


A Focus on Multiplication and Division

A Focus on Multiplication and Division is a groundbreaking effort to make 
mathematics education research readily accessible and understandable to 
pre- and in-service K–6 mathematics educators. Revealing students’ thought 
processes with extensive annotated samples of student work and vignettes char-
acteristic of teachers’ experiences, this book is sure to equip educators with the 
knowledge and tools needed to modify their lessons and to improve student 
learning of multiplication and division.

Special Features:

• Looking Back Questions at the end of each chapter allow teachers to 
analyze student thinking and to consider instructional strategies for 
their own students.

• Instructional Links help teachers relate concepts from each chapter to 
their own instructional materials and programs.

• Big Ideas frame the chapters and provide a platform for meaningful 
exploration of the teaching of multiplication and division.

• Answer Key posted online offers extensive explanations of in-chapter 
questions.

Each chapter includes sections on the Common Core State Standards for Math-
ematics and integrates the Ongoing Assessment Project (OGAP) Multiplicative 
Reasoning Progression for formative assessment purposes. Centered on the 
question of how students develop their understanding of mathematical con-
cepts, this innovative book places math teachers in the mode of ongoing action 
researchers.
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Preface

The Importance of Multiplicative Reasoning

Multiplicative reasoning is a central focus of elementary-grade mathematics. 
In fact, the ability to reason with a variety of multiplicative concepts and flex-
ibly use multiplicative skills, strategies, and algorithms to solve problems are 
prerequisites for future work with foundational mathematical ideas such as 
fractions, decimals, percent, ratios, and proportions (Siemon, Breed, & Virgona 
2005). Some researchers believe that the transition from additive to multiplica-
tive thinking is a major barrier to learning the important mathematics in the 
middle grades (Siemon et al., 2005). Because of the importance of multipli-
cative reasoning, mathematics instruction in the elementary years must focus 
attention on the overarching ideas of place-value, multiplicative thinking, and 
rational number ideas in order to prepare students to progress to the next “big 
idea” (Siemon & Virgona 2001).

A Focus on Multiplication and Division: Bringing Research  
to the Classroom

A Focus on Multiplication and Division: Bringing Research to the Classroom had 
its beginnings as a series of professional development sessions. These sessions 
were designed to help teachers understand the depth and breadth of multipli-
cative reasoning, the ways students learn these sometimes complex ideas, and 
strategies to both monitor student learning and make informed instructional 
decisions based on evidence in student solutions. These sessions were part of 
the Ongoing Assessment Project (OGAP), which began in 2003 with the goal 
of bringing formative assessment tools and strategies to mathematics teachers. 
OGAP is built on the mathematics education research on how students learn 
specific mathematical concepts related to proportionality, fractions, multiplica-
tive reasoning, and additive reasoning.

It soon became obvious to us that the ideas and information contained in 
these sessions were important for all teachers charged with teaching multi-
plication and division, and A Focus on Multiplication and Division began to 
take form.

This book follows in the footsteps of its predecessor, A Focus on Fractions: 
Bringing Research to the Classroom 2nd edition, which has been well received by 
math teachers, special educators, administrators, math teacher educators, pre-
service teachers, and mathematics professional development providers. The 
suc cess of A Focus on Fractions solidified our beliefs that teachers want to become 
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familiar with the robust body of mathematics education research about how 
students learn particular mathematical ideas, as well as concrete ways this knowl-
edge can inform mathematics instruction. We have found that when teachers 
understand foundational mathematics education research, are provided tools 
and strategies for analyzing evidence of student thinking, and deeply under-
stand the mathematics content central to their grade level, they thoughtfully 
and intentionally change their instruction in ways that support deeper student 
learning. At its core, A Focus on Multiplication and Division: Bringing Research to 
the Classroom is an attempt to bring this knowledge to teachers.

Central Features of This Book

The OGAP Multiplicative Framework plays a prominent role in A Focus on Mul-
tiplication and Division. This framework interprets and clearly communicates 
the mathematics education research on how students learn multiplicative rea-
soning concepts in ways that teachers can use to improve their instruction and 
their students’ understanding. The framework, introduced in detail in Chap-
ter 2 and returned to again and again throughout the book, is a tool to help 
teachers better understand and use activities and lessons in the textbook, select 
or design formative assessment tasks, understand evidence in student work, 
make instructional decisions, and provide actionable feedback to students. 
We continue to find that most mathematics teachers are unfamiliar with this 
research despite the fact that much of it has been available for years. The OGAP 
Multiplicative Framework is our attempt to share the knowledge of mathemat-
ics education researchers with mathematics teachers in a clear, concise, and 
understandable way so that this type of research comes out of the shadows and 
into teachers’ practices. The OGAP Multiplication and Division Progressions are 
key components of the framework and communicate how students develop 
understanding of multiplication and division concepts, strategies, and proce-
dures, as well as the common errors students make and misconceptions that 
affect new learning. We know that most teachers overwhelmingly value this 
research and immediately appreciate how it can improve the effectiveness of 
their instruction.

This book uses over 100 examples of authentic student work to communicate 
specific research ideas, as well as to help readers understand particular math-
ematical concepts. The work samples contained in A Focus on Multiplication 
and Division have been collected from OGAP pilot studies and through our 
ongoing work with teachers across the country receiving OGAP professional 
development. Over the years we have collected thousands of pieces of student 
work, and we cannot overstate how much we have learned about the teaching 
and learning of multiplicative concepts through our analysis and discussion 
of these solutions. We include a wide variety of student work samples in this 
book with the hope that through your interaction with them you, too, gain  
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a deep and robust understanding of important aspects of teaching and learning 
multiplication and division skills and concepts.

Most chapters contain a brief discussion of the ways in which the Common 
Core State Standards in Mathematics (CCSSM) are supported by the research 
base that underpins A Focus on Multiplication and Division.

Near the end of each chapter you will find a section titled Looking Back 
that poses questions designed for the reader to more deeply examine particular 
ideas posed in the chapter or to contemplate related concepts. The answers 
to these questions are found at www.routledge.com. Most chapters conclude 
with an Instructional Link: Your Turn. This section generally asks the reader to 
analyze her or his own instruction and mathematics program in light of the key 
ideas presented in the chapter. It is our hope that readers use the Instructional 
Link to help them make thoughtful and intentional instructional adaptations 
consistent with the important concepts in the book.

A Book for Teachers

A Focus on Multiplication and Division: Bringing Research to the Classroom 
is primarily written for classroom and preservice teachers. The mathemat-
ics content related to multiplication and division, the authentic student work 
samples, and the Instructional Link and Looking Back sections are specifically 
designed to help teachers learn and reflect on the foundational mathematics 
education research and ways to use this knowledge to analyze student think-
ing, take action based on the evidence in their students’ solutions, and use 
textbook materials more effectively. Teams of math teachers at the same grade 
level, from the same school, or involved in professional development related to 
multiplication and division can benefit greatly from reading and discussing the 
chapters and answering and discussing questions posed in Looking Back and 
the Instructional Links. This type of engagement with A Focus on Multiplication 
and Division works well in professional learning communities (PLC) in place 
in many schools.

The numerous samples of authentic student work can be invaluable to 
instructors working with preservice teachers, as preservice teachers often do 
not have access to authentic student work. In addition, A Focus on Multiplication 
and Division provides preservice teachers with an introduction to important 
educational research related to multiplication and division, research that is 
vital, yet lacking, for many teachers.

Final Thoughts

There are many important and thought-provoking ideas in this book, yet the 
“heart and soul” of A Focus on Multiplication and Division is the mathematics 
education research related to the teaching and learning of whole number mul-
tiplication and division and the important contributions that analyzing student 

http://www.routledge.com
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work make to effective and informed instruction. The ability to analyze student 
work to understand how students understand mathematical concepts and skills 
is paramount if we are to pose the right questions and design effective lessons 
that provide the best opportunities for all students to learn important mathe-
matics. We hope A Focus on Multiplication and Division helps strengthen these 
abilities and makes them an integral part of teachers’ instruction.
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Multiplicative reasoning is a cornerstone to success in other mathematical 
topics and a potential gatekeeper to success both in and out of school. Mul-
tiplicative reasoning is foundational for the understanding of many of the 
mathematical concepts that are encountered later in students’ school career, 
such as ratios, fractions, and linear functions, as well as in everyday situations 
(Vergnaud, 1983). In this chapter multiplicative reasoning is described in two 
ways: 1) mathematically and 2) from a teaching and learning perspective.

