + 3], which is –2 + 0 using the zero principle. 
Th e result is –2 using the zero property.

◆◆ (–3) – (–2) = x if x + (–2) = (–3) and the number to add is –1.
◆◆ (–4)(–3) = ((–1)4)(–3) since –4 = (–1)(4).

((–1)4)(–3) = (–1)(4(–3)) using the associative principle of multiplication.
(–1)(–12) is the opposite of –12 since (–1)(–12) + (1)(–12) = (–1 + 1)12, or 0 
using the distributive principle.

◆◆ –
9
6 = (–6) ÷ 9. Th e number to multiply by 9 to get –6 is –( 69 ), which is –( 23 ).]

•• Ask students to create problems to match these number sentences:

(–40) ÷ 8 = □
(–13) + □ = –33

[Answer (example): I was allowed to pay off  my debt of $40 in 8 payments. How 
much is each payment? Th e temperature was –13° and then fell to –33°. By how 
much did it fall?]

Equivalent Expressions

Expressions and Equations CCSSM 7.EE

Use properties of operations to generate equivalent expressions.

1. Apply properties of operations as strategies to add, subtract, factor, and expand linear 
expressions with rational coeffi  cients.

2. Understand that rewriting an expression in diff erent forms in a problem context can 
shed light on the problem and how the quantities in it are related. For example, 
a + 0.05a = 1.05a means that “increase by 5%” is the same as “multiply by 1.05.”

IMPORTANT UNDERLYING IDEAS

x Using properties of operations to create equivalents. Students use properties of 
operations to add algebraic expressions. Oft en this is done intuitively, but there 
should be a few opportunities for them to realize, more explicitly, how number 
properties play into these equivalences. For example, to add 3n + 2 and 5n – 8, the 
commutative property, the associative property, and the distributive property are 
used:
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3n + 2 + (5n – 8) = 3n + 2 + (–8 + 5n) Commutative property
= 3n + [2 + (–8 + 5n)] Associative property
= 3n + [(2 + –8) + 5n] Associative property
= 3n + (–6 + 5n)
= 3n + (5n – 6) Commutative property
= (3n + 5n) – 6 Associative property
= (3 + 5)n – 6 Distributive property
= 8n – 6

Similarly, students might subtract algebraic expressions by using these proper-
ties. For example, to show 6p + 4 – (2p + 1):

6p + 4 – (2p + 1) = (6p + 4) – 2p – 1 Distributive property
= [(6p + 4) – 2p] – 1 Associative property
= [6p + (4 – 2p)] – 1 Associative property
= [6p + (–2p + 4)] – 1 Commutative property
= [(6p + –2p) + 4] – 1 Associative property
= [(6 – 2)p + 4] – 1 Distributive property
= 4p + (4 – 1) Associative property
= 4p + 3

One of the most useful aspects of algebra is the ability to use it to describe 
generalizations easily. For example, writing 2n + 3n = 5n, which can be thought of 
either as addition or as factoring n(2 + 3), is a simple way to describe an instance 
of the distributive property and to say that whenever one adds double a number to 
triple that number, the result is fi ve times that number.

Th ere are a variety of generalizations that students at this level might use to 
simplify calculations. For example:

•• To calculate 15% of a number, add 10% of it to half of that amount (or 
5%). Th is is true because 0.15n = 0.1n + 0.05n, based on the distributive 
principle, and 0.05 = 1

2 of 0.1.
•• To calculate the sale price if the discount is 40%, you can calculate 3

5 of the 
original amount. Th is is true because 40% of n = 0.4n and n – 0.4n = 0.6n, 
based on the distributive property; fi nally, 0.6n = 3

5 n.
•• To add 15% tax to a given price, multiply the price by 1.15. Th is is true 

because 15% of n = 0.15n and n + 0.15n = 1.15n, based on the distributive 
property.

It is not essential that students write out the properties algebraically when solving 
these types of simple problems, but it is important that they understand the under-
lying algebra. Th ese are all examples of the mathematical practice standard of 
looking for and making use of structure.
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Good Questions to Ask

•• Ask students to rewrite each algebraic expression below in a diff erent form and 
discuss some of the properties used to do it:

4p + 4 – 2p – 3
5n + 8 – (–n – 4)
3(5n + 2)
5n – 10 + 20m

[Answer: Th e fi rst expression simplifi es to 2p + 1 using the distributive, 
associative, and commutative properties. Th e second expression is equivalent to 
6n + 12 using the distributive, associative, and commutative properties. Th e third 
expression simplifi es to 15n + 6 using the distributive property. Th e fourth 
expression may also be written as 5(n – 2 + 4m) using the distributive property.]

•• To calculate 75% of a number, Katie says you can take 1
4 of the number and 

subtract it from that number. Does that always work? Why or why not? 
[Answer: Yes, it always works. Th at’s because 75% is 3

4 of a number, which is 
1
4 of the number taken away from the whole number.]

•• How can you fi gure out the sale price of an item that is 1
3 off  in just one step? 

[Answer: Take 2
3 of the regular price.]

•• How could you fi gure out 35% of a number if you were told how much 20% of it 
was? [Answer (example): You could take 1

4 of 20% of it to fi gure out 5% of it and 
subtract that amount from double the 20%.]

•• What does this equation tell you about calculating the price of something: 
n + 0.08n = 1.08n? [Answer (example): It tells how much to multiply a price by 
if you want to add in 8% tax.]

Using Algebra to Solve Problems

Expressions and Equations CCSSM 7.EE

Solve real-life and mathematical problems using 
numerical and algebraic expressions and equations.

4. Use variables to represent quantities in a real-world or mathematical problem, and 
construct simple equations and inequalities to solve problems by reasoning about the 
quantities.
a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, 

where p, q, and r are specifi c rational numbers. Solve equations of these forms 
fl uently. Compare an algebraic solution to an arithmetic solution, identifying the 
sequence of the operations used in each approach. For example, the perimeter of 
a rectangle is 54 cm. Its length is 6 cm. What is its width?
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b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, 
where p, q, and r are specifi c rational numbers. Graph the solution set of the 
inequality and interpret it in the context of the problem. For example: As a 
salesperson, you are paid $50 per week plus $3 per sale. Th is week you want your 
pay to be at least $100. Write an inequality for the number of sales you need to 
make, and describe the solutions.

IMPORTANT UNDERLYING IDEAS

x Modeling problems algebraically. Many real-life problems can be described using 
linear relationships. Th ese relationships always involve a term that is a multiple of 
one of the variables, and they may or may not include an initial value as well. For 
example, if you pay $200 to rent a hall and $30 per meal for each guest who comes 
to an event, then the total cost, in dollars, is 200 added to 30 multiplied by the 
number of guests. Th is can be described using the equation C = 200 + 30g. Th e 
200 is called the initial value; it is constant and does not change based on a vari-
able. On the other hand, the rest of the cost is related to a variable, the number of 
guests. Knowing the number of guests allows one to predict the cost.

Th e proportional component of the relationship can involve a whole number 
multiple or a fractional multiple of a variable and can involve a positive or negative 
amount. For example:

•• Adding a fractional multiple: F = 9
5 C + 32 (or 32 + 9

5 C) is a relationship 
relating Celsius temperature to Fahrenheit temperature.

•• Subtracting a fractional multiple: B = 400 – 2.5w could describe the rela-
tionship between the amount left  in a bank account that began at $400 
with $2.50 withdrawn each week to the number of withdrawal weeks.

•• Adding a whole number multiple: C = 200 + 30g could describe the situa-
tion relating the cost for a dinner to the number of guests if it costs $200 
to rent the dining hall and $30 for each guest’s meal.

Students should look at the equations they create to see if they make sense in 
the context of the problem. For example, in the equation describing the money in 
the savings account, B = 400 – 2.5w, as w increases, B decreases, Th is make sense 
since if there are more weeks, more money has been withdrawn, and less money is 
left . In the equation F = 9

5 C + 32, as C increases, so does F, and that makes sense 
since if it gets hotter, the temperature increases in both systems. Notice, too, that if 
F = 32, C = 0, as it is supposed to be, so the equation feels correct. Th inking about 
whether the equations make sense is an example of the mathematical practice 
standard of reasoning abstractly and quantitatively.
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Notice that the equation F = 9
5 C + 32 can also be written as F = 9

5 (C + 160
9 ) 

using the distributive property. Students need to recognize that both forms are 
correct. In fact, any equation that can be written as the sum of a linear term and a 
constant can be written in the form a = k(bx + c), where x represents a variable to 
the fi rst power and k, b, and c are constants. For example, S = 500 – 20w can be 
written as S = 20(–w + 25) or C = 200 + 30g can be written as C = 10(3g + 20).

Sometimes, rather than an equation, an inequality describes a situation. For 
example, suppose Abby has only $100 and wants to pay for a skirt for $20 and 
some shirts that each cost $15; she wants to know how many shirts she can aff ord. 
Solving the inequality 15s + 20 < 100 for possible values of s will give her the 
answer.

Or suppose someone wants to know what Celsius temperatures are higher 
than 50°F, Th is would require solving the inequality 9

5 C + 32 > 50 for possible val-
ues of C.

x Solving linear equations. Th ere are many methods students might use to solve 
linear equations. One of the most basic is guess and check. Students would make 
an educated guess about a possible solution, evaluate to see if they are correct, and 
adjust the guess based on the results of the test. For example, for the equation 
3x – 4 = 25, a good fi rst guess might be 9, because (3)(9) is close to 25. If 3x – 4 is 
evaluated when x = 9, the result is 23, which is too low, so the student knows 
x should be more. Since the result should be 2 more, and an increase of 1 in x 
would result in 3 more, the solution must be 9 23 . Notice that the guess and check 
method encourages estimation, which is a good to encourage in students no mat-
ter which method is ultimately used to fi nd the exact answer.

Another method for solving linear equations is to use a balance. A student 
might draw a model like the one shown below, where the length of 25 is balanced 
against the length of 3x – 4.

25 4

x x x

Looking at the model, it is clear that if 4 were added to 25 to make 29, that amount 
would match 3 sets of x, so each x must be 2

3
9 = 9 23 .

Students might, of course, also solve an equation by using opposite operations. 
For example, if 3x – 4 = 25, that means that 4 was subtracted from some number 
to get 25; if 4 is added back, that will give the number that 4 was subtracted from, 
that is, 25 + 4 (which is 3x – 4 + 4) = 3x, so 29 = 3x. Th is means that some number, 
x, was multiplied by 3 to get 29, so dividing by 3, the opposite operation, tells what 
number was multiplied by 3; in other words, 2

3
9 = x (or 3x ÷ 3).
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Although the preceding description could also be shown only symbolically, as 
below, students will understand what is going on better if they think through why 
each step makes sense, as described on the previous page.

 25 = 3x – 4
 25 + 4 = 3x – 4 + 4
 29 = 3x
 29 ÷ 3 = (3x) ÷ 3
 2

3
9 = x

Notice that there is oft en more than one correct sequence of steps to solve 
an equation. For example, suppose a rectangle had a perimeter of 60 inches and 
a width of 4 inches, and an equation was used to determine the length. Th e equa-
tion might be 8 + 2l = 60. Th is might be solved by fi rst subtracting 8 from each 
side and then dividing by each term by 2 (i.e., 2l = 52 and l = 26), or it might be 
solved by fi rst dividing each term by 2 and then subtracting 4 from each side (i.e., 
4 + l = 30 and l = 26). Notice that in the latter case, each term, not just the 2l and 
60, is divided by 2. Th is is another way of recognizing that the equation could have 
been written as 2(l + 4) = 2(30).

x Solving simple linear inequalities. Students should become aware that if an 
inequality of the form, for example, 2x + 8 < 30 were being solved, there would be 
an infi nite set of values that would make it true, and all of those values would be 
on one side of the value of x that makes 2x + 8 = 30 on the number line. Since 
(2)(11) + 8 = 30, then any value of x less than 11 makes 2x + 8 less than 30, and 
any value of x more than 11 makes 2x + 8 more than 30. Students might see this by 
using tables of values or reasoning or graphs.

Table of values:
x 2x + 8

0 8

5 18

10 28

11 30

12 32

13 34

Reasoning: 2x + 8 means twice a number and 8 more. If x is positive and gets 
bigger, twice x gets bigger and so does 8 more than twice x. So if 2 × 11 + 8 = 30, 
then if x is more than 11, 2x + 8 is more than 30, and if x is less than 11, 2x + 8 is 
less than 30.
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Graph: If a graph of y = 2x + 8 is drawn and a horizontal line is drawn at the 
value of y = 30, one can see that the y is only less than 30 if x is less than 11.

5 10–10 –5 0

5

10

15

20

25

40

–20

–15

–10

–5

15

35

30

Th e solution set can also be graphed on the x-number line as all values to the left  
of x = 11, not including x = 11.

0 105 15

Students might solve the equation, instead of the inequality, and then test a 
number on either side of the inequality to see whether the solutions are greater 
than or less than the solution to the equality. For example, to solve 3c + 1

3 < 4
5 , stu-

dents might solve 3c + 1
3 = 4

5 to get c = 4
7
5 . Trying c = 0 gives a result of 1

3 , which is 
less than 4

5 , so it seems like the solution should be all numbers to the left  of c = 4
7
5 

(like 0 is), so c < 4
7
5 . To be more secure, some students might test a greater value, 

for example, c = 1, to make sure that the greater values do not work. Notice that 
3 + 1

3 is not less than 4
5 .

Some students will think that if the inequality is in the direction ax + b < c, 
then the solutions have to be in the form x < d, but this is not necessarily the case. 
For example, if 2x + 1 < 11, it is true that x < 5. But if the inequality is 1 – 2x < 11, 
the solution set is x > –5.
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Good Questions to Ask

•• What equations might you write to help solve each problem?

◆◆ You had $100 in your bank account and put in $10.50 more each week. How 
long would it take to have $200 in the bank?

◆◆ Jeff  had 1
2 as much money as his sister. But he got $30 for his birthday, and now 

he has 2
3 as much as his sister. How much does his sister have?

[Answer (example): 100 + 10.50w = 200; 1
2 s + 30 = 2

3 s.]
•• What problem might each equation or inequality help solve?

200 + 30p = 410
2(w + 40) = 120
2
3 (s + 80) = 140
4x + 30 > 120

[Answer (example):

◆◆ Th ere were 200 kids who walked to an event, and there were buses that each 
held 30 kids that brought more of them to the event. If there were 410 kids 
altogether, how many buses were used?

◆◆ Th e perimeter of a rectangle with a length of 40 inches is 120 inches. What is the 
width?

◆◆ A square 140" on a side is created by starting with another square, extending 
each side length by 80" and then taking 2

3 of that amount. What was the side 
length of the original square?

◆◆ Jennifer needs to make sure she has more than $120 in her bank account to buy 
something she wants. She had $30 and has to earn the rest of the money in 4 
weeks. How much money must she earn each week to meet her goal?]

•• You solve a certain equation by fi rst dividing by 4 and then subtracting 9. What 
might the equation have been? How do you know? [Answer (example):  
4x + 36 = 100. I know because, if I divided by 4, it was probably because all the 
constants or coeffi  cients were multiples of 4 and the coeffi  cient of the variable 
was 4. If I then subtracted 9, but that was after I divided by 4, I realize that the 
constant used to be 36. Th e 100 was a random choice; any other number could 
have been used instead.]

•• Draw a diagram that would show why 4x + 25 = 53 is solved by x = 7. [Answer:  
One possible diagram is shown below.]

53

x x x x 25
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•• A certain equation of the form ax + b = c has the solution x = 3
5 . List four possible 

equations it could have been. [Answer (example): 5x = 3; 10x – 2
5 = 2

5
8 ; 6x – 3

5 = 3; 
2x – 1

5 = 1.]
•• An inequality of the form ax + b > c has the solution x < 35 . What might the 

inequality have been? [Answer (example): 6 – 2
3 x > 53

5 .]
•• How would you convince someone that the solution to the inequality 4x – 2 > 4

3 
is x > 5

6 ? [Answer (example): I would get them to solve 4x – 2 = 4
3 to get x = 5

6 and 
then test to see that 0 does not solve the inequality, so they would know they 
should use values greater than 56 .]

Solving Measurement Problems with Equations

Geometry CCSSM 7.G

Solve real-life and mathematical problems involving 
angle measure, area, surface area, and volume.

4. Know the formulas for the area and circumference of a circle and use them to solve 
problems; give an informal derivation of the relationship between the circumference 
and area of a circle.

5. Use facts about supplementary, complementary, vertical, and adjacent angles in a 
multi-step problem to write and solve simple equations for an unknown angle in a 
fi gure.

IMPORTANT UNDERLYING IDEAS

x Formulas for circle measurements. Essentially, measurement formulas are equa-
tions that relate diff erent variables. For example, the formula C = 2πr is an equa-
tion that is true for the values of C and r that pertain to any particular circle. If one 
knows either of the values, the equation can be used to help determine the other. 
For example, if a circumference is 6 12 ", then the radius is known to be 6 12 ÷ 2π, or 
slightly more than 1".

At the 7th-grade level, the formulas that might be considered include the 
following:

C = 2πr
C = πd
A = πr 2

A = πd2

4
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Using measurement formulas is a very useful way to practice algebraic skills. 
It helps students not only to calculate measurements but also to see how variables 
are related in realistic situations.

x Solving angle problems. When parallel lines are cut by a transversal, many angle 
relationships are created that can be described by equations. Equations to describe 
the picture below include these: a + b = 180, c + d = 180, e + f = 180, g + h = 180, 
a + c = 180, c + e = 180, e + g = 180, b + d = 180, d + f = 180, and f + h = 180.

a° b°
c° d°

e° f °
g° h°

Students can use equations to solve for some values when they know others.
Similarly, if they know that two angles are complementary, students can use an 

equation of the form a + b = 90.

Good Questions to Ask

•• Ask students for an equation or equations to model this measurement problem: 
Th e radius of a circle is doubled. What happens to the area? [Answer (example):  
Th e area of the small circle is A = πr2. Th e area of the big circle is A = π(2r)2 = 4πr2. 
Th e area became 4 times as large.]

•• Ask students for an equation or equations to model this measurement problem: 
Th e circumference of a circle increased by 10 cm. What happens to the diameter? 
[Answer (example): Th e circumference of a circle is C = πd. Th at means that 
C + 10 = πd + 10 = π(d + 1

π
0 ). So the diameter increased by about 3, since it’s 

1
π
0 greater.]

•• Ask students to create a measurement problem involving the circumference of 
a circle. Th en ask them to create and solve an equation that would model the 
problem. [Answer (example): A circular patio required 30 feet of fencing to 
enclose it. How wide was the patio? Equation: 30 = πd. Th e answer is 9.55 feet.]

•• Ask students how to write the formula for the area of a circle in terms of its 
circumference and why their answer works. [Answer (example): Since the radius 
is the circumference divided by 2π, you can just put those values in the usual area 
formula. A = π(2

C
π)2.]
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•• Two parallel lines are cut by a transversal One of the angles is 105°. Draw a 
picture to show what the whole situation might look like. Are any of the angles 
supplementary to the 105° one? Are any complementary? What equation would 
you use to solve for the measure of the supplementary or complementary angle? 
[Answer (example): Th e picture might look like the one shown below. Th e 
equation 105 + d = 180 would work to determine the size of angle d or angle a. 
Th ere will be many supplementary angles to which students can point, for 
example, a and 105°. Th ere are no angles that complementary to 105° because 
complementary angles total to 90° only.]

a° 105°
c° d°

e° f °
g° h°

Summary
By the end of Grade 7, students are able to use properties of operations to calcu-
late sums, diff erences, products, and quotients involving negative numbers and to 
create equivalent numerical expressions. Th ey can use number properties to add 
and subtract algebraic expressions and can test for proportionality. Th ey can 
model problems involving linear situations with either equations or inequalities, 
can solve those equations or inequalities using a variety of methods, and can use 
equations to describe relationships in circle and angle situations.
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GRADE 88
Exponent Conventions and Properties

Expressions and Equations CCSSM 8.EE

Work with radicals and integer exponents.

1. Know and apply the properties of integer exponents to generate equivalent numerical 
expressions. For example, 32 × 3–5 = 3–3 = 1

33 = 1
27.

2. Use square root and cube root symbols to represent solutions to equations of the 
form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of 
small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. 

IMPORTANT UNDERLYING IDEAS

x Exponent conventions. Students at the 8th-grade level learn that a–b is another 
name for 1

ab. Th e explanation for this equivalence can be built on patterns. Students 
might note that in the table below, each time the value of the power goes down by 
1, the value of the previous power is divided by the value of the base, in this case 
by 3.

Power Value

34 3 × 3 × 3 × 3 = 81

33 3 × 3 × 3 = 27

32 3 × 3 = 9

31 3

30

3–1

3–2

So 30 should be 3
3 = 1 and 3–1 should be 1

3 and 3–2 should be 1
3×3 = 1

32. More 
generally, any base to the 0 power is 1 since we would be dividing that base by 
itself in a chart like the one above, any base to the –1 power is 1

base, etc.
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x Exponent properties. Students have met exponential notation before. It is at this 
level that they generalize rules for multiplying and dividing powers involving inte-
ger exponents. Th ese generalizations are oft en expressed algebraically in these ways:

ab × ac = ab+c

ab ÷ ac = ab–c

(ab)c = abc

ab × cb = (ac)b

Th e rules are explained based on the defi nition of exponents, conventions, and 
properties of numbers.

For example, 23 × 25 = 28 since 23 means 2 × 2 × 2 and 25 = 2 × 2 × 2 × 2 × 2, 
so 23 × 25 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2, which is 28. More generally, as long as the 
base is the same, multiplying a certain number of copies of that base by more cop-
ies of that base results in the total number of copies of that base.

Th e exponent law related to division of powers of the same base builds on the 
notion that na ÷ nb = a ÷ b. Th is makes sense by considering the equivalent frac-
tions n

na
b and a

b or by realizing that if bx = a, then nbx = na. Because 35 = 32 × 33, 
dividing both numerator and denominator of 35

32 by 32 results in the remaining 
numerator factor of 33, so 35 ÷ 32 = 3(5–2). Th is particular exponent law related to 
dividing powers of the same base also helps explain why a–b = 1

ab, since a–b = a0–b = 
a0 ÷ ab, which is 1

ab.
Th e law related to a power of a power is based on the meanings of the powers. 

For example (34)2 suggests that the product of 4 threes is multiplied by itself; as a 
result, there are 2 × 4 threes.

Th e law related to the product of two numbers to the same integer power is 
based on the commutative and associative properties of multiplication. For exam-
ple, 43 × 53 = 4 × 4 × 4 × 5 × 5 × 5 and that can be rearranged as (4 × 5) × (4 × 5) × 
(4 × 5), which is (4 × 5)3.

Good Questions to Ask

•• Ask students to explain why each of the following is true:

34 × 35 = 39

34 × 44 = 124

(25)2 = (22)5

43 ÷ 48 = 4 ÷ 46

[Answer (example):
◆◆ If you multiply 4 threes by another 5 threes, there are 9 threes.
◆◆ 3 × 3 × 3 × 3 × 4 × 4 × 4 × 4 can be rearranged to be 4 groups of (3 × 4) 

multiplied together, and 3 × 4 = 12.
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◆◆ If you multiply together 2 copies of 5 twos multiplied together, it’s the same as 
multiplying together 5 copies of 2 twos multiplied together. Th ere are 10 twos 
multiplied together either way.

◆◆ You can think of the division as a fraction and divide numerator and 
denominator by 42. What is left in the numerator is 4 and in the denominator is 
46.]

•• Ask students how exponent rules/laws can make the following calculations easier:

28 × 58

203 × (1
2)3

28 × 56

[Answer (example):

◆◆ You could rename the fi rst expression as 108, and that’s just a 1 followed by 
8 zeroes.

◆◆ You could rename the second expression as 103, and that’s just a 1 followed by 
3 zeroes.

◆◆ You could rename the third expression as 22 × 26 × 56, and 26 × 56 = 106. Th at 
gives 22 × 106, which is 4 × 1 followed by 6 zeroes, which is 4 million.]

Equations of Lines

Expressions and Equations CCSSM 8.EE

Understand the connections between proportional relationships, 
lines, and linear equations.