Multiplicative Reasoning: The Mathematics

“Multiplicative reasoning is a complicated topic because it takes different forms 
and deals with many different situations” (Nunes & Bryant, 1996, p. 143). In 
elementary school, for example, students engage in a range of multiplication 
and division contexts, including equal groups, equal measures, unit rates, 
measurement conversions, multiplicative comparisons, scaling, and area and 
volume. The types of quantities involved and how the quantities interact are 
key to understanding multiplication and division in these different contexts. 

1
What Is Multiplicative Reasoning?

Big Ideas
• Although students may use repeated addition or subtraction to 

solve multiplication or division problems, multiplication and 
division are not simply an extension of addition and subtraction.

• Multiplicative reasoning is about understanding situations where 
multiplication or division is an appropriate operation and having 
a variety of skills and concepts to approach those situations 
flexibly.

• There are a number of skills and concepts that a student must 
understand in order to be fluent with multiplication and 
division.

• Strong multiplicative reasoning involving whole numbers 
provides the foundation for fractional and proportional 
reasoning.
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In this chapter the general concept of initial multiplicative understanding is 
examined. Chapter 5 provides an in-depth discussion of each of these contexts 
and how they affect student strategies and reasoning.

This section focuses on the following:

1. Why multiplication and division are not simply an extension of addi-
tion and subtraction:
• How the number relationships in addition are different from those 

in multiplication.
• How the actions in addition are different from those in 

multiplication.
2. The difference between additive (absolute) reasoning and multiplica-

tive (relative) reasoning.

There is a commonly held belief among many educators that multiplica-
tion and division are just extensions of addition and subtraction. This belief 
arises because it is possible to solve whole number multiplication and divi-
sion problems using repeated addition and subtraction, respectively. However, 
multiplication and division involve a different set of number relationships and 
different actions than addition and subtraction, which are described next.

Number Relationships and Actions in Addition

Additive reasoning involves situations in which sets of objects are joined, sepa-
rated, or compared. For example, 3 apples + 6 apples = 9 apples. Each apple is a 
separate entity, and the sum is the union of all the apples as shown in Figure 1.1. 
It is also important to remember that in additive situations the numbers tell the 
actual size of each set. So in the case of 3 apples + 6 apples, the 3 means how 
many in one set and the 6 means how many in another set. The numbers in 
additive situations represent the value of each of the independent sets and do 
not rely on the other number for meaning or value. As you will see, this is not 
the case with multiplication and division.

Figure 1.1 The sum of 3 apples and 6 apples is 9 apples (3 apples + 6 apples = 9 apples).
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Number Relationships and Actions in Multiplication

One major difference between additive reasoning and multiplicative reasoning 
is that multiplicative reasoning does not involve the actions of joining and sep-
arating, but instead, it often involves the action of iterating, or making multiple 
copies, of a unit. Instead of involving one-to-one correspondence (1 apple) as in 
additive reasoning, multiplication often involves many-to-one correspondence 
(Nunes & Bryant, 1996). It is important to note that the examples used in this 
section are equal group problems, one of the first many-to-one situations that 
elementary students encounter in instruction.

To understand what is meant by this many-to-one correspondence, consider 
a plate with 3 apples. One plate has 3 apples, so the many-to-one relationship 
is 3 apples to 1 plate. When you increase the number of plates, you increase the 
number of apples by the number of apples on each plate. The constant rela-
tionship of 3 apples to 1 plate, however, never changes. When thinking about 
answering the question how many apples on 6 plates, you can think of this as 
6 iterations of 3 apples to 1 plate. Figure 1.2 shows the 3 apples per plate iterated 
6 times (once for each plate of 3 apples).

6 plates × 3 apples on each plate = 18 apples

Figure 1.2 Six times 3 apples on each plate equals 18 apples. That is, the composite unit 
of 3 apples to one plate is iterated 6 times (6 plates × 3 apples in each plate = 18 apples).

Notice that the number of apples is scaled up or down depending on the 
number of plates. The number of iterations of the composite unit (e.g., 3 apples 
to each plate; 3 apples per plate) called for in a problem can also be thought 
of as the scalar factor. In the case of Figure 1.2, the scalar factor is 6, meaning 
that the composite unit of 3 (apples per plate) is iterated 6 times, resulting in a 
product of 18 apples.

Researchers refer to the many-to-one relationship as the composite unit. 
Students who see, iterate, and operate with the composite unit are unitizing. 
Unitizing refers to the understanding that quantities can be grouped and then 
the group can be referred to as one unit yet have a value greater than 1. Imagine 
a package of 4 cookies. The unit is the package, but the package has a value 
of 4 cookies. There is a more detailed discussion of this idea in Chapter 4. 
Conceptually it is harder for children to mentally keep track of a composite unit 
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than it is to count by ones, as they must coordinate two levels of units (the com-
posite unit and the number of units you count by) (Steffe, 1992; Ulrich, 2015).

Students who first begin to unitize may solve multiplication problems by 
iterating the composite unit using repeated addition instead of multiplication. 
This evidence often leads one to think that multiplication is an extension of 
addition. However, what distinguishes repeated addition in a multiplicative 
situation from additive reasoning is the composite unit (many-to-one) is iter-
ated and added. When students develop more sophisticated multiplicative 
reasoning, they can conceptualize 18 as being made up of 6 composite units of 
3 individual units each.

As students develop their understanding and flexibly use unitizing, they will 
move away from the repeated addition strategy to strategies that involve multi-
plication. Consider Lyla’s explanation:

“Well, I know that 8 × 8 is 64 so to find 8 × 7 I just need to take 1 away—I 
mean 1 row of 8 away—and that would be 56.”

In explaining her strategy for finding the product of 8 and 7, Lyla uses lan-
guage that indicates an understanding of unitizing. Note Lyla’s reference to 
removing a row. Iterations of a composite unit can take many visual forms. 
Some of these may be one column or row in an array iterated multiple times 
or one group in a set iterated multiple times. Lyla’s explanation helps to make 
sense of what happens when one of the numbers in a multiplication situation 
is changed. Changing the value of either the composite unit or the scalar factor 
has an impact on the total by the value of the other number.

Consider the situation of 6 plates with 3 apples per plate again. By decreas-
ing the number of plates to 5, the number of apples decreases by one composite 
unit, or 1 plate of 3 apples. See Figure 1.3.

In multiplication the quantities are different from each other and yet depen-
dent on each other. In this example the total number of apples is dependent on 
the number of plates. This understanding represents a significant difference 
between addition and multiplication.

Figure 1.3 Five plates × 3 apples in each plate is 3 apples (one composite unit) less than 
6 plates × 3 apples in each plate.
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Students who reason multiplicatively can unitize, or see a composite unit, and 
then create multiple copies of it. As stated earlier, however, this is just the begin-
ning of considering the meaning of multiplication in a very complex landscape. 
Although initially an understanding of multiplication is reliant on students mak-
ing multiple copies, or iterations, of that composite unit, eventually we need 
students to broaden their multiplicative reasoning to include more complex 
actions and contexts. These will be discussed in detail throughout this book. A 
summary of the difference in number relationships and actions between addi-
tive and multiplicative situations discussed in this section is found in Table 1.1.

Table 1.1  Differences between additive and multiplicative reasoning discussed in this 
section.

Number Relationships Actions

Additive Reasoning One-one correspondence Joining, separating, or  
comparing

Multiplicative Reasoning Many-to-one composite unit Iterating and scaling

Read these responses from two students (Figure 1.4). How do they each 
think about the situation?