5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. 
Compare two diff erent proportional relationships represented in diff erent ways. For 
example, compare a distance-time graph to a distance-time equation to determine 
which of two moving objects has greater speed.

6. Use similar triangles to explain why the slope m is the same between any two distinct 
points on a non-vertical line in the coordinate plane; derive the equation y = mx for a 
line through the origin and the equation y = mx + b for a line intercepting the vertical 
axis at b.

IMPORTANT UNDERLYING IDEAS

x Slope as describing unit rate. Many of the relationships between variables that 
students explore at this level involve proportional relationships that can be “sum-
marized” by describing a unit rate.
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For example, the relationship b = 72m might describe the number of heart-
beats in m minutes. Th e unit rate of 72 heartbeats per minute is what makes that 
equation make sense. Similarly, the relationship d = 365.25y describes the relation-
ship between the number of years that have passed and the number of days that 
have passed (including the leap year factor). Th e unit rate of 365.25 days/year is 
what makes that equation make sense.

If these relationships are shown in tables of values, the unit rate appears in two 
ways. One way is the diff erence between successive values of the dependent vari-
able (when the independent variable increases by 1). Another way is in the rela-
tionship between the independent and dependent variables in any row of the table; 
the dependent variable is always a multiple of the independent variable.

For b = 72m:

m b

0 0 (0 × 72) } 72
1 72 (1 × 72)

2 144 (2 × 72)

3 216 (3 × 72)

4 288 (4 × 72)

For d = 365.25y :

h s

0 0 (0 × 365.25) } 365.25
1 365.25 (1 × 365.25)

2 730.5 (2 × 365.25)

3 1,095.75 (3 × 365.25)

4 1,461 (4 × 365.25)

Sometimes, the unit rate refl ects a decrease. For example, if the temperature 
begins at 0° and goes down 2° per hour, the relationship between hours and tem-
perature is also proportional.

h t

0 0° (0 × (–2)) } –2
1 –2° (1 × (–2))

2 –4° (2 × (–2))

3 –6° (3 × (–2))

4 –8° (4 × (–2))
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When such relationships are graphed, they always go through the point (0,0) 
on the coordinate plane because the equation is always of the form y = mx and if x 
is 0, so is y. But, more fundamentally, the graph goes through (0,0) since if there 
were, for example, no minutes or no hours, there would be no beats or no seconds.

When the relationships are graphed, because there is a unit rate, the value of 
the dependent variable at any point (x,y) is always the amount of the unit rate 
more (or less for a negative unit rate) than the value of the dependent variable y1 
at (x – 1,y1). For example, for the beats per minute situation, the number of beats 
in 4 minutes is 72 more than the number of beats in 3 minutes, or the number of 
beats in 10 minutes is 72 more than the number of beats in 9 minutes. Since slope 
is defi ned as the change in the dependent variable divided by the change in the 
independent variable, the slope is the unit rate ÷ 1 = the unit rate.

For the heartbeat problem (b = 72m), the unit rate is 72, so the slope is 72. 
A graph of this relationship is shown below.
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For the days in years problem (d = 365.25y), the unit rate is 365.25, so the slope is 
365.25. For the temperature change problem (t = –2h), the unit rate is –2, so the 
slope is –2.

Students can compare the unit rates for different situations by comparing 
graphs and looking at slopes, by comparing tables and looking at successive in-
creases, or by considering both approaches.

Students might be encouraged to look at triangles like those shown in the 
graph at the top of the next page for beats per minute and notice that the triangles 
showing the diff erence in the y-coordinate for a change of 2 in the x-coordinate 
are the same everywhere along the line.
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Th ey might also be encouraged to notice that if diff erent changes in the x-coordi-
nate are used, the triangles are no longer congruent, but they are similar because 
the proportions are maintained.
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x Formulas for equations of lines. Although there are many ways to express the 
equations of lines, including in the form Ax + By + C = 0 (in which case the slope 
is –A/B), or the form (y – y1) = (y2 – y1)/(x2 – x1)(x – x1) when the points (x1,y1) 
and (x2,y2) are points on the line, the focus in 8th grade is on expressing lines in 
what is called “slope-intercept form.” Th is is because slope-intercept form oft en 
makes it easier for a student to predict what the line will look like.

In slope-intercept form, any line is of the form y = mx, where m is the unit rate 
that expresses the slope, or y = mx + b, where m is still the unit rate that expresses 
the slope, but b is an initial constant value other than 0. For example, the cost of a 
membership at a gym that combines a $50 fl at fee with a monthly rate of $20 per 
month could be described using the formula C = 20m + 50 or the equation of a 
line graph of the form y = 20x + 50. Th e 50 is the initial constant value and the 
slope of 20 is the unit rate, in this case the monthly rate. In this example, m and C 
are not proportional, although m and the variable that is C – 50 are proportional.
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Notice that for the equation y = mx + b, when x = 0, y = b, so the line cuts 
through the y-axis at the point (0,b), which is called the y-intercept.

Some students might wonder if y = 3x – 2 is a line, since they do not see a plus 
sign aft er the mx, but a minus sign instead. Students should be encouraged to 
explore these sorts of equations to see that these are lines, with intercepts below 
the x-axis, and that the equations could easily be rewritten in the form y = mx + b. 
For example, y = 3x – 2 can be rewritten as y = 3x + (–2); the y-intercept is at point 
(0,–2), 2 units below the x-axis.

Students should notice that there are no powers on the variables (other than 
the power 1, which is implicit when one writes x, which is x1, or y, which is y1) in 
the equation of a line. Two pieces of information fully determine the line: its slope 
and its y-intercept.

x Relating linear graphs to linear equations. With experimentation and using logi-
cal reasoning, students will discover that lines with a higher positive unit rate, or 
greater slope, are steeper than lines with a lower positive unit rate, if graphed with 
axes using the same scale. Th e value of the intercept is unrelated to the steepness. 
For example, comparing y = 3x (dashed line) and y = 5x (solid line) in the graph 
below, it is clear that y = 5x is steeper.
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In the next graph (below), comparing y = 5x (solid line) and y = 5x + 2 (dashed 
line), it is clear that the steepness is unaff ected by the y-intercept.
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Students will also learn that a negative unit rate has the eff ect of creating lines 
that go from northwest to southeast (upper left  to lower right) instead of southwest 
to northeast (lower left  to upper right), that is, the y-values decrease as the x-values 
increase. For example, the graph below compares the lines for y = –2x (dashed 
line) and y = 2x (solid line).
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Students might be exposed to the eff ect of the scale on the axes on the steep-
ness of the lines. For example, a line that should have a steep slope, such as y = 
10x, could be made to look fairly fl at with the right choice of scale on the axes. 
Both graphs below show y = 10x, but the steepness of the lines looks quite diff erent 
because of the scale diff erence. Th e fi rst graph goes up in increments of 5, whereas 
the second increases in increments of 100.
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When given the equation of a line such as y = 2x + 5, the student should be 
able to graph it, most likely by starting at the intercept (0,5) and moving 1 to the 
right and 2 up (to refl ect the slope of 2), plotting another point, joining them, and 
extending the line in each direction, as shown at the top of the next page.
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Another option for graphing a line is to plot two points. Students could substi-
tute two diff erent values for x, determine the corresponding y-values, plot those 
two points, and join them with a line. As shown below, for example, if y = 2x + 5, 
then if x = 1, y = 7 and if x = 4, y = 13. Th e points (1,7) and (4,13) could be joined. 
Th e two points chosen are arbitrary, and it is important for students to understand 
that; they could try various sets of two points and realize that they always get the 
same line.
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Yet another alternative is to choose two values for y, solve the equation to 
determine the corresponding values for x, and plot those points and join them. 
For example, if y = 7, then 2x + 5 = 7, so 2x = 2 and x = 1. One point on the line is 
thus (1,7). If y = 15, then 2x + 5 = 15, so 2x = 10 and x = 5. Another point on the 
line is (5,15). Th ese points are plotted below. Again, the choice of the two y-values 
is arbitrary.
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Good Questions to Ask

•• Ask students to describe several situations, each involving a unit rate. Have them 
create tables of values to show where or how the unit rate appears in the table of 
values. [Answer (example): I would fi gure out the number of days in w weeks. Th e 
unit rate is 7, and it appears in the table (shown below) because it is how far apart 
the day values are when the week values are 1 apart.]

w d

1 7

2 14

3 21

4 28

•• Ask students to describe a realistic situation in which the unit rate might be 2 and 
to graph the associated line. Ask where the unit rate of 2 appears in the graph. 
[Answer (example): Th e number of nickels it would take to exchange for d dimes 
has a unit rate of 2. Th e graph is shown below. Th e slope is made apparent by 
using arrows—the y-value increases by 2 when the x-value increases by 1.]
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•• Ask students to fi rst predict and then test how the graphs for each pair of lines 
will be alike and how they will be diff erent:

y = 2x and y = 3x
y = 2x and y = 2x + 3
y = 4x and y = –4x
y = 2x and y = –5x

[Answer (example):

◆◆ Th e y = 3x line is steeper as long as you use the same scale on two diff erent 
graphs or use the same coordinate grid. Both lines pass through the origin (0,0).

◆◆ Th e y = 2x and y = 2x + 3 lines have the same slope but diff erent y-intercepts.
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◆◆ Th e y = 4x and y = –4x lines go in opposite directions, but they have the same 
degree of steepness when plotted with the same scale.

◆◆ Th e y = 2x and y = –5x lines go in opposite directions, and the y = –5x line is 
steeper as long as you use the same scale.]

•• Ask students to create an equation for a steep line on a coordinate grid with the 
same scale on the x-axis as the y-axis where the y-intercept is –3. [Answer 
(example): y = 6x – 3.]

•• Ask students how they would correctly graph y = x so that the line looked 
somewhat fl at. (Th is is an example of the mathematical practice standard of 
reasoning abstractly and quantitatively.) [Answer (example): I would make the 
scale on the y-axis diff erent from the one on the x-axis by making the numbers go 
up much faster on the y-axis, as shown below.]
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•• Ask students what they are sure of and what they are less sure of about the 
equation of the line shown in the graph below. Acknowledge that there are no 
scales on the axes and explain that this was deliberate; students should not 
assume that 1 tick represents 1. (Th is is an example of the mathematical practice 
standard of constructing viable arguments.)

[Answer (example): Th e slope is negative, for sure, and the intercept is positive, 
for sure. But I can’t be sure of the slope number or the intercept number without 
knowing the scale.]
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Solving Linear Equations

Expressions and Equations CCSSM 8.EE

Analyze and solve linear equations and pairs of 
simultaneous linear equations.

7. Solve linear equations in one variable.
a. Give examples of linear equations in one variable with one solution, infi nitely 

many solutions, or no solutions. Show which of these possibilities is the case by 
successively transforming the given equation into simpler forms, until an 
equivalent equation of the form x = a, a = a, or a = b results (where a and b are 
diff erent numbers).

b. Solve linear equations with rational number coeffi  cients, including equations 
whose solutions require expanding expressions using the distributive property 
and collecting like terms.

IMPORTANT UNDERLYING IDEAS

x Diff erent kinds of equations. Although there are very diff erent types of equations, 
many students never really notice or have their attention drawn to those diff er-
ences. Th is can lead to great confusion for some students. For example, consider 
these four equations, all of which have a left  side of 3x – 2:

3x – 2 = 2x + 8
3x – 2 = 2x – 4 + x + 2
3x – 2 = 3x – 1
3x – 2 = y

Th e fi rst equation is true for only one value of x, specifi cally x = 10. In this 
case, students might think of the x more as an unknown than as a variable, 
although technically, of course, the x can vary. In this case, it is just that other val-
ues of x do not make the equation true.

Th e second equation is true for any value of x since the expressions on either 
side of the equal sign are equivalent. Some students who do not understand the 
diff erence between types of equations struggle when they try to solve this equation 
using normal processes and end up with either an equation that says 3x – 2 = 3x – 2 
or an equation that says 0 = 0 and do not know what to do at that point. Th ey need 
to be alerted to the fact that some equations really are simply statements of equiva-
lence and any value of x is a solution. Th is is indicated when the equation can be 
rewritten as a = a.
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Th e third equation has no solutions; no value of x can make this true because 
the left -hand side will always be 1 less than the right hand-side. Th e two sides will 
never be equal. Many students are unaware that equations can have no solutions, 
having never been presented with this situation.