Tasha’s response: Rope B is 16 inches longer than Rope A.
Ben’s response: Rope B is 3 times longer than Rope A.

Tasha sees the length of Rope B as an absolute length independent of any-
thing else so when comparing just finds the difference between the two lengths. 
This is an additive way of thinking about comparing these two lengths. Ben 
thinks about the comparative or relative perspective, which is a multiplicative 
way of thinking about answering the same question. Although both ways of 
thinking are correct and can be helpful in viewing situations, Ben’s thinking 
is more abstract and is “necessary for moving beyond counting and absolute 

Figure 1.4 How much longer is Rope B than Rope A?

Absolute and Relative Differences

Another way to think about the difference between additive reasoning and mul-
tiplicative reasoning is to consider the idea of absolute versus relative thinking 
(Lamon, 2012). Think about two pieces of rope lying on a table as shown in Fig-
ure 1.4. Rope A is 8 inches long and Rope B is 24 inches long. How do you think 
the students will describe how much longer one rope is than the other rope?
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thinking” (Lamon, 2012, p. 31) in order to make sense of more complex situ-
ations. Before working with fractions and decimals, students need to expand 
their ability to include both absolute and relative thinking. They must see the 
world, and situations in the world, from a relative perspective.

The concept of “crowdedness” provides another way to think about the differ-
ences between absolute and relative thinking. Examine Figure 1.5. You’ll notice 
that there are 10 more students in the same space during the sixth grade lunch 
period than during the seventh grade lunch period. This is an additive, or absolute, 
way to think about the situation. In contrast, thinking about this multiplicatively 
helps to describe the relative difference between the two situations. That is, there 
is 1 square yard per student during sixth grade lunch compared to 2 square yards 
per student during the seventh grade lunch. In this case it is easy to see that the 
seventh grade students have twice the room as the sixth grade students. Thus, the 
sixth grade lunch period is twice as crowded as the seventh grade lunch period.

Figure 1.5 From an absolute perspective there are 10 more students eating lunch dur-
ing the sixth grade lunch period than during the seventh grade lunch period. From a 
relative perspective the seventh grade students have twice the space as the sixth grade 
students to eat lunch.

According to Nunes and Bryant (1996), “several new concepts emerge in 
multiplicative reasoning, which are not needed in the understanding of addi-
tive situations” (p. 153). Multiplication and division involve different quantities 
(e.g., many-to-one) and different actions (e.g., iterations, scaling) than addition 
and subtraction. These ideas are important, as the various aspects of the devel-
opment of multiplicative reasoning are developed in the elementary grades. 
When looking closely at the various forms multiplication can take, it is impor-
tant to appreciate that it is not simply a more complex version of addition.

Multiplicative Reasoning: From a Teaching and Learning Perspective

Although many teachers believe that multiplicative reasoning is confined to 
learning how to multiply and divide multidigit whole numbers and memorize 
math facts, this book will help you see this is just a small part of the picture. When 
thinking about the skills and concepts that help to support the development 
of strong multiplicative reasoning, it is important to consider both procedural 
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fluency and conceptual understanding. Procedural fluency is more than apply-
ing the steps to an algorithm. Rather procedural fluency “refers to knowledge of 
procedures, knowledge of when and how to use them appropriately, and skill in 
performing them flexibly, accurately, and efficiently” (National Research Council 
[NRC], 2001, p. 121). Procedural fluency works together with conceptual under-
standing, each contributing to a deeper understanding of the other.

Conceptual understanding refers to an integrated and functional grasp of 
mathematical ideas. Students with conceptual understanding know more 
than isolated facts and methods. They understand why a mathematical idea is 
important and the kinds of contexts in which it is useful. (NRC, 2001, p. 110)

Examine the four pieces of student work in Figures 1.6 to 1.9. These are 
responses to tasks from the same fifth grade student. Use the work, as well as 
your experience as a teacher, to complete this sentence:

“The student who has multiplicative reasoning shows evidence of . . .”

Figure 1.6 Ethan solves equal groups problems using the traditional US algorithm.

(a)  Mark bought 12 boxes of crayons. Each box contains 8 crayons. How many 
crayons were there altogether? Show your work.

(b)  John bought 12 boxes of crayons. Each box contained 64 crayons. How 
many crayons were there altogether? Show your work.

(a) (b)

Figure 1.7 Ethan shows evidence of applying the partial products algorithm to solving 
a problem by recognizing that he still has to multiply 34 × 40 to complete the multiplica-
tion of 34 × 42.

Study this number sentence:

34 × 42

Sharon started to solve this problem by finding the answer to 34 × 2. What 
more does she need to do to get the answer to 34 × 42? Explain your thinking.
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Figure 1.8 Ethan solves the problem using place-value understanding by decomposing 
19 into 10 + 9 and the distributive property: 3 × (10 + 9) = (3 × 10) + (3 × 9).

A piece of elastic stretches to 3 times its length. If the elastic is 19 inches long, 
how long will it be when it is fully stretched?

Figure 1.9 Ethan uses doubling and halving to solve this equal groups problem.

A class has set a goal that each student will read 45 pages this week. There 
are 16 students in the class. How many pages will they have read altogether 
by the end of the week?

To learn more about the doubling and halving strategy go to Chap-
ter 4: The Role of Concepts and Properties.

When looking across the four pieces of student work, there is evidence 
that Ethan understands the relationship between the numbers in the different 
problems and has a variety of efficient strategies to solve different kinds of 
word problems. In Figure 1.6 he uses the solution to part (a) to find the solu-
tion to part (b). In Figure 1.9 Ethan demonstrates understanding that there 
is a relationship between the factors and that the change to one factor affects 
treatment of the other factor by applying a doubling and halving strategy. 
This is another example of recognizing the relationship between the numbers 
in the tasks. Ethan uses two different algorithms within the four tasks, dem-
onstrating flexibility with multidigit algorithms. He uses the traditional US 
algorithm in Figure 1.6, and in Figure 1.8 he uses partial products founded on 
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the application of the distributive property to find the product of 19 and 3. In 
Figure 1.7 Ethan also demonstrates a deeper understanding of the distribu-
tive property by explaining that he recognizes the part of the task that is yet 
to be completed.

Based on the student work in Figures 1.6 to 1.9, you may have come up with 
all or some of these characteristics in response to the statement “the student 
who has multiplicative reasoning shows evidence of . . .”

• Recognizing multiplication as the operation to use in a variety of 
 situations,

• Using a variety of strategies depending on the numbers and the  number 
relationships,

• Understanding and using the properties of operations flexibly,
• Demonstrating fluency with multiplication facts,
• Solving multidigit multiplication problems efficiently.

Based on your own knowledge of students who demonstrate strong mul-
tiplicative reasoning, you may have thought of a number of other skills 
and concepts that were not observable in this student work. Some of these 
might be:

• Understands the inverse relationship between multiplication and division,
• Understands unitizing,
• Understands multiplication as equal grouping,
• Knows what the numbers mean in a multiplication situation,
• Uses and interacts with a variety of models to represent multiplication,
• Understands the meaning of remainders.

This is just the beginning of a long list of skills and concepts necessary for 
multiplicative reasoning, because developing strong multiplicative reasoning 
is a complex endeavor. These are the foundations of procedural fluency, which 
is built on conceptual understanding of multiplication and division. Over the 
course of this book, we will examine and consider all aspects of what it means 
to reason multiplicatively.

The OGAP Multiplicative Framework and Progressions

The Ongoing Assessment Project (OGAP) Multiplicative Frame-
work can be downloaded at www.routledge.com/9781138205697. 
It is a synthesis of mathematics education research on how 

students develop multiplication and division fluency based on conceptual 
understanding as well as common errors that students make or preconceptions 
or misconceptions that interfere with learning new concepts or solving related 
problems.

http://www.routledge.com/9781138205697
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Examine the OGAP Multiplication and Division Progressions on the cen-
terfold of the OGAP Multiplicative Framework. The OGAP Multiplication 
and Division Progressions are representations of the development of the 
understanding and fluency necessary for multiplication and division. The 
progressions represent student strategies from least to most sophisticated, 
moving from bottom to top. Look at the progressions in relation to your list of 
characteristics of multiplicative reasoning, and consider where you see those 
characteristics represented. Are there additional characteristics that are not on 
your list? In Chapter 2 we will look at both the format and content of the OGAP 
Multiplicative Framework in detail. The purpose of this quick look is to see the 
complexity of the acquisition of multiplicative reasoning.