Th e fourth equation is clearly diff erent because there is a second variable 
involved. Students should think of this equation as expressing a relationship 
between two variables. Th e single variable equation 3x – 2 = 10 is actually a way of 
asking for what x-value the equation 3x – 2 = y has a y-value of 10. Students should 
realize that there are an infi nite number of solutions to the fourth equation, just 
like there were for the second equation. But in the case of the fourth equation, not 
all values of x and y work, whereas in the second equation any value of x will work.

x Processes for solving equations. At the 8th-grade level, most students are more 
likely to use algebraic methods than guess and check or physical models to solve 
equations, but many students still need to use less formal methods to make sense 
of what they are doing. Because equations for Grade 8 students include those with 
rational coeffi  cients and constants, it is important that students have good integer 
and fraction operation skills to be successful with this standard. Because these 
equations oft en involve determining equivalent expressions by simplifying, or 
require the use of arithmetic properties, it is useful that students hone these skills 
fi rst, as well.

To solve, for example, 3(x – 4) = –8, students need to know how to use the 
distributive property to expand 3(x – 4) as 3x – 12, and they also need skills in 
working with integers.

Before students solve equations, they should be encouraged to estimate solu-
tions so that they can judge whether the solution they get is even reasonable. For 
example, the solution to the equation 3

4 x – 2
3 = 5

6 might be estimated in this way:
2
3 and 5

6 are not that far apart, so the solution to the original equation might 
not be that far off  the solution of 3

4 x – 5
6 = 5

6 . Th at would mean that 3
4 x is the 

double of 5
6 , which is 1

6
0 or about 11

2 . If 3
4 of something is 11

2 , then the some-
thing is a bit more, so a good estimate for the solution might be 2.

In fact, the solution actually is 2.
One method to solve an equation such as 3

5 x – 9 = 21
2 is by using a balance. 

Th is is an example of the mathematical practice standard of using appropriate tools 
strategically. First, the student might estimate to see that 10 is too small (since 35 of 
10 is about 6 and 6 – 9 is negative), but 20 seems reasonable (since 3

5 of 20 is about 
12 and 12 – 9 is close to 21

2). Knowing this, and realizing that 1
5 x is about 4, 

they might draw something like the balance model shown on the next page, where 
3
5 of an x less 9 is matched to 21

2 .
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1
5 x 1

5 x 1
5 x 1

5 x 1
5 x

21
2 9

Looking at the model, it is clear that if 9 were added to 21
2 to make 111

2 , it matches 
3 sets of 15 x. Th at means 13 of 111

2 , which is 26
3 (almost 4) is 15 x, and so x = 5 × 26

3 = 115
6 , 

or 191
6 .

As a teacher, one might be thinking, why doesn’t the student just solve the 
problem algebraically? In eff ect, he or she is, but the visual model reinforces why 
the answer makes sense. Realizing that the whole thing is 191

6 is supported by the 
model for the equation and helps students make sense of what they have been 
doing. Using models like these also provides great opportunities for students to 
use the mathematical practice standard of critiquing each other’s reasoning.

Physical models like these do not work as well if solutions are negative, since 
the quantity being shown as x needs to have a value greater than 0 in a length 
model.

Students might, of course, also solve the equation by using opposite opera-
tions. Th is works for equations with any type of solution, positive or negative. For 
example, if 3

5 x – 9 = 21
2 , that means that there is a value such that if 9 is taken away, 

only 21
2 is left . Th at value is clearly 9 + 21

2 = 111
2 . But that 111

2 is only 3
5 of the 

desired number, so the number x is obviously more than 111
2 . If 3

5 of that number 
is 111

2 , then 1
5 of that number is 111

2 ÷ 3, and the entire number x is (111
2 ÷ 3) × 5. 

Some students will realize that dividing by 3 and multiplying by 5 is, in eff ect, mul-
tiplying by 5

3 , or dividing by 3
5 .

Th e method described in the preceding paragraph is sometimes called the 
“cover-up” method, that is, it is almost like covering up 3

5 x when realizing that 
□ – 9 = 21

2 means that □ = 111
2 . Th is cover-up method is oft en successful for stu-

dents (Arcavi, 1994).
So, algebraically, the steps in solving the equation were as follows:

 3
5 x – 9 = 21

2 
 3

5 x = 111
2 (adding 9 to both sides)

 1
5 x = 111

2 ÷ 3 (dividing both sides by 3)
 x = (111

2 ÷ 3) × 5 (multiplying both sides by 5)

Th e last two lines could have been shortcut into one line by dividing both sides of 
3
5 x = 111

2 by 3
5 .

Notice that there is oft en more than one correct sequence of steps to solve an 
equation, as seen above. When students are confronted with equations involving 
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fractions, they oft en like to multiply both sides by a value that will allow them to 
get rid of the fractions fi rst. So, for example, both sides of the equation 35 x – 9 = 21

2 
might be multiplied by 5 × 2, or 10, to get rid of both the fi ft hs and the halves.

 3
5 x – 9 = 21

2
 6x – 90 = 25 (multiplying ALL terms of both sides by 10)
 6x = 115 (adding 90 to both sides)
 x = 115 ÷ 6 (dividing both sides by 6)

It is important to ensure that students multiply all terms (using the distributive 
property) by the value they have selected and not just multiply the values that ini-
tially include fractions. In the second step above, many students would forget to 
multiply the 9 by 10 to get 90 and leave it as 9.

Yet another way to solve a linear equation is to graph its line and look for the 
solution. For example, to solve 35 x = 4, one can graph y = 35 x and look for the value 
of x that is associated with y = 4; another way to think about this is that students 
are looking for the place where the lines y = 4 and y = 35 x cross. Th is is because this 
is the place (and the only place) where 3

5 x actually is 4. At no other place is it 4. 
Notice, below, that this value is almost 7 (precisely, 62

3 ). Th e graph oft en is better 
for getting an estimate than an exact value, depending on whether or not the solu-
tion is easily visible using a particular scale.
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To solve the equation 3x + 5 = 2x – 5, the students are looking for the place 
where the x-value in each graph leads to the same y-value. Th e reason is because if 
one substitutes an x-value on the left  side of the equation and gets a particular 
value, the objective is to get the same value when that same value of x is substi-
tuted on the right side (or else the sides are not equal).
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y = 3x + 5

y = 2x – 5

Notice that when x = –10, the y-values on both lines are equal, in this case y = –25, 
although the solution to the equation is the value x = –10 (there is no y in the equa-
tion). Notice that for any other x-value, either the left -hand side is worth more 
(one line is higher) or the right-hand side is worth more (the other line is higher).

Using a graph as suggested above for solving equations works well when the 
solution is either a whole number or perhaps halfway between two whole num-
bers; otherwise, it is more valuable to give an estimate than an exact answer. Th is 
approach to solving equations is also useful in preparing students for solving two 
equations in two unknowns.

Good Questions to Ask

•• How are these equations alike? How are they diff erent?
4
3 x – 2 = 5

6 x
4
3 x – 2 = (x + 1) + ( x3 – 3)

[Answer (examples):

◆◆ Th ey are alike because they both have the same left side, but they are diff erent 
because there is only one solution to the equation on top and a lot of solutions 
to the equation on the bottom.

◆◆ Th ey are alike because they both involve fractions and xs, and they are diff erent 
because the bottom equation is more complicated.

◆◆ Th ey are alike because you can solve both of them, but one leads to the 
equation x = 4 and the other leads to the equation 0 = 0.]

•• Create an equation involving fractions that has only one solution. Th en create an 
equation involving fractions with an infi nite number of solutions. [Answer 
(example): 2

3 x = 5
6 x + 2 and 2

3 x = 13 x + 13 x.]
•• Create an equation with no solutions. Why doesn’t it have solutions? [Answer 

(example): 3x – 4 = 3x + 5. Th is equation has no solutions because if you subtract 
3x from both sides you end up with –4 = 5, which is not true.]
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•• How would you estimate the solution before solving each equation?
2
3 x – 11

3 = 21
2

2
3
x + 5

3 = 4
2
x – 10x

[Answer (examples):

◆◆ For the fi rst equation, I would think that this is really equivalent to 2x – 4 = 71
2 

(by multiplying each term by 3), so that’s close to 2x – 4 = 8, so x is near 6.  
OR I would know that 2

3 x is about 4 since 21
2 + 11

3 is close to 4, so x is about 6.
◆◆ For the second equation, I would think that x = 0 leads to 5

3 = 0, which is not 
true, so I’d try x = 3, and that leads to 32

3 = –24; but 32
3 and –24 are farther apart 

than 5
3 and 0, so then I’d try something closer to 0, such as 12 . If I let x = 12 , I get 

2 = –4, and 2 and –4 are pretty close, so I think the answer might be really close 
to 12 . OR I would think that this is actually 2x + 5 = –24x if I multiply through 
by 3; that can happen only if x is negative and pretty close to 0, or else 2x and 
–24x would be very far apart, not just 5 apart. So, I think the solution is a 
negative number not far from 0, maybe near –1

4 .]

•• Describe two ways to solve the equation 5
6 x – 1

4 = 5
8 x. [Answer (example): I could 

solve the equation algebraically, or I could use graphing. Two possible algebraic 
solutions are as follows:

◆◆ I would multiply through by 24 to get rid of sixths, fourths, and eighths and 
end up with 20x – 6 = 15x. Th en I’d subtract 15x and add 6 to both sides to get 
5x = 6. Th en I’d divide both sides by 5 to get x = 6

5 .
◆◆ I would subtract 5

8 x from both sides and add 1
4 to both sides to get 2

5
4 x = 1

4 . 
Th en I would divide both sides by 2

5
4 to get x = 2

24
0 = 6

5 .

For a graphing solution, I would graph the lines y = 5
6 x – 1

4 and y = 5
8 x and see 

where they cross. Th e x-value where the lines cross is the solution.]
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Solving Two Equations in Two Unknowns

Expressions and Equations CCSSM 8.EE

Analyze and solve linear equations and pairs of 
simultaneous linear equations.

8. Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables 

correspond to points of intersection of their graphs, because points of 
intersection satisfy both equations simultaneously.

b. Solve systems of two linear equations in two variables algebraically, and estimate 
solutions by graphing the equations. Solve simple cases by inspection. For 
example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot 
simultaneously be 5 and 6.

c. Solve real-world and mathematical problems leading to two linear equations in 
two variables. For example, given coordinates for two pairs of points, determine 
whether the line through the fi rst pair of points intersects the line through the 
second pair.

IMPORTANT UNDERLYING IDEAS

x Relating systems of equations to real-life situations. When teaching students about 
systems of two equations in two unknowns, the purpose of the exercise needs to 
be made clear. Students need to realize that, for example, a person might want to 
compare two possible situations involving linear relationships to see when one is 
preferable to the other or when one has the same eff ect as the other. Th is would be 
a common reason for considering the solutions of systems of two equations in two 
unknowns.

An example would be a problem such as “One gym charges a $100 member-
ship fee plus $10 a month, and another charges a $40 membership fee plus $15 
a month. Which is the best buy?” Some students might realize right away that, just 
as they learned that patterns that grow more quickly always surpass patterns that 
grow more slowly, the second plan will eventually be more costly, but the question 
could be about when that cut-off  occurs, since initially the second plan is obviously 
less costly. Th e cost for the fi rst gym could be described using the equation cost = 
100 + 10m, if m is the number of membership months, and the cost for the second 
gym using the equation cost = 40 + 15m. Essentially, students want to determine 
the value of m where the cost values would be equal, realizing that for any smaller 
m, the second plan is better, and for any greater m, the fi rst plan is better. Deter-
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mining that value of m is, in essence, determining a common solution to the two 
equations.