For more on the OGAP Multiplicative Framework go to Chapter 2: 
The OGAP Multiplication Progression.

It is important for teachers to know about the skills and concepts a student 
must possess in order to make instructional decisions, more effectively meet 
students’ needs, and move students toward acquiring meaningful mathemati-
cal knowledge. This is a set of knowledge critical to teaching called pedagogical 
content knowledge (Shulman, 1986). According to Cochran (1991), “pedagogi-
cal content knowledge is a type of knowledge that is unique to teachers, and in 
fact what teaching is about” (p. 5).

As Shulman (1986) explains, pedagogical content knowledge:

goes beyond knowledge of subject matter per se to the dimension of sub-
ject matter knowledge for teaching .  .  . Pedagogical content knowledge 
also includes an understanding of what makes the learning of specific 
topics easy or difficult: the conceptions and preconceptions that students 
of different ages and backgrounds bring with them to the learning of 
those most frequently taught topics and lessons. If those preconceptions 
are misconceptions, which they so often are, teachers need knowledge of 
the strategies most likely to be fruitful in reorganizing the understanding 
of learners, because those learners are unlikely to appear before them as 
blank slates (p. 9).

The OGAP Multiplicative Framework is one tool that can be used to 
enhance teachers’ pedagogical content knowledge and help teachers make 
 instructional decisions, as it illustrates the progression of skills and concepts 
students should experience and acquire as they become multiplicative rea-
soners. Knowing this progression of skills helps teachers decide on the next 
best instructional step for students, as well as appreciate that all strategies 
are not of equal sophistication. Study the two student responses to the same 
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equal groups problem in Figures 1.10 and 1.11. How are they similar and how 
are they different?

Figure 1.10 Philip’s response. Philip wrote 6 eight times and then used a building up 
strategy to add.

There are 8 ants in an ant farm. Each ant has 6 legs. How many legs do the 
ants have altogether?

Figure 1.11 Jada’s response. Jada uses the known fact of 8 × 5 to derive the fact 8 × 6.

There are 8 ants in an ant farm. Each ant has 6 legs. How many legs do the 
ants have altogether?

As you probably noticed both students arrive at the correct answer of 48 
legs on 8 ants but use very different strategies. Philip’s work shows evidence 
that he is still thinking about multiplication as repeated addition. Jada’s work 
shows that she has an understanding of the distributive property and uses it 
to derive a math fact she does not know. These two strategies indicate very 
different understanding and call for different instructional responses. The 
examples are an illustration of the idea that all strategies are not equal in 
sophistication.

Throughout the book the OGAP Multiplication and Division Progressions 
will be used to help you understand evidence in student work and make instruc-
tional decisions.
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All Strategies Are Not Equally Sophisticated

Take a minute to examine Braden’s work in Figure 1.12. Braden’s teacher gave 
him a pre-assessment before beginning a unit on multiplication and division. 
This is Braden’s response to one of the questions on the pre-assessment. She 
noticed that although he got most of the questions correct in the pre-assessment, 
he used a strategy like the one shown in Figure 1.12 throughout.

Figure 1.12 Braden’s response. Braden used repeated addition, building up from  
14 groups of 437 to get 56 groups of 437 and then added 2 more groups of 437 to account 
for 58 groups. His solution is accurate and shows a solid understanding of multiplication 
as evidenced by his recognition that four 6118s is equivalent to fifty-six 14s, but is very 
inefficient.

Solve 437 × 58.

Braden’s teacher wondered why a student would use addition when it was 
clear from his work that he had strong reasoning and an understanding of 
multiplication far beyond adding 437 together 57 times. She went back to his 
teacher from the year before to talk about Braden. His previous teacher was 
very surprised by this work and said that Braden had been using multiplica-
tive strategies to solve problems consistently last year. The teacher then asked 
Braden why he used this strategy. Braden’s response surprised the teacher. He 
said his strategy was based on the class discussion the day before, that multipli-
cation was just repeated addition.
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One lesson the teacher learned from this experience is the importance of 
gathering pre-assessment evidence of student understanding before introduc-
ing a topic at a level below or above a student’s level of understanding. She also 
learned the importance of paying close attention to the strategies a student is 
using, not just whether the answer is correct.

Earlier in the chapter we discussed that our goal is for students to have a 
variety of strategies they understand and know when to use. In order to do this 
students need a deep understanding of the concepts to draw from that allow 
them to reason multiplicatively and use efficient and flexible strategies to solve 
problems, as was evidenced in Ethan’s work in Figures 1.6 to 1.9. Although 
students can easily add 4 together 5 times to solve 4 × 5, it becomes a limiting 
strategy when solving multidigit multiplication problems such as 437 × 58. We 
want students to strive for efficiency and flexibility. We know there are multiple 
ways to solve a problem, but we cannot lose sight of the fact that not all strate-
gies are equally efficient or sophisticated, and many strategies leave students 
unprepared for the multiplicative demands of more complex mathematics.

As teachers, we must push students toward more efficient methods that rely 
on multiplicative reasoning while assuring they preserve the less efficient strat-
egies as part of their understanding so they can fall back on a wide range of 
strategies when needed. Explicitly linking strategies to each other and making 
connections clear to students is essential for this to occur. Ultimately our goal 
is for students to be strong multiplicative reasoners, regardless of the context or 
problem structures.

As you probably already appreciate, students, as well as teachers, benefit 
when they have an understanding of how the multiplicative skills and concepts 
work together. We would not consider a student to be a strong multiplicative 
reasoner if they only possessed one or two of these skills and concepts. Teachers 
can use the OGAP Multiplication and Division Progressions as a tool to help both 
themselves and students understand the progression of sophistication of strate-
gies and the links between those strategies.

Consider the following vignette. The fifth grade teachers in this situation 
understand their students need both conceptual understanding and procedural 
fluency, and simply getting the correct answer is not enough.

Near the end of the third quarter of the school year, when all the units 
on multiplication and division had been taught, the 5th grade teach-
ers in one school gave their students a post-assessment. Although the 
results on the post-assessment were good overall, the teachers noticed 
many of their students were accurately using repeated addition to solve 
most of the multiplication problems. These students were getting the 
correct answers, but their strategies were not at the sophistication level 
that is expected by the end of grade 5. They discussed the problem with 
their administrator and as a group decided to schedule an additional 
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30-minute block of time for the next month to focus on increasing the 
sophistication levels of their students’ strategies. At the end of four 
weeks they gave another post-assessment. Most students had abandoned 
the repeated addition for more efficient multiplicative strategies. When 
thinking about what they would do in the future to avoid this situation, 
the teachers decided to be more purposeful in their use of the OGAP 
Multiplication and Division Progressions as the year progresses to assure 
that students develop strategies at the Multiplicative level.

The Importance of Multiplicative Reasoning

The Common Core State Standards for Mathematics
The development of multiplication and division understanding and fluency has 
a central role in the grades 3–5 CCSSM. In Chapter 2, and throughout the book, 
we will discuss specifically what the multiplication and division expectations 
are for grades 3–5 in the CCSSM (CCSSO, 2010). In addition, many concepts in 
grades 3–5 that are not specifically about teaching and learning multiplication 
and division rely on multiplicative reasoning. This includes aspects of fractions, 
decimals, geometry, and measurement.

Multiplicative Reasoning in Middle School

As Vergnaud (1983) indicated in the quote at the beginning of this chapter, 
multiplicative reasoning provides the foundation for much of the math-
ematics students interact with later, both in their school career and life. The 
importance of having robust multiplicative reasoning before entering middle 
school is critical and has been documented in studies of students’ develop-
ment of proportional reasoning (Hart et al., 1981; Lin, 1991; Tourniaire & 
Pulos, 1985). Because of this, by the time a student completes fifth grade, they 
must have both a strong foundation in multiplication and division concepts 
and a variety of strategies to use to approach both familiar and unfamiliar 
content.

In the K–3 mathematics curriculum, students build their additive reasoning. 
The mathematics in grades 3–5 focuses on building students’ multiplicative rea-
soning. As students move into middle grades they encounter a number of topics 
in mathematics that rely heavily on multiplicative reasoning: fractions, rates, 
ratios, and proportions to name a few. Research has documented the inade-
quacy of additive reasoning for approaching these content strands in middle 
school (Sowder et al., 1998). Therefore, it is essential that students know how to 
reason multiplicatively and can distinguish situations that require multiplica-
tive reasoning. This means that it is equally important for teachers to possess 
the knowledge of how students build and acquire multiplicative reasoning and 
what to do instructionally when students struggle. This book has been written 
to help build that understanding.
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Chapter Summary

This chapter focused on:

• The difference between multiplicative and additive reasoning, consid-
ering both the number relationships and actions of each operation,

• The difference between relative and absolute reasoning,
• Characteristics of strong multiplicative reasoning,
• The importance of both conceptual understanding and procedural flu-

ency in multiplicative reasoning,
• An introduction to the OGAP Multiplication and Division Progressions.

Looking Back

1. Making Sense of the OGAP Multiplication Progression: Both the OGAP 
Multiplication and Division Progressions communicate the progression of 
skills and concepts students should acquire as they become multiplicative 
reasoners. Examine the OGAP Multiplicative Progression and answer the 
following questions.
(a) Based on the sample solutions shown on the progression, what are the 

key differences between Additive and Early Transitional strategies?

(b) What are the most important differences between Early Transitional 
and Transitional strategies?

(c) What are the major characteristics of Multiplicative strategies?

2. What Is Multiplicative Reasoning? Imagine you are speaking with 
parents of your third grade students at a September “Welcome Back to 
School” evening. You want to describe to them that the major emphasis 
of the mathematics in third grade is multiplicative reasoning, and this dif-
fers substantially from the earlier grades where additive reasoning was the 
focus. How would you describe multiplicative reasoning to these parents?

3. Differentiating Additive Reasoning from Multiplicative Reasoning: 
We learned in this chapter that even though students can use additive 
strategies to solve whole number multiplication problems, multiplica-
tion and division require more than simply extending additive concepts. 
Examine the array in Figure 1.13.

Figure 1.13 Array of 12 circles.
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(a) List the different ways a student might utilize additive reasoning to 
determine the total number of circles in this array. Notice how the 
action of “joining” manifests itself in each example you provided.

(b) List the different ways a student might utilize multiplicative reason-
ing to determine the total number of circles in this array. Explain 
how each example you listed is an example of the “many to one” 
concept.

4. Multiple Copies of a Unit: An important aspect of multiplicative reason-
ing is the ability to count iterations of a unit. Review Philip’s solution to 
the ant farm problem shown in Figure 1.10 earlier in the chapter. This 
solution is an example of “building up”, an Early Transitional strategy 
grounded in repeated addition. As he is building toward the total of 48 
legs, notice he notates several different quantities. We can think of each 
quantity as a unique unit that can be iterated. Identify what the following 
quantities in Philip’s solution represent given the context of the problem.
(a) What does each “6” represent?
(b) What does each “12” represent?
(c) What does each “24” represent?

5. Absolute and Relative Reasoning: Although we use both absolute and 
relative thinking to compare quantities, students must be able to reason 
relatively in order to make sense of more complex mathematical concepts, 
such as those related to fractions, decimals, and proportions, to name a 
few. Consider the following situation. Identify whether each question that 
follows requires absolute or relative thinking? How do you know?

The Spring Concert

Two teams of students sold tickets to the Spring Concert. Timothy’s team sold 
24 tickets and Delia’s team sold 36 tickets.

(a) How many more tickets did Delia’s team sell than Timothy’s team?
(b) How many times more tickets did Delia’s team sell than Timothy’s 

team?
(c) How many tickets did the two teams sell in all?
(d) What fraction of all the tickets sold did Timothy’s team sell?
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2
The OGAP Multiplication Progression

Big Ideas
• The OGAP Multiplicative Framework is based on math education 

research on how students develop multiplication and division 
fluency with understanding and is designed as a tool for teachers 
to gather evidence of student thinking to inform instruction and 
monitor student learning.

• Accumulating evidence by researchers indicates that knowledge 
and use of learning progressions positively affects both teachers’ 
knowledge and instruction and students’ motivation and 
achievement.

The OGAP Multiplicative Framework was developed from mathematics educa-
tion research on how students learn multiplicative reasoning concepts and is 
a valuable tool to help teachers select or design tasks, understand evidence in 
student work, make instructional decisions, and provide actionable feedback 
to students. This chapter provides an overview of the OGAP Multiplication 
Progression, which is one aspect of the OGAP Multiplicative Framework. The 
OGAP Division Progression is discussed in Chapter 7.

It is suggested that you download the OGAP Multiplicative Framework and 
refer to it as you read this chapter and references to the framework in other 
chapters of the book. An electronic copy can be found at www.routledge.com/ 
9781138205697.

There are two major elements in the OGAP Multiplicative Framework:

1. Problem Contexts and Structures (front page) and Sample Problems 
(back page)

2. The OGAP Multiplication and Division Progressions that show evi-
dence of student work along a continuum of student understanding 
for multiplication and division (pages 2–3)

The parts of the framework are interrelated. That is, movement on the pro-
gression is often influenced by the structures of the problems as students are 

http://www.routledge.com/9781138205697
http://www.routledge.com/9781138205697
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developing their multiplicative reasoning and fluency. Student work samples 
are used throughout this chapter to describe and exemplify the different levels 
on the progression. Strategies to help move student understanding along the 
progressions are embedded in this and other chapters throughout the book. 
Problem Contexts and Structures and the OGAP Division Progression are fully 
discussed in Chapters 5, 6, and 7, respectively.

The OGAP Multiplication Progression

The OGAP Multiplication Progression is designed to help teachers gather 
descriptive evidence of student thinking related to developing understand-
ing of multiplicative reasoning concepts and skills, as well as to identify the 
underlying issues and errors that may interfere with students learning new 
concepts or solving multiplication and division problems. The OGAP Mul-
tiplication Progression also provides some instructional guidance on how to 
transition student understanding and strategies from one level to the next, 
with the goal of developing procedural fluency. Researchers indicate that stu-
dents may struggle with the use and understanding of formal algorithms if 
their knowledge is dependent on memory, rather than anchored with a deep 
understanding of the foundational concepts (e.g., Battista, 2012; Carpenter, 
Franke, & Levi, 2003; Empson & Levi, 2011; Fosnot & Dolk, 2001; Kaput, 
1989). The importance of developing fluency in a way that brings meaning to 
both cannot be overstated.

Additionally, there is accumulating evidence that knowledge and instruc-
tional use of learning progressions, together with the mathematics education 
research that underpins progressions, positively affects instructional decision-
making and student motivation and achievement in mathematics (Carpenter, 
Fennema, Peterson, Chiang, & Loef, 1989; Clarke, 2004; Clements, Sarama, 
Spitler, Lange, & Wolfe, 2011; Fennema, Carpenter, Levi, Jacobs, & Empson, 
1996). This research supports the use of a progression as an effective strategy to 
gather and act on evidence of student thinking as students develop understand-
ing and fleuncy with multiplication and division.

When you review the OGAP Multiplication Progression you will notice that 
the levels reflect different kinds of evidence that might be found in student 
work as students learn new concepts and solve problems. Each level on the pro-
gression is briefly described in this section. However, as you work through the 
other chapters in this book, there will be opportunities to deepen your under-
standing of the progression.