Another type of situation in which two equations with two unknowns might be 
used is one involving mixtures. For example, suppose a vendor sells a certain type 
of snack for $10/pound and another type of snack for $8/pound. A question might 
be asked about the proportions in which the two snacks should be combined to 
form 20 pounds of a new snack that would sell at $8.50/pound and would lead to 
the same level of profi t. Essentially, the goal is to fi nd the correct values x and y 
so that x + y = 20 and 10x + 8y = 8.5 × 20, where x is the weight of the fi rst type of 
snack and y is the weight of the second type of snack to be used in the mixture. Th e 
total weight must be 20, which is refl ected in the fi rst equation, but the cost pro-
portions also need to be considered, which is refl ected in the second equation.

A variation of this type of mixture problem might be something like this: “Ben 
drove a total of 300 miles. For part of that distance he averaged 60 mph, but for 
part of it he averaged only 40 mph. If the whole trip took 5 hours and 50 minutes, 
how much of it was at 60 mph and how much of it was at 40 mph?” Here the equa-
tions are

s + f = 300 and s
60 + 

f
40 = 55

6 ,

where s is the distance at 60 mph and f is the distance at 40 mph.
Yet another situation might be one like this: “3 jugs of orange juice and 1 jug 

of apple juice cost $15. But the price of orange juice increases by 20% and the price 
of apple juice increases by only 10%. Th e new total cost would be $17.70. What did 
each kind of juice originally cost?” Th is time the equations would be 3o + a = 15 
and 1.2(3o) + 1.1a = 17.70.

What students should notice is that, in each of these situations, there are two 
variables and two relationships between them that must both hold true.

x Interpreting a common solution numerically. Students need to realize that for 
two equations to have a common solution, when the same values for x and y are 
substituted into each equation, both equations must hold true. Th is may seem 
simplistic, but not all students actually realize this, and explicit discussion of the 
concept might be valuable.

Consider the equations x + y = 5 and x – y = 1. To get the discussion going, 
the teacher might ask students to determine some values for x and y that will make 
the fi rst equation true and then ask if those values make the second equation true. 
For example, if the student decided to let x = 1 in the fi rst equation, then y would 
have to be 4 in order to make that equation true. But if x = 1 and y = 4 are used in 
the second equation, the second equation is not true, so x = 1 and y = 4 is not a 
common solution.
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Students might be exposed to the notion that some pairs of equations have no 
common solution, for example, x + y = 5 and 2x + 2y = 12, since if the second 
equation were true, x + y would have to be 6 and not 5. It is impossible for the sum 
of two numbers to be both 5 and 6.

Students might also consider that there might be an infi nite number of solu-
tions, for example, for x + y = 5 and 2x + 2y = 10, since both equations essentially 
say the same thing. Because the same information is repeated, any values that are 
true for the fi rst equation, for example, x = 1 and y = 4, or x = 20 and y = –15, or 
x = 2

3 and y = 41
3 , are true for both equations.

x Interpreting and estimating a common solution graphically. If students have 
experience solving single linear equations using graphs, as described earlier, it is 
not a big leap to solving two equations in two unknowns. In other words, solving 
the equation 3x + 5 = 2x + 12, as described earlier, by graphing y = 3x + 5 and 
y = 2x + 12 and looking for the x-value where the two lines meet is, in eff ect, solv-
ing two equations in two unknowns where both equations have the same left -hand 
side, in this case y.

Students can extend this thinking. Imagine these two equations in two 
unknowns:

2y – 3x = 5 and 4x + 12y = 15

A student could solve each equation for y in terms of x and do what was discussed 
above. In this case:

y = 3x
2  + 52 and y = –x

3  + 54
3x
2  + 52 = –x

3  + 54

But a student could also just draw the two graphs in the original form given, with-
out fi rst solving them both for y, and see where they cross, as shown below.

1 2 3 4 5–5 –4 –3 –2 –1 0

1

2

3

–2

–1

2y – 3x = 5

4x + 12y = 15
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Each equation is solved by using the coordinates from any pair of points on that 
line. For example, two points on the line of 2y – 3x = 5 are (0,21

2) and (1,4), so if 
x = 0 and y = 21

2 or if x = 1 and y = 4, the fi rst equation is solved. But notice that 
those two value pairs do not work for the line 4x + 12y = 15. For that equation, if 
x = 0, y would be 11

4 , so there is no common solution if x = 0. Similarly, there is no 
common solution if x = 1, since for the line 4x + 12y = 15, when x = 1, then y = 1

11
2 , 

not 4 as for the other equation. Looking at the graph, the only time that the same 
x and y combination works for both equations is where the two lines cross, at 
about x = –3

4 , where y is about 11
2 . (In fact, solving the equations algebraically, the 

solution is x = –2
15

2 and y = 14
21

4 .)
Although it is obviously easier for students to start with equations whose 

graphs intersect at whole number values of x and y—for example, the equations 
2x + 3y = 17 and 7x – y = 2 (which intersect at x = 1 and y = 5)—it is important for 
students to see how equations with more complicated solutions can still be esti-
mated and to realize that the solution still appears at the intersection point of the 
lines.

Students could be more exact by using the following line of thinking: Suppose 
one line is y = 2

3 x + 1 and the other is y = 3
4 x – 3 (as shown below). At x = 0, the 

y-values are 1 – (–3) = 4 apart. But the second line’s slope is 1
1
2 more than the fi rst 

line’s. Th at means that when x has increased by 12, the second line’s y-value has 
increased by 1 more than the fi rst line’s, so at x = 12, the y-values are only 3 apart. 
Th e lines will intersect when the y-values are 0 apart, which would require 3 more 
steps of increases of 12 in x. Th erefore, when x = 48, the lines should intersect. In 
fact, 2

3 × 48 + 1 = 33 and 3
4 × 48 – 3 = 33, so the lines do intersect at x = 48.

4 units10 20 30 40 50–10

10

20

30

40

–10

60

3 units

2 units

y =    x – 33
4

y =    x + 12
3

In other words, students could use information about how slopes diff er and how 
intercepts diff er to predict where two lines will intersect on a graph.

Students should also have experience with situations where the equations of 
the two lines have the same slope, but are not identical, in which case there are no 
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common solutions, or situations where essentially the same line is described in 
two ways in the two equations, in which case there is an infi nite number of com-
mon solutions.

For example, there are no common solutions to 2x + 3y = 5 and 4x + 6y = 12.

1 2 3 4–3 –2 –1 0

1

2

3

–1

Th ere is an infi nite number of common solutions to 2x + 3y = 5 and 4x + 6y = 10, 
since they are the same line.

1 2 3 4–3 –2 –1 0

1

2

3

–1

Once students learn to use graphing to estimate the common solution of two 
equations in two variables, they should start to see that the only possible results 
are either no solutions, an infi nite number of solutions, or one solution. Th e fi rst 
case occurs when the lines are parallel, the second case when the lines are identi-
cal, and the third case in all other situations. Th ere can be only one solution if the 
lines are not parallel or identical since two points determine a line, and if there 
were two common points on two lines, the entire lines would have to be the same. 
Lines can only cross in 0, 1, or an infi nite number of positions.

x Determining a common solution algebraically. Although a graph allows students 
to estimate common solutions for two equations in two unknowns, graphing is 
oft en not precise enough to give exact values. In this situation, or if the students 
prefer, the solution can be determined algebraically. Consideration of whether 
algebraic techniques are essential fi ts with the mathematical practice standard of 
attending to precision. Students should be expected to consider whether exact 
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solutions are required or whether estimates are suffi  cient in the context of the 
situation.

One common method for determining exact solutions algebraically is to rear-
range both equations so that they share the same left -hand (or right-hand) side 
and then set the two other sides equal, since these two sides would have to be 
equal in order for there to be a common solution. In this way, an equation involv-
ing only one variable is created and students solve it using procedures they already 
know. Students need to understand that their goal is to end up with an equation 
with one variable, because they know how to solve that type of equation.

Aft er solving this equation in one variable, they will know only one of the 
values, either x or y, for the common solution, but not both. Th ey will have to go 
back to either one of the original equations to see what the relationship between 
x and y has to be, and then substitute the common solution value for the known 
variable to determine the common solution value for the still unknown variable. 
Students need to experience the fact that it does not matter which relationship 
they go back to; the results will be the same.

Shown below are two ways to determine a common solution for the equations 
2x + 3y = 5 and 2x – 3y = –12, using the strategies described above.

If 2x + 3y = 5, then x = 
(–3y + 5)

2

If 2x – 3y = –12, then x = 
(3y – 12)

2

Th ere is a common solution only if

 
(–3y + 5)

2
 = 

(3y – 12)
2

 –3y + 5 = 3y – 12
 17 = 6y

so y = 16
7

Since x = 
(–3y + 5)

2

 x = 
[(–3)(1

6
7) + 5]

2
 x = –7

4
 

If 2x + 3y = 5, then y = 
(–2x + 5)

3

If 2x – 3y = –12, then y = 
(2x + 12)

3

Th ere is a common solution only if

 
(–2x + 5)

3
 = 

(2x + 12)
3

 –2x + 5 = 2x + 12
 –7 = 4x

so x = –7
4

Since y = 
(–2x + 5)

3

 y = 
[(–2)(–7

4) + 5]
3

 y = 16
7

Another approach students can take is the process called “substitution.” Th e 
underlying idea, which needs to be discussed with students, again, is to use the 
information from both equations in such as way as to rearrange the given equations 
into one involving one variable, because students know how to handle this type 
of situation.
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Using the same equations as were used earlier, 2x + 3y = 5 and 2x – 3y = –12, 
students might notice that they could use the fi rst equation to realize that 2x must 
be equal to –3y + 5 in order for that equation to be true, and then they could sub-
stitute –3y + 5 for 2x in the second equation. What should be reinforced is that, by 
doing this, both relationships between x and y are being used simultaneously. In this 
case, the substitution would lead to 2x – 3y = –12 becoming (–3y + 5) – 3y = –12, 
leading to 6y = 17, just as was the case using the earlier method.

Alternatively, students could have realized that for the fi rst equation to be true, 
3y has to be equal to (–2x + 5), and they could have substituted this into the sec-
ond equation to get 2x – (–2x + 5) = –12, which is 4x = –7, just as was the case 
using the earlier method.

Students should learn that any substitution works, so they might look for a 
convenient one that does not require too much manipulation of the equations. Th is 
method, too, leads to the situation where only one variable in the common solu-
tion is known, and the value of the other variable must be determined by using 
one of the known relationships between the two variables.

Yet another algebraic method for solving two equations in two variables is 
called “elimination.” Th is name clearly reminds students that the goal is to elimi-
nate one variable in order to produce an equation that they already know how to 
solve; of course, the other methods, already discussed, have the same eff ect. How-
ever, in this case, students use equivalent equations which, when added or sub-
tracted, result in the elimination of one of the variables. Th is is allowable because 
multiplying or dividing through an equation or adding equal amounts to equal 
amounts is legitimate in terms of the balance metaphor of what an equation means.

So, again, using the same pair of equations as before, 2x + 3y = 5 and 
2x – 3y = –12, the student might notice that if the two equations are added, what 
is happening is that equal amounts are being added to both sides of the fi rst equa-
tion, the amount being 2x – 3y, but in the equivalent form of –12 when it is added 
on the right-hand side. Th e result, in this case, is the equation 4x = –7, as before.

Had the equations been subtracted instead, so equal amounts are being taken 
from both sides of the fi rst equation, the amount being 2x – 3y, but in the equiv-
alent form of –12 when it is subtracted on the right-hand side, the result is the 
equation 6y = 17, as before.

Th ere are times when the process is not quite as simple as in the example just 
shown, since the coeffi  cients of x or y are neither equal nor opposites. In such 
cases, equations can be replaced by equivalent equations by multiplying through 
by factors to get to a situation where either the coeffi  cients of x or the coeffi  cients 
of y are equal and the equations can be subtracted to eliminate that variable, or 
where the coeffi  cients are opposites and the equations can be added to eliminate 
that variable.
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For example, consider the equations 3x – 2y = 12 and 2x + 5y = 20. Here, sim-
ply adding the equations or subtracting them would not eliminate a variable. But 
these equations might be solved by multiplying all of the terms of the fi rst equa-
tion by 5 and all of the terms of the second equation by 2. In that way, the coeffi  -
cients of y would become –10 and 10, and adding the equations would eliminate y:

3x – 2y = 12, multiplied by 5, becomes 15x – 10y = 60
2x + 5y = 20, multiplied by 2, becomes 4x + 10y = 40

Adding the two new equations results in the equation 19x = 100, and a value for x 
has been determined. Going back to either equation to determine the correspond-
ing value of y would be the next step.