OGAP Multiplication Progression Levels

The OGAP Multiplication Progression levels represent the continuum of evi-
dence from Nonmultiplicative to Multiplicative Strategies that is visible in 
student work as students develop their understanding and fluency with whole 
number multiplication and division. The levels are at a grain size that is usable 
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by teachers to gather actionable evidence across the development of multiplica-
tion concepts and skills.

Open to pages 2 and 3 of the OGAP Multiplicative Framework. You will 
notice the OGAP Multiplication Progression on page 2 and the OGAP Division 
Progression on page 3. As indicated earlier, this chapter focuses on the OGAP 
Multiplication Progression. Notice the six levels along the left side of the progres-
sion: Nonmultiplicative Strategies, Early Additive Strategies, Additive Strategies, 
Early Transitional Strategies, Transitional Strategies, and Multiplicative Strategies.

The progressions are designed to provide an expected path based on math-
ematics education research that supports the development of procedural fluency 
with understanding. The Transitional level (including Early Transitional) of the 
progression is the bridge between additive strategies and multiplicative strategies.

Early Additive Strategies

When students first engage in equal groups multiplication and division prob-
lems, they often draw on their counting skills to solve the problems.

Samantha’s response in Figure 2.1 shows evidence of understanding the 
problem situation by sketching each tricycle and then counting each wheel. 
This is evidenced by tic marks in each wheel, which suggests that Samantha 
touched each wheel with her pencil and counted. This strategy is evidence of 
Early Additive thinking because by modeling the situation, she has turned it 
into a counting problem, in this case counting by ones.

Figure 2.1 Early Additive Strategy. Samantha’s response illustrates evidence of a count-
ing by ones strategy to solve this equal groups multiplication problem.

How many wheels do 29 tricycles have? Show your work.

From Early Additive to Additive

As students move away from Early Additive Strategies to Additive Strategies they 
begin to unitize and operate with equal groups—for example, by iterating the 
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composite units and then applying repeated addition as evidenced in Tammy’s 
and Hunter’s solutions in Figure 2.2 and 2.3, respectively.

Figure 2.2 Additive Strategy. Tammy’s response shows evidence of unitizing into equal 
groups of 3 and adding the groups in this array.

Figure 2.3 Additive Strategy. Hunter’s accurate solution shows evidence of coordinating 
the composite unit (e.g., 35 lbs. per bag) and the number of bags (e.g., 9 bags) using a 
repeated addition strategy.

Max and Thomas each delivered vegetables to a store. Max delivered 8 bags of 
vegetables with 40 pounds in each bag. Thomas delivered 9 bags of vegetables 
with 35 pounds in each bag. How many pounds of vegetables were delivered 
altogether?

Notice the significant differences between Samantha’s strategy and the 
strategies in Tammy’s and Hunter’s solutions. Rather than counting each indi-
vidual object as Samantha did, Tammy and Hunter counted groups of objects. 
Counting by groups shows evidence of unitizing, or the ability to conceptualize 
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a group of individual things as one group, and is an important step to develop-
ing multiplicative reasoning (Fosnot & Dolk, 2001).

For an in-depth discussion about unitizing go to Chapter 4: The 
Role of Concepts and Properties.

From Additive to Early Transitional

Hunter’s repeated addition strategy in Figure 2.3 is accurate and shows evi-
dence of unitizing. However, it is not efficient, nor does it show evidence of 
understanding the multiplicative relationships so important to developing pro-
cedural fluency with understanding. The focus at the Transitional level is to 
bridge students from additive strategies and reasoning (e.g., counting by ones, 
counting by equal groups) to procedural fluency with understanding at the 
multiplicative level.

At the Early Transitional Level, building up strategies (Figure 2.4) and skip 
counting (Figure 2.5) are evidenced as students begin to combine groups.  

Figure 2.4 Early Transitional Strategy. Owen’s correct response shows evidence of build-
ing up by combining groups.

What is the area of a closet that is 5 feet by 6 feet? Show your work.

Figure 2.5 Early Transitional Strategy. Jack’s correct solution shows evidence of using 
skip counting.

Max and Thomas each delivered vegetables to a store. Max delivered 8 bags of 
vegetables with 40 pounds in each bag. Thomas delivered 9 bags of vegetables 
with 35 pounds in each bag. How many pounds of vegetables were delivered 
altogether?
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For example, in Figure 2.4 Owen is able to combine 6 groups of 5 into 3 groups 
of 10 to find the total of 20. In Jack’s solution in Figure 2.5, his skip counting 
reflects 35 as 1 group of 35 pounds, 70 as 2 groups of 35 pounds, 105 as 3 groups 
of 35 pounds, and so on.

As illustrated in this section, at the Early Transitional level students are 
still operating with groups, but combining groups using strategies such as 
skip counting and building up. Key to moving from these Early Transitional 
Strategies toward more sophisticated Transitional Strategies is the use of the area 
model. The area model can be used to help students transition from seeing sin-
gle units, to groups of units in rows or columns, to ultimately understanding the 
multiplicative relationship between the two dimensions of a rectangle. Ashley’s 
solution in Figure 2.6 shows evidence of considering both dimensions in the 
rectangle that she drew; an important step toward thinking multiplicatively.

Figure 2.6 Early Transitional Strategy. Ashley used an area model to solve the problem.

What is the area of a closet that is 5 feet by 6 feet? Show your work.

Although the solutions in Figures 2.5 and 2.6 are both classified as Early 
Transitional Strategies they represent a very different level of understanding. 
This points to an important aspect of using the OGAP Multiplication Progression. 
In order to make appropriate instructional decisions based on evidence of stu-
dent thinking or strategies used, one must consider more than the level of the 
student response on the progression and note the specific strategy evidenced in 
the student solution. Although Jack’s and Ashley’s solutions are both considered 
Early Transitional, each student may benefit from different instructional expe-
riences because they used different strategies to solve the problem.

From Transitional to Multiplicative Strategies

Place value understanding, properties of operations, and the open area model are 
used to help move student understanding and strategies from Early Transitional 
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Strategies to Transitional to Multiplicative Strategies. In Figure 2.7 Hank decom-
posed the factors (16 and 24) using place value understanding. He then used the 
open area model to solve the problem. The open area model used in this way is 
a direct link to the distributive property and the partial products and traditional 
algorithms for multiplication. The open area model also helps students consider 
the impact of place value in multiplication in ways that are masked by the tra-
ditional algorithm. In the following example, you can see that the product of  
20 × 10 is much larger than the product of 4 × 6.

For discussions about the use of properties of operations and the 
open area model to support the development of fluency with under-

standing go to Chapter 3: The Role of Visual Models; Chapter 4: The Role of 
Concepts and Properties; Chapter 8: Understanding Algorithms; and Chap-
ter 9: Developing Math Fact Fluency.

Figure 2.7 Transitional Strategy. Hank effectively used an open area model to solve the 
problem.

There are 16 players on a soccer team. How many players are in a league if 
there are 24 soccer teams? Show your work.

Multiplicative Strategies

At this level there is evidence that students use efficient and flexible strate-
gies (e.g., partial products, traditional US algorithm, distributive property), as 
well as appropriately apply properties of operations (e.g., associative, commu-
tative, and distributive) to solve multiplication and division problems. At this 
stage, students no longer need to use models to support their thinking about 
multiplication and division. By the end of fifth grade and beginning of sixth 
grade students should be using Multiplicative strategies to solve whole number 
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problems involving equal groups, equal measures, measurement conversions, 
patterns, multiplicative comparisons, unit rates, rectangular area, and volume 
problems.

For an in-depth discussion of the different contexts that students 
interact with as they develop their multiplication and division flu-

ency and understanding, go to Chapter 5: Problem Contexts.

Figures 2.8 to 2.10 are examples of student solutions at the Multiplicative 
level. What understandings are evidenced in each response? How are they alike, 
and how are they different?

Figure 2.8 Multiplicative Strategy. Kylee’s response shows evidence of flexibly using 
place value understanding and the distributive property.

Max and Thomas each delivered vegetables to a store. Max delivered 8 bags of 
vegetables with 40 pounds in each bag. Thomas delivered 9 bags of vegetables 
with 35 pounds in each bag. How many pounds of vegetables were delivered 
altogether?

Figure 2.9 Multiplicative Strategy. Michael’s response shows evidence of using place 
value understanding in the accurate use of the partial products algorithm.

A family is carpeting a room with the shape and dimensions pictured. How 
many square feet of carpet will they need to cover the whole floor?



The OGAP Multiplication Progression • 25

Although the strategies evidenced in the student work for each of these 
responses is at the multiplicative level, you probably noticed that they show 
different understandings. That evidence can be used to inform the next instruc-
tional steps for each of these students. For example, Kylee flexibly used place 
value understanding when multiplying 8 × 40, when decomposing 35 into 30 + 5,  
and then accurately applied the distributive property to solve the problem. 
Because the problem involved multiplying a single-digit number by a two-digit 
number, one of which was a multiple of a power of 10 (40 pounds), you may 
want to collect additional evidence about how Kylee would approach solving a 
problem that involves multiplication of a two-digit by a two-digit number.

The idea presented in this example is important. That is, even though Kylee 
accurately solved the problem at the Multiplicative Strategy level, the evidence 
should be used in the same way as evidence at the other levels of the progression 
to inform next instructional steps. In the example earlier we suggested changing 
the magnitude of the factors to gather additional evidence about the strategy that 
Kylee would use when the factors were more complex, but we could have asked 
Kylee a question that involves a more complex problem context (e.g., multiplica-
tive comparison, area) as well. The point is, as you begin to look at the evidence 
through the lens of the OGAP Multiplication and Division Progressions, think 
similarly about using the evidence to inform instruction at the Multiplicative 
level as you would for student work at the other levels of the progression.

Nonmultiplicative Strategies

Notice the section labeled Nonmultiplicative Strategies at the bottom of the OGAP 
Multiplication Progression. As students engage in new topics or are just beginning 
multiplication concepts, they often add factors, use the incorrect operation, or 
guess. The solution in Figure 2.11 shows evidence of adding the factors.

What is interesting and important to note, and more fully described through 
examples in Chapter 6: Problem Structures, is that students may be using 

Figure 2.10 Multiplicative Strategy. Thomas’s response shows evidence of correctly 
using the US traditional algorithm.

There are 16 players on each team in the Smithville Soccer League. How many 
players are in the league if there are 24 teams?



26 • The OGAP Multiplication Progression

multiplicative strategies for one problem context (e.g., equal groups) and then 
revert to a nonmultiplicative strategy when first solving a new problem context 
(Figure 2.12).

Figure 2.11 Nonmultiplicative Strategy. Madison’s response shows evidence of adding 
the factors instead of multiplying 23 inches of string times the number of decorations.

Twenty-three inches of string are needed to hang each decoration. How many 
inches are needed to hang 9 decorations?

Figure 2.12 Nonmultiplicative Strategy. Robert used division instead of multiplication 
in part B.

One tricycle has three wheels.

(a) How many wheels do 5 tricycles have?

(b) How many wheels do 29 tricycles have?

Robert’s response in Figure 2.12 illustrates instability that is often evidenced 
as students are developing initial understanding. Although problems A and B 
are identical except for the magnitude of the numbers in the problem (A. 3 × 5; 
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B. 3 × 29), the student solves Part A as a multiplication problem and Part B as 
a division problem. Because the wrong operation was used to solve B, the solu-
tion is classified as Nonmultiplicative. There are many reasons why the student 
may have solved Part B as division, but the decision probably was based on the 
magnitude of the number (29 tricycles), not a misunderstanding of the problem 
situation. Importantly, the best way to really understand what influenced the 
student’s solution in Part B is to ask the student.

Important Ideas about the OGAP Multiplication and Division Progressions

This section focuses on the following important points to keep in mind when 
using both the OGAP Multiplication and Division Progressions:

1. Movement along the progressions is not linear.
2. Students’ strategies will be at different levels on the progression at dif-

ferent times.
3. The progressions provide instructional guidance.
4. The progressions are not evaluative.
5. Collection of Underlying Issues and Errors is important.

1. Movement along the OGAP Multiplication and Division Progres-
sions is not linear. Although the progression looks linear, student 
development of understanding and fluency is a more complex path-
way. As students are introduced to new concepts, different problem 
structures for the same concept, more complex numbers, or asked 
to apply their multiplicative reasoning knowledge to other math-
ematical topics, their solution strategies may move back and forth 
between multiplicative, transitional, additive, and nonmultiplicative 
strategies and reasoning based on the strength of their multiplicative 
reasoning.

2. Students’ strategies will be at different levels on the progression 
depending on the concepts being taught and learned or the prob-
lems they are solving. That is, a student may be using a Multiplicative 
Strategy when solving an equal groups problem and a Nonmultiplica-
tive Strategy when solving an area problem. Figure 2.12 (tricycles) is 
an example of a solution with evidence at two levels: Multiplicative 
(known fact) and Nonmultiplicative (wrong operation).

The graphic in Figure 2.13 illustrates these important points. That is, as mul-
tiplicative reasoning, understanding, and fluency develop, and as students are 
introduced to new concepts or interact with different problem structures for 
the same concept, students’ solutions may move up and down the progression 
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levels (Kouba & Franklin, 1993; OGAP, 2006). On the left side of the OGAP 
Multiplication Progression, the two-way arrow represents this important idea.

By middle school multiplicative reasoning, fluency, and understanding 
should be stabilized at the Multiplicative level for whole number multiplication 
and division so that students can fully engage in middle school mathematics.

Concept Development Over Time

Multiplicative

Non-Multiplicative

Middle 
School

Figure 2.13 Hypothesized movement on the progression as concepts are introduced 
and developed across grades.

Source: Adapted from (Petit, Laird, Marsden, & Ebby, 2015).

3. The OGAP Multiplication and Division Progressions provide 
instructional guidance. Along the right side of both the OGAP Mul-
tiplication and Division Progressions there is an arrow that contains 
key concepts (unitizing, uses visual models, understanding of place 
value, and properties of operations) important for the development 
of multiplicative fluency with understanding. These concepts serve 
as instructional guidance on how to move student understanding 
and strategies from one level to the next. For example, if a student is 
still solving multiplication problems counting by ones, then a focus 
on developing unitizing is important. On the other hand, if a student 
consistently uses skip counting, then a focus on using visual models 
transitioning from equal groups to area models may be called for.

For an in-depth discussion about these concepts and their role in 
the development of multiplication and division understanding and 

fluency, go to Chapter 3: The Role of Visual Models and Chapter 4: The Role of 
Concepts and Properties.

There are a couple of important ideas to consider as you make decisions 
about the next instructional step based on evidence of student thinking and 
strategies when using the OGAP Multiplication Progression that can be best 



The OGAP Multiplication Progression • 29

understood through an example. Consider Samantha’s solution in Figure 2.1 in 
which she drew each tricycle and counted each wheel. The next instructional 
step for Samantha is not teaching her a formal algorithm because she prob-
ably does not yet have the foundation of multiplicative understanding. On the 
other hand, the next instructional step would not be ‘modeling and counting by 
subgroups’ which is another Early Additive Strategy. Rather, instruction should 
focus on unitizing or conceptualizing equal groups using strategies such as 
subitizing (see Chapter 3) and then counting by groups. This example illustrates 
that one should not skip past the important transitional stages that are designed 
to build fluency with conceptual understanding. At the same time, one does not 
need to engage students in every strategy at every level if the strategy does not 
support the forward movement of student understanding.

Using the OGAP Multiplication Progression to guide instruction is not about 
direct instruction on specific strategies or concepts. Rather, it involves the inter-
action of foundational concepts (e.g., unitizing, place value, and properties of 
operations) with targeted instructional strategies (e.g., connecting mathemati-
cal ideas, classroom discourse, sharing solutions, and purposeful questioning) 
to engage students in thinking and reasoning about these concepts and rela-
tionships.