Another option might have been to multiply the terms of the fi rst equation 
by 2 and the terms of the second equation by 3, so that the coeffi  cients of x would 
have become equal and the equations could have been subtracted:

3x – 2y = 12, multiplied by 2, becomes 6x – 4y = 24
2x + 5y = 20, multiplied by 3, becomes 6x + 15y = 60

Subtracting the two new equations results in the equation –19y = –36, and a value 
for y has been determined. Going back to either equation to determine the corre-
sponding value of x would be the next step.

No matter which methods students use, it is critical that they understand that 
the goal is to use all the information given, but to transform that information fi rst 
into an equation in one variable that they know how to solve, and then to go back 
again and use that information to get the value of the other variable to reach the 
common solution.

Good Questions to Ask

•• Describe a problem involving the perimeter of a rectangle that could be solved by 
writing two linear equations in two unknowns. Tell what the equations are and 
why they are appropriate. [Answer (example): Th e perimeter of a rectangle is 
80 cm. Th e length is triple the width. What are the length and the width? Th e 
equations are 2l + 2w = 80 and l = 3w. Th ose equations are appropriate because 
I used the perimeter formula and the information that was given about the length 
and width.]

•• Describe a problem that can be represented by writing two equations in two 
unknowns. Tell why those equations make sense. [Answer (example): Th ere were 
4 more boys than girls in a group of 34 kids. How many boys were there? How 
many girls? Th e equations would be b + g = 34 and b = g + 4. Th ese equations 
summarize the two pieces of information provided—the total number of kids and 
the relationship between the number of boys and the number of girls.]
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•• Create two equations of lines that pass through (1,4). How do you know you are 
correct? How do you know there are other possibilities? [Answer (example):  
3x + 2y = 11 and 2x – 3y = –10. I know I am right because I just wrote whatever 
left-hand side I wanted, substituted the value of 1 for x and 4 for y, and then wrote 
the number that was correct. I know there are other possibilities because I could 
have just chosen diff erent left-hand sides.]

•• Can you ever be certain of a solution of two equations in two unknowns that you 
fi nd graphically or is it always an estimate? [Answer (example): I don’t think you 
can ever be sure, because if a value is a fraction, it’s really hard to tell exactly what 
fraction it is, and even if it looks like a whole number, it might be a fraction that is 
just really close to a whole number.]

•• You graph to estimate the common solution of y = 3x + 2 and some other 
equation. Th e common solution is in Quadrant II. What might the equation be 
and what would your estimate for the common solution be? [Answer (examples):

◆◆ y = –x. My estimate for the solution based on the graph would be (–1
2 ,12 ). 

I tested and it was actually right.
◆◆ y = –1

2 x. My estimate for the solution based on the graph would be (–5
8 ,13 ).]

•• When you solve a pair of equations in two unknowns algebraically, why do you 
always seek an equation involving only one variable? [Answer (example): Because 
I know how to solve an equation involving one variable, or because there are too 
many solutions when there is an equation involving two variables and two 
unknowns and I had to fi nd a way to have only one solution.]

•• Describe a pair of equations in two unknowns you might solve using each method 
below and tell why you chose that pair.

◆◆ By solving both equations for either x or y and then setting the two descriptions 
of that variable equal.

◆◆ By substituting information from one equation into the other.
◆◆ By using elimination and adding or subtracting the two equations.

[Answer (example):
◆◆ If the equations were 3y = 2x – 5 and 2y = 7x + 2, I might solve each of them for 

y, since that’s an easy division, and then set the other two sides equal.
◆◆ If the equations were 2x = 5y – 8 and 3y + 2x = 20, I might substitute the 5y – 8 

from the fi rst equation into the 2x in the second equation since that would be 
quick and easy.

◆◆ If the equations were 5x – 2y = 20 and 6x + 2y = 30, I would add the equations 
since adding –2y and 2y gets rid of the ys.]

•• How does looking at how far apart the slopes and intercepts are in y = 5x – 4 and 
y = 10x – 12 help explain where they intersect? [Answer: Th e y-values are 8 apart 
when x = 0 and the slopes are 5 apart, so when x = 1, the y-values will be only 
8 – 5 = 3 apart. To be 0 apart, you need to increase x by another 3

5 of 5, so the 
lines intersect when x = 13

5 .]
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Functions

Functions CCSSM 8.F

Defi ne, evaluate, and compare functions.

1. Understand that a function is a rule that assigns to each input exactly one output. 
Th e graph of a function is the set of ordered pairs consisting of an input and the 
corresponding output.

2. Compare properties of two functions each represented in a diff erent way (algebraically, 
graphically, numerically in tables, or by verbal descriptions). For example, given a 
linear function represented by a table of values and a linear function represented by 
an algebraic expression, determine which function has the greater rate of change.

3. Interpret the equation y = mx + b as defi ning a linear function, whose graph is a 
straight line; give examples of functions that are not linear. For example, the function 
A = s2 giving the area of a square as a function of its side length is not linear because 
its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

IMPORTANT UNDERLYING IDEAS

x Defi ning a function. Functions are rules that relate a starting “position” called an 
input to an ending “position” called an output. For example, the rule could be 
“take a number and double it or take a number, add fi ve, and then double it.” What 
distinguishes a function from something called a “relation” is that there is only one 
output for a given input. Th is is not the case, for example, for the square root rule, 
where a number has two square roots, one positive and one negative.

Notice that if a graph of a function is drawn, one way to test that it is a func-
tion and that there is only one output for a given input is the “vertical line test.” If 
a vertical line is drawn at a point along the x-axis, it should hit the line for the 
function only once, not more times. For example, compare the graph of y = x, 
which is a function, with the graph of y = sqrt(x), which is not.

1 2 3 4–4 –3 –2 –1 0

1

2

3

–2

–1

–3

1 2 3 4–4 –3 –2 –1 0

1

2

3

–2

–1

–3
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Although there can be only one output for a given input, there might be many 
inputs that lead to the same output. For example, if the function were the rule “the 
output is 1 if the number if positive, or –1 if the number is negative or 0,” there is 
one output for each input but there are many inputs that lead to the output of 1 
and many that lead to the output of –1.

1 2 3 4 5–5 –4 –3 –2 –1 0

1

2

3

–2

–1

Students have been experiencing functions since early elementary years, but 
the relationships simply were not called “functions.” For example, when students 
multiplied 3 by 4, they were considering the value of the function 3 × □ when the 
input was 4. Or when they solved the equation 3 × □ = 12, they were considering 
the function 3 × □ and determining when the output was 12. When students used 
the formula P = 4 × s to describe the perimeter of a square, they were using a func-
tion in which the input was the side length of a square and the output was the 
perimeter.

Other examples of experiencing functions might have been in student work 
with patterns. For example, suppose students were trying to determine the num-
ber of squares in the 20th picture of the pattern shown below:

Students were, in essence, using the principle of generalizing to determine the 
function f(x) = 2x – 1 in order to predict the value of the function, defi ned only 
when x is a whole number, when x was 20.

Similarly, if they were attempting to determine the number of diagonals in an 
n-sided polygon, students might have used a pattern to help them notice that the 
number is n(n – 3)/2 and then justifi ed this observation either geometrically or 
numerically.



Grade 8 139

Number of sides 3 4 5 6

Number of diagonals 0 2 5 9

Sometimes students respond positively to the concept of a “function machine,” 
a visual model where there is an input, a rule, and an output. Th ey could be given 
any two of the three components and asked to determine the missing one. A func-
tion machine might be diagrammed something like this:

Input

Output

Rule

Notice that if the input and the rule are given, there is only one possible out-
put. For example, if the input is 8 and the rule is “double the number and add 5,” 
the output must be 21. If the output is 8 and the rule is “double the number and 
add 5,” the input is determined by using reverse operations, that is, subtract 5 and 
take half, so in this case the input would be 3

2 . In eff ect, the equation 2x + 5 = 8 
was solved.

But if the input and output are given, students should realize there are many 
potential rules, for example, if the input is 8 and the output is 10, the rule could be 
“add 2” or it could be “double the number and subtract 6” or it could be “square 
the number, take half, and subtract 22.” Th ere is an infi nite number of possible 
rules. Students should explore this phenomenon and apply the mathematical prac-
tice standard of making sense of problems and persevering in solving them.

Although many functions encountered by students at this level have inputs of 
single numbers, the input of a function could be something else, such as a pair of 
numbers, where the function rule is to add them.

Not all functions are numerical. For example, the function that has an input of 
a polygon and an output of its number of sides is familiar to students. A function 
could also have inputs of objects and outputs of the objects’ colors, assuming each 
object has only one color.
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x Relating diff erent representations of functions. Functions can be represented ver-
bally, numerically using tables of values, algebraically, or graphically. Each of these 
representations reveals information about the function.

For example, the verbal rule “double a number and add 5” reveals that the 
result is always more than double the number. Th e table of values below makes it 
very easy to see that if the input increases by 1, the output increases by 2.

Input Output

1 7

2 9

3 11

4 13

Th e algebraic, or symbolic, representation of the function, oft en written 
f(x) = 2x + 5, tells us that the function involves the fi rst power of a variable and no 
higher power and involves an initial value as well as a proportional relationship. 
Th is type of representation is also an effi  cient way to write the verbal rule. Some-
times, instead of f(x) = 2x + 5, one might simply write y = 2x + 5. Any other vari-
ables, not x or y, could also be used.

Th e graphical representation of the function shown below makes it clear that 
the function is linear.

1 2 3 4 50

5

10

15

20

25

6

30

7 8

Notice that the graph is simply the set of ordered pairs that describe all possible 
input/output combinations. Because values of the input other than integers were 
used in the graphical representation (in contrast to the the table of values given 
above, which included integers only), a more complete picture of the function is 
presented with this type of representation than is possible with just a table of 
values.
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x Comparing functions. Oft en functions are compared in terms of how fast they 
grow. Neither the verbal rule nor the algebraic representation makes the growth 
rate as plain to see as either a table of values or a graph.

For example, as shown below, the table of values for the function f(x) = x 2 
and the graph for f(x) = 7x could be compared to see which grows faster when 
x increases in size.

Input Output

1 1

2 4

3 9

4 16

1 2 3 4 50

10

20

30

40

50

–1

–10

Th e table shows that f(x) = x2 increases by larger and larger values as x increases, 
but the graph shows that f(x) = 7x grows more consistently, always by 7 for an 
increase of 1 in x. Th us, it is clear that the fi rst function grows more quickly as 
x gets larger.

Students should recognize the diff erence between growth that is long run ver-
sus short run. Mathematically, long-term growth is usually of more interest.

x Qualitative features of functions. Students might spend some time exploring 
non-linear functions such as f(x) = 3x 2 or f(x) = 2x + x 2 to see how the values of 
the dependent variable increase and decrease. Th ey could notice, fi rst of all, that 
the functions are not linear because their graphs are curved (not straight lines) 
and that their tables of values do not show constant increases. Students might also 
look for areas of increase and decrease.

For example, consider f(x) = 2x + x 2, which is graphed at the top of the next 
page:
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1 2–4 –3 –2 –1 0

1

2

3

–2

–1

Th e function decreases as x increases until x = –1, and then it starts increasing. 
Students might analyze why this observation makes sense. When x is negative and 
far from 0, the x 2 term matters most, and it is positive. But for fractions near x = 0, 
the x 2 term is less than 2x, and so the negative term matters most, explaining the 
y-values being negative. As x becomes positive, the function increases, because 
both x 2 and 2x increase, contributing to the increase in the dependent variable.

Good Questions to Ask

•• Which of these do you think is a function? Why?

◆◆ Triple a number and then subtract half of it.
◆◆ Take a number away from 20.
◆◆ Add three times a number to its square.
◆◆ Take the square root of four times the number.

[Answer (example): Th e fi rst three are functions, since when you follow the rule 
with any number, you get a specifi c answer. Th e last one is not a function, since 
you could get more than one output for a single input. If, for example, the input 
were 9, the output could be either 6 or –6.]

•• Choose a measurement formula and tell whether and why you do or do not think 
it implicitly describes a function. [Answer (examples):

◆◆ Th e formula A = πr 2 is a function, since the input is the value of r and the 
output is the area of the circle. Th ere is only one area for any circle. Th e inputs 
have to be positive numbers only, though, or there wouldn’t really be a circle.

◆◆ Th e formula A = bh for the area of a parallelogram is a function if the input is a 
pair of numbers (b and h) and the output is the area. Both b and h have to be 
non-negative.]

•• Describe a function in which many inputs lead to the same output. [Answer 
(examples):

◆◆ Th e function could be the distance of a number from 0 on the number line. Any 
number except 0 and its opposite have the same output.
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◆◆ Th e function could be the greatest integer less than the value of a number. So, if 
the input were any mixed number between 2 and 3, there would be the same 
output of 2.]

•• Suppose the input were an area measure and the output were a shape. Could that 
be a function? [Answer: No, because there are always a whole lot of shapes with 
any particular area. Th ere would even be a whole lot of rectangles with the same 
area if you made the length smaller when you made the width greater.]

••  Describe each function below using a diff erent representation (verbal, table of 
values, graph, or symbolic). Tell what each representation makes easier to see 
about the function.

◆◆ f(x) = 10 – x
◆◆ Triple a number, subtract 10, and then double the result
◆◆ A function whose graph looks like this one:

1 2 3 4–3 –2 –1 0

2

4

6

8

–4

–2

◆◆ A function that is described by this table of values:

Input Output

1 –3

2 0

3 3

4 6

[Answer (examples):

◆◆ Another way to show 10 – x is to say “take a number away from 10.” Both ways 
make it really easy to see that if x is a small number, the output is close to 10. 
I think the fi rst way makes it easier to see that it’s not the same as x – 10 since 
I could just do the algebra.

◆◆ Another way to write “triple a number, subtract 10, and then double the result” 
is f(x) = 2(3x – 10). I think the fi rst way makes it easier for me to get the output 
since I just follow the rules in order. For the other way, I need to know the rules 
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for the order of math operations. But the second way makes it easier to see that 
the graph is going to be a line.

◆◆ Another way to describe the function shown in the graph is to make a table of 
values using ordered pairs taken from the graph. I think the table of values 
makes it easy to see that the value of the output increases by 2 when the value 
of the input increases by 1. But the graph makes it easy to see that the function 
is actually a line.

◆◆ Another way to express the table of values is by using the rule f(x) = 3x – 6, and 
I think the rule is better for fi guring out what happens when x is not a whole 
number. But I think the table makes it easy to see that the value of the output 
increases by 3 when the value of the input increases by 1.]

•• Describe a function that grows faster than f(x) = 5x. [Answer (examples):

◆◆ I would pick f(x) = 7x, since it goes up by 7s when the original function goes up 
by 5s.

◆◆ I would pick f(x) = 5x2, since when x gets larger, 5x2 becomes a lot larger than x.]

•• How would using a table of values help you fi gure out how fast a function grows? 
[Answer (example): I would pick a consistent value for the increase of the inputs 
and then look at how the outputs increase for that consistent input value change.]

•• How do you know that the function f(x) = 4 – 3x – 2x2 increases when x increases 
sometimes, but not all the time. [Answer (examples):

◆◆ I graphed it and that’s what I saw.
◆◆ When x = –10, f(x) = –166, but when x = 0,  f(x) = 4, which is an increase. But 

when x = 10, f(x) = –226, which is a decrease from the result when x = 0.
◆◆ When x is negative and far from 0, the output will be a large negative number. 

When x = 0, the output is 4. But when x is positive and far from 0, the output 
will be a large negative number. So that is an increase and then a decrease in the 
output as the input increases.]
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Linear Functions

Functions CCSSM 8.F

Use functions to model relationships between quantities.

4. Construct a function to model a linear relationship between two quantities. Determine 
the rate of change and initial value of the function from a description of a relationship 
or from two (x, y) values, including reading these from a table or from a graph. 
Interpret the rate of change and initial value of a linear function in terms of the 
situation it models, and in terms of its graph or a table of values.

5. Describe qualitatively the functional relationship between two quantities by analyzing 
a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). 
Sketch a graph that exhibits the qualitative features of a function that has been 
described verbally.

IMPORTANT UNDERLYING IDEAS

x Using linear functions to describe relationships. Th e ideas in the section on Equa-
tions of Lines (pages 113–121) describing proportional relationships, slope, and so 
forth can all be reframed using the language of functions. For example, the rela-
tionship y = 60x, which relates the number of minutes (y) to the number of hours 
(x), can be reframed as a function f(x) = 60x. Th e input is the number of hours 
and the output is the number of minutes. Th e unit rate, which is the slope of the 
line, appears as the coeffi  cient of x in the function, just as it would in the equation 
of the line. Th e relationship y = 100 + 10x, which might describe the cost (y) of a 
gym membership that has an initial fee of $100 and a monthly charge of $10, could 
be described by the function f(x) = 100 + 10x, where x is the number of months of 
membership.

If students construct tables of values to describe linear functions, they will 
notice that there is a constant increase in the values for one variable if there is a 
constant increase for the other. Some students tend to choose values of the inde-
pendent variable randomly when they construct a table of values and might never 
notice the consistency in the increase of the dependent variable. A consistent 
increase of, for example, 1 can be applied to the independent variable, producing a 
progression such as x = 1, then 2, then 3, then 4, . . . , but an increase of any size, 
applied consistently, could be informative. For example, the increase could be a 
constant 2 or even a constant 1

2 or –1
2 .

Students should have opportunities to work with tables of values in which the 
values of the independent variable do not increase in a constant way, for example, 
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a table for the function f(x) = 3x. In a case such as this, students will see how it 
becomes harder to recognize what is going on.

x f(x)

0 0

1 3

6 18

10 30

Students should associate the constant increase in the dependent variable of a 
linear function when the independent variable increases by 1 with the unit rate 
describing the relationship being graphed. Th ey should also note that sometimes 
the values of the dependent variable are multiples of the corresponding values of 
the independent variable, but they should be aware that sometimes an initial con-
stant value is added to that multiple of the independent variable.

For example, the function below, which describes the number of legs pos-
sessed by a given number of healthy dogs, is one in which not only is the increase 
in the dependent variable constant but also, because the variables are proportional, 
the value of the dependent variable is the product of that increase and the corre-
sponding value of the independent variable. In this case, the number of legs is a 
multiple of 4.

Dogs Legs

1 4

2 8

3 12

4 16

But in some situations, the dependent variable is not a simple multiple of the 
independent variable. For example, the table below shows the relationship between 
how much a person has in the bank aft er so many weeks and the number of weeks 
if the person started with $48 and put in $5 a week.

Weeks Amount in bank

0 48

1 53

2 58

3 63

4 68

5 73
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Th ere is a constant increase of 5 in the amount in the bank, but the amount values 
are not the products of 5 and the number of weeks or multiples of 5.

However, if one more column were added to the table, the student could see 
that if what is called the “initial value,” 48 (the value when weeks = 0), is subtracted 
from the value of the dependent variable, the new column looks much like the legs 
column in the dogs/legs table. In eff ect, the weeks column and the newly added 
column form a multiplication table, as shown below.

Weeks Amount in bank
Amount in bank 

less 48

0 48 0

1 53 5

2 58 10

3 63 15

4 68 20

5 73 25

It becomes clear that the function describing the amount aft er x weeks is f(x) = 
5x + 48.

Since the unit rate (or rate of increase in the dependent variable for an increase 
of 1 in the independent variable) applies anywhere in a table of values, it is impor-
tant that students realize that they can subtract any two values of the dependent 
variable and divide the result by the diff erence between the corresponding inde-
pendent variables to determine that unit rate. For example, students can see that 
the unit increase is

53 – 48
1 – 0  = 51 = 5.

But using the third and fourth rows, students get the same value, that is,

63 – 58
3 – 2  = 51 = 5.

Even when using non-adjacent rows, such as the second and the sixth rows, the 
same value is achieved, that is,

73 – 53
5 – 1  = 20

4  = 51 = 5.

Th is is because the increase of 4 in the independent variable matches a 4 × 5 
increase for the dependent variable; the unit rate is still 5.

Students could plot the points appearing in a table of values such as this one 
to see that the process of determining the rate is the same in both formats. On the 
graph, dividing the rise of the line (the increase or decrease in the value of the 
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dependent variable) by the run (the increase or decrease in the value of the 
independent variable), to get the slope of the line, is the same as subtracting the 
y values on two rows in the table (which correspond to the y-coordinates of two 
points on the line) and dividing them by the diff erence between the x values on 
those two rows in the table (which correspond to the x-coordinates for the two 
points on the line).

x Describing types of linear functions. Students should explore diff erent ways to 
defi ne linear functions and how they interrelate.

According to one defi nition, a linear function is one whose graph is a line. 
Th is requirement could be the starting point from which students discover that 
the equation of the line always takes the form f(x) = ax + b, that there is always an 
initial value equal to b (when a = 0), and that subsequent values always increase 
(or decrease) in a constant way by multiples of a.

Another defi nition states that a linear function is one whose equation is of 
the form f(x) = ax + b. Students would discover that the graphs of such equations 
are always lines, that there is always an initial value equal to b (when a = 0), and 
that subsequent values always increase (or decrease) in a constant way by multi-
ples of a.

Or the defi nition could be that a function describes a relationship in which 
there is an initial value called “b” and that subsequent values increase (or decrease) 
in a constant way by multiples of a value called “a”. Students learn that the graph 
of this relationship is a line and that the equation of the line is of the form f(x) = 
ax + b. So, if a table of values with x = 1, 2, 3, 4, . . . has corresponding values that 
grow by 3, then 8, then 12, etc., the graph cannot be a line.

To help students gain a thorough understanding of linear functions, each of 
these three approaches to defi nition should be considered.

When exploring these relationships, students should note that sometimes 
functions are increasing (eventually realizing that this occurs when a is positive), 
sometimes decreasing (eventually realizing that this occurs when a is negative), 
and sometimes increasing (or decreasing) more quickly or less quickly (depending 
on how great the absolute value of a is).

Students should recognize that if they are asked to create a linear function that 
increases quickly, something like f(x) = 25x + 3 makes sense, but if they want a 
linear function that decreases slowly, something like f(x) = –0.5x + 9 makes sense.

Students should explore the fact that the value of the b tells them what is called 
the “y-intercept,” which is the initial value in the relationship because that is the 
value when there is a 0 value (therefore, initial) for the independent variable. As 
part of this exploration, they might be asked to consider what the equation of a 
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line might be if it has a negative initial value (realizing that it might be, for exam-
ple, f(x) = 4x – 8) or if it has a large positive initial value (realizing that it might be, 
for example, f(x) = 2x + 30).

Th e teacher could also initiate a discussion about why a linear function that is 
defi ned for all real number inputs always goes through either two or three quad-
rants of the coordinate plane and never one or four. Students could observe that 
the line cannot go through only one quadrant because the inputs are all real num-
bers, so the line has to extend infi nitely to the right and left  (or up and down). 
Th ey should also realize that it cannot go through all four quadrants since that 
would require both an increase somewhere and a decrease somewhere, and linear 
functions either constantly increase or constantly decrease.

Good Questions to Ask

•• What makes a function linear? Why? [Answer (examples): Th at when you graph 
it, you get a line, since “line” is part of the word “linear.” OR Th at when you 
increase the input by 1, the output always increases by a constant amount.]

•• Th e unit rate in a proportional relationship is 25. What might the relationship be? 
What would the table of values, graph, and equation look like? [Answer 
(example):

◆◆ It could be how many cents diff erent numbers of quarters are worth. Th e 
equation of the relationship would be f(x) = 25x. In the table of values, the 
outputs would look like a table of multiplication by 25. Th e graph would be 
a really steep line through the origin.

◆◆ It could be a relationship with the equation f(x) = 200 + 25x, which would tell 
how much money is in a bank account that started with $200 and then had $25 
added every week for x weeks. In the table of values, the amount would increase 
by 25 every time x increases by 1, but when x = 0, the amount would be 200. 
Th e graph would be a line that has an intercept of (0,200) and is really steep.]

•• If a linear function increases slowly, what do you notice about its equation? What 
if it decreases quickly? [Answer (example): If the function increases slowly, the 
coeffi  cient of x would be pretty small and it would be positive. If it decreases 
quickly, the coeffi  cient of x would be a negative number really far from 0.]

•• Another linear function, graphed on the same coordinate grid as f(x) = 3x – 8, is 
much steeper than f(x) = 3x – 8 and does not go through all the same quadrants. 
What might the function be? How do you know? [Answer (example):  
f(x) = –20x + 8. I know my function goes through Quadrant II, for example, when 
x = –10. But f(x) = 3x – 8 never goes into Quadrant II since, if x is negative, f(x) is 
too, so the points are in Quadrant III, not II.]
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•• Which of these statements do you think is true and why?

◆◆ A linear function with a negative slope has to go through Quadrants I, II, and IV.
◆◆ A linear function with a negative slope might go through Quadrants I, II, and IV.

[Answer (example): I know the fi rst statement is false since f(x) = –x goes through 
Quadrants I and III only. I know the second statement is true since f(x) = –20x + 10 
goes through Quadrant II when x = –2, through Quadrant I when x = 1

4 , and 
through Quadrant IV when x = 10.]

•• What does the initial value of a linear function represent? [Answer (examples):  
It tells what the value of the function is when the input is 0. OR It is the value of 
b when f(x) = mx + b. OR It is the y-intercept when you graph the function.]

Pythagorean Th eorem

Geometry CCSSM 8.G

Understand and apply the Pythagorean Th eorem.

7. Apply the Pythagorean Th eorem to determine unknown side lengths in right triangles 
in real-world and mathematical problems in two and three dimensions.

8. Apply the Pythagorean Th eorem to fi nd the distance between two points in a 
coordinate system.

IMPORTANT UNDERLYING IDEAS

x Thinking of the Pythagorean Theorem algebraically. Th e Pythagorean Th eorem 
has geometric, numeric, and algebraic aspects. Th e geometric aspect has to do 
with the areas of squares that are built on the sides of a right triangle. Th e numeric 
aspect has to do with calculating two sides when the third is known. But the alge-
braic aspect involves thinking of the theorem as generalized arithmetic and a tool, 
when algebraic techniques are applied, to determine a missing side length.

For example, knowing that the hypotenuse of a right triangle is 20" and one 
side is 10" allows a student to solve the equation 102 + s2 = 202 to determine the 
missing side length.

As well, the Pythagorean Th eorem can be applied in a number of other alge-
braic situations. At the 8th-grade level, it can be used to determine the distance 
between two points on a coordinate grid. Knowing the diff erence between the 
x-coordinates and the diff erence between the y-coordinates provides the lengths 
of two sides of a right triangle; the piece of line whose distance is required is the 
hypotenuse.
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For example, the distance between (1,5) and (3,11) on the line y = 3x + 2 is 
determined in this way:

1 2 3 4–1 0

2

4

6

8

10

12

6 units

2 units

Th e hypotenuse length is √22+62 = 2√10. Students should notice that the vertical 
distance is 3 times the horizontal distance because the slope of the line is 3.

Later, students can use the Pythagorean Th eorem to represent equations of the 
form x2 + y2 = 100. At this level, as will be discussed below, students can use the 
Pythagorean Th eorem to solve equations related to various measurement situations.

Good Questions to Ask

•• What equations could you write to describe each situation? What would a 
solution be? If there is more than one possibility, write several equations and solve 
them.

◆◆ Two side lengths of a right triangle are 10" and 12". What could the length of the 
third side be?

◆◆ One side of a right triangle is half the length of another side, and the hypotenuse 
is 10". What could the lengths of the three sides be?

[Answer (examples):

◆◆ For the fi rst situation, if the unknown side is the hypotenuse, 102 + 122 = h2, and 
the solution is √244. OR If the unknown side is one of the legs, 102 + s2 = 122, 
and the solution is √44.

◆◆ For the second situation, if one leg is double the other, s2 + (2s)2 = 102, so the 
lengths would be 2√5, 4√5, and 10. OR If the hypotenuse is double one of the 
legs, that leg would be 5 and the other leg would be 5√3.]

•• Choose the equation of a line. Th en choose two points on the line in two diff erent 
quadrants. Tell how far apart they are along that line. Explain all your thinking. 
[Answer (example): y = 4x – 8 is my line. Two points are (–1,–12) and (4,8). Th e 
distance between them is √52+202 , which is 5√17. I used the Pythagorean 
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Th eorem. Side lengths of the triangle I looked at were 5 and 20, and I fi gured out 
the length of the hypotenuse to get the distance between my two points.]

•• Use the Pythagorean Th eorem to describe two points that are 5 units apart on 
each line below:

y = 3x – 4
2y = 5x + 11

[Answer (examples):

◆◆ For y = 3x – 4, I know that the diff erence in y values is triple the distance in 
x values, so the equation to solve is s2 + (3s)2 = 25. Th at means 10s2 = 25, or 
s2 = 2.5, which gives s = 1.58, so any two x values 1.58 apart would work. I used 
(0,–4) and (1.58,0.74).

◆◆ For 2y = 5x + 11, the slope is 5/2, so the diff erence in y values is 2.5 times the 
diff erence in x values. Th e equation to solve is s2 + (2.5s)2 = 25. Th at means 
7.25s2 = 25, or s2 = 3.45, which gives s =1.86, so any two x values 1.86 apart 
would work. I used (0,5.5) and (1.86,10.15).]

Measurement Problems

Geometry CCSSM 8.G

Solve real-world and mathematical problems involving 
volume of cylinders, cones, and spheres.

9. Know the formulas for the volumes of cones, cylinders, and spheres and use them to 
solve real-world mathematical problems.

IMPORTANT UNDERLYING IDEAS

x Formulas for volumes of cones, cylinders, and spheres. Measurement formulas 
are equations that relate diff erent variables. For example, the formula V = πr2h is 
an equation that is true for the values of V, r, and h for any particular cylinder. If 
two of the values are known, the equation can be used to determine the third. For 
example, if the volume of a cylinder is 106.3 cubic inches and the radius is 2 inches, 
then the height must be 106.3

4π  inches.
At this level, the formulas that might be considered include

 Vcone = 13 πr2h
 Vcylinder = πr2h
 Vsphere = 43 πr3
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Using measurement formulas is a very useful way to practice algebraic skills. It 
helps students not only to calculate measurements but also to see how variables 
are related in realistic situations.

Good Questions to Ask

•• Ask students for an equation to model this measurement problem: Th e radius of a 
sphere was doubled. What happened to the volume? [Answer (example): Th e 
volume of the small sphere is V = 4

3 πr3. Th e volume of the big sphere is

V  = 4
3 π(2r)3 

= 3
3
2 πr3 

= 8(4
3 πr3).

So the volume of the small sphere was multiplied by 8.]
•• Ask students for an equation to model this measurement problem: Th e radius of 

a cone increased by 10" and the height did not change. What happened to the 
volume? [Answer (example): Th e volume of the original cone is V = 1

3 πr2h. Th at 
means the volume of the new cone is

1
3 π(r + 10)2h  = 13 π(r2 + 20r + 100)h 

= 13 πr2h + 2
3
0 πrh + 100

3 πh 

= old volume + 2
3
0 πrh + 100

3 πh 

= old volume + 2
3
0 πh(r + 5).

So the increase in volume was 2
3
0 πh(r + 5). Th e amount of increase depends on 

both the original radius and the original height.]
•• Ask students to create a measurement problem involving the volume of a cylinder. 

Th en ask them to create and solve an equation that would model the problem. 
[Answer (example): A can had a volume of 100 cm3. What might the radius and 
height have been? Since the volume of a cylinder is V = πr2h, one possible solution 
is r = 10 cm and h = 1

π .]
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Linear Trends

Statistics and Probability CCSSM 8.SP

Investigate patterns of association in bivariate data.

2. Know that straight lines are widely used to model relationships between two 
quantitative variables. For scatter plots that suggest a linear association, informally fi t 
a straight line, and informally assess the model fi t by judging the closeness of the data 
points to the line.

3. Use the equation of a linear model to solve problems in the context of bivariate 
measurement data, interpreting the slope and intercept. For example, in a linear 
model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an 
additional hour of sunlight each day is associated with an additional 1.5 cm in mature 
plant height.

IMPORTANT UNDERLYING IDEAS

x Lines of best fi t. Sometimes students gather data to attempt to derive a relation-
ship between two variables. If, when those data are plotted, the relationship looks 
“almost” linear, the student might construct a line of best fi t that would allow them 
to predict the value of one of the variables in terms of the other for unknown val-
ues of the variables.

For example, imagine that a student gathered data about heights of high school 
boys and their fathers.

Boy height 
(in inches)

Dad height 
(in inches)

64 67

67 74

59 65

63 71

70 74

58 65

65 71

When graphed, a line can be used to “estimate” the points, as shown on the next 
page.
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Looking at the graph, it appears to have a slope of about 0.9 and an intercept of 
about 12. Students can draw a line, using a ruler, that seems to fi t the points best. 
Th at line is usually above some points and below others; it is certainly not below 
all of them or above all of them. Ideally, the line is close to many points.

In this case, the line drawn might have the equation y = 0.9x + 12. Using that 
relationship, one can predict the height of the father of a boy who is any height. 
For example, one might predict the height of the father of a boy who is 68" tall to 
be about 73" tall. Th is equation is just an estimate. Th ere is a procedure for getting 
the best estimate called “linear regression” and a procedure for determining how 
good that fi t is, but these procedures are not examined yet at the 8th-grade level.

Since the slope of the line is about 0.9, that suggests that if a boy is 1" taller 
than another, the taller boy’s father is about 0.9" taller than the shorter boy’s father.

It is important that students understand that the point of creating a line of best 
fi t is primarily for predicting unknown values but also for understanding more 
deeply how the variables are related (e.g., really understanding how a certain 
increase in the independent variable aff ects the increase in the dependent vari-
able). Students should realize that the equation for the line of best fi t may or may 
not yield the values that actually appear in the original table.
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Good Questions to Ask

•• Th e table below shows how quickly a runner can cover certain distances. Describe 
the equations for two reasonable lines of best fi t for the data. What would the 
time likely be for 225 m? What does the slope of the line represent?

Distance (m) 50 100 150 200 250

Time (s) 6.3 12.7 19.1 25.6 32.1

[Answer (example): y = 0.13x – 0.2 OR y = 0.126x + 0.2. Th e likely time for 
225 m in the fi rst case would be about 29.1 s. Th e slope tells how much farther 
the runner gets in 1 second.]

•• Why might it be hard to fi nd a good line of fi t for these data?

X 5 15 25 35 45

Y 1,000 800 225 2,000 10

[Answer (example): Because the points don’t really seem to lie on a line. 
Sometimes the values go up a lot and sometimes less; sometimes they go up and 
sometimes they go down.]

•• Create a set of data for which y = –2x + 9 might be a reasonable line of best fi t. 
[Answer (example): A table of values for some possible data is shown below.]

x 0 5 10 15 20

y 8 –4 –10 –22 –30

Summary
By the end of Grade 8, students should use algebraic generalizations to work with 
powers. Th ey should deeply understand the concept of a function, and, in particu-
lar, of linear functions. Th ey should have a sense of what the slope and intercept of 
a line tell us and which situations are described by linear relationships. Th ey can 
connect equations of a line with associated tables of values and graphs. Th ey can 
also describe situations requiring the simultaneous solution of two linear equa-
tions in two unknowns. Th ey can solve linear equations by using a variety of tech-
niques and use equations to solve measurement problems.
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CONCLUSION

MANY TEACHERS were simply never taught many of the strategies to which 
they could expose their students to most eff ectively help those students develop a 
better grasp of algebraic concepts. I hope this resource provides some of that valu-
able mathematical background for the classroom teacher working with instruction 
in algebra.

Th e Good Questions provided in each section are only samples of what could 
be asked. What is important about the particular types of questions presented here 
is that many of them foster higher-level thinking and evoke the mathematical 
practice standards that are critical in today’s math classroom. Th e more teachers 
can get students to not just arrive at solutions, but to really think about mathemat-
ical ideas, the better off  the students will be. Th e sample questions provided in this 
resource almost all require students to think about the math, not just do it.
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