4. The OGAP Multiplication and Division Progressions are not eval-
uative. You’ll notice that there are no numbers associated with the 
levels on the progressions. A learning progression is designed to help 
teachers gather descriptive evidence about student learning to inform 
instruction and student learning, not to assign a number or grade. The 
descriptive evidence includes the level on the OGAP Multiplication 
and Division Progressions, the substrategy, underlying issues or errors, 
and evidence of solution accuracy (e.g., Early Transitional, skip count-
ing, calculation error, incorrect).

5. Collection of Underlying Issues and Errors is important. At the bottom 
of the progressions there is a list of potential underlying issues or errors 
that may interfere with students learning new concepts and solving 
related problems. Sometimes evidence of errors or underlying issues 
do not influence where the evidence is classified along the progres-
sion. For example, consider a student who uses an open area model to 
solve a problem at the Transitional Level but makes a calculation error. 
It is important to record this calculation error because it affects accu-
racy, but it does not change the level on the progression. Other times 
an error can influence the placement on the  progression—errors like 
using the wrong operation, guessing, or adding factors (Figure 2.11). 
This information, coupled with the location of the strategy used along 
the progression, provides teachers with actionable evidence to inform 
instruction and learning.
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The CCSSM and the OGAP Multiplication and Division Progressions

The CCSSM reflects the progression of developing procedural fluency with 
understanding using visual models (e.g., arrays, area model, open area model), 
place value, and properties of operations. As you study Table 2.1, you will notice 
a pattern in the CCSSM similar to the OGAP Multiplication and Division Pro-
gressions. Students first engage with multiplication at grade 2 through repeated 
addition of equal groups in an array to develop a foundational understanding 
of multiplication. Then students use place value, properties of operations, and 
visual models to develop fluency with understanding. Students should show 
evidence of consistently solving a range of problems using efficient algorithms 
for whole number multiplication by grade 5 and division at grade 6

See Chapter 7: Developing Whole Number Division for an in-depth 
discussion of division and Chapter 8: Understanding Algorithms on 

the development of multiplication and division algorithms.

It is important to note that the CCSSM reflects research that students should 
not be taught efficient algorithms prematurely (e.g., Ebby, 2005; Kamii, 1998; 
Wong & Evans, 2007). Rather, students should develop whole number multi-
plication and division fluency with understanding in grades 2 through 4. As 
explained earlier, the goal for all students is fluency by grade 5 for multiplica-
tion and grade 6 for division that is built upon strong understanding developed 
in the earlier grades.

Table 2.1 CCSSM expectations for multiplicative strategies.

Grade CCSSM Expectations for Multiplicative Strategies (CCSSO, 2010)

2 Use repeated addition to find the total of equal groups in an array
3 Solve multiplication and division problems using strategies based on place 

value and properties of operations (e.g., commutative, associative)
4 Solve multiplication and division problems using strategies based on place 

value (e.g., partial products, area models) and the properties of operations 
and relationships (e.g., commutative, associative, and distributive; inverse 
relationship between multiplication and division)

5 Solve multiplication problems using a standard algorithm (e.g., partial 
products algorithm, traditional US algorithm for multiplication)
Solve division problems using strategies based on place value (e.g., partial 
quotients, menus, area models) and the properties of operations and 
relationships (e.g., the inverse relationship between multiplication and division)

6 Solve division problems using standard algorithms
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Using the OGAP Multiplication and Division Progressions  
as an Instructional Tool

As has been mentioned earlier in this chapter and throughout the book, the 
OGAP Multiplicative Framework was developed as part of a formative assess-
ment project. The OGAP process is cyclical. It involves eliciting evidence of 
student thinking and adjusting instruction as students are learning on an ongo-
ing basis: during classroom discussions, observations as students are working, 
and collecting evidence from each student at the end of lessons.

Strategies to systematically collect evidence to inform instruction and stu-
dent learning are an essential part of OGAP and were developed and refined 
through interactions with hundreds of teachers over the last decade. One strat-
egy OGAP teachers have adapted is the regular use of exit questions at the end 
of a lesson. Although teachers should be observing, listening, and adjusting 
instruction as lessons progress, an exit question at the end of a lesson provides 
evidence from each student that can inform instruction for the next lesson.

When teachers analyze evidence from exit questions, they use the OGAP 
Sort. The OGAP Sort, more fully described later, provides evidence to inform 
instruction with regard to three aspects of student solutions:

1. Level on the progression with detailed strategy evidenced
2. Underlying issues or errors
3. Accuracy of solution

Traditionally, when looking at student work, the accuracy of the solution is 
the first filter. However, OGAP studies have shown that accuracy alone may 
produce a “false positive.” For example, a fifth grade student who consistently 
uses repeated addition to solve multiplication problems will be at a significant 
disadvantage when engaging in middle school topics dependent upon strong 
multiplicative reasoning and fluency (e.g., proportions). That is, a correct 
answer may hide the fact that the student may not have the needed multiplica-
tive understanding or strategies to engage in middle school math topics. Recall 
Hunter’s work in Figure 2.3 where he added up 40 eight times and 35 nine times 
to find the solution. Although he correctly answered the question, this appar-
ent level of understanding may interfere with more sophisticated concepts in 
subsequent years.

To focus the analysis of evidence from a progression perspective, the OGAP 
Sort begins with organizing the student work into piles that correspond with 
each of the progression levels as shown in Figure 2.14.

Once sorted the information is then recorded on an OGAP Evidence 
Collection Sheet such as the one pictured in Figure 2.15. Next, one returns to 
the student work and makes notes about the strategies used within a level and 
any Underlying Issues or Errors. In the example in Figure 2.15 the teacher also 
highlighted the solutions that were incorrect. 
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This collection sheet parallels the OGAP Multiplicative Reasoning Progression 
and provides teachers with a picture of where the evidence in the student solu-
tions is along the progression, the errors that may be interfering with learning, and 
the accuracy of the answer. Together, these pieces of information can help inform 
instruction for the whole class, for small groups, and for individual students.

Figure 2.14 Sorting student work into Multiplicative, Transitional, Additive, and Non-
multiplicative strategies.

Figure 2.15 Sample of completed OGAP Student Work Evidence Collection Sheet. Stu-
dent names are listed under strategy level evidenced, substrategies are noted, student 
names are listed under Underlying Issues or Errors if evidenced, and incorrect solutions 
are highlighted.

Once the evidence is recorded, the analysis turns to looking across the whole 
class using the following questions to help make instructional decisions:

1. What are developing understandings that can be built upon?
2. What issues or concerns are evidenced in student work?
3. What are potential next instructional steps for the whole class, for 

small groups, and for individuals?
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The OGAP process is cyclical. After you have reviewed the work and made 
instructional decisions, you should again consider the structures in the prob-
lems students will solve during the next lesson and in the exit question. Once 
more, analysis of the exit question from this lesson can inform your planning 
for the next lesson.

Most chapters of A Focus on Multiplication and Division: Bringing Research 
to the Classroom include a section on the OGAP Multiplication and/or Division 
Progressions describing what the evidence in the student work for the topic 
under discussion would look like at different levels of the progression. We also 
suggest you analyze the student work examples throughout the book through 
the lens of the OGAP Multiplication and Division Progressions.

The icon to the left is used throughout the book to indicate 
where the OGAP Multiplicative Reasoning Framework or the 
Multiplication or Division Progressions are discussed.

Chapter Summary

This chapter focused on learning progressions and specifically the OGAP 
Multiplication Progression. Many of the points made about the OGAP Multi-
plication Progression hold true for the OGAP Division Progression more fully 
discussed in Chapter 7.

• The OGAP Multiplicative Framework consists of two sections: Prob-
lem Contexts and Structures and the OGAP Multiplication and Division 
Progressions.

• The OGAP Multiplication and Division Progressions are examples of 
learning progressions founded on mathematics education research, 
written at a grain size that is usable across a range of multiplicative 
concepts and by teachers and students in a classroom.

• The OGAP Multiplication and Division Progressions were specifically 
designed to inform instruction and monitor student learning from a 
formative assessment perspective.

• The OGAP Multiplication and Division Progressions illustrate how 
student strategies progress from Additive to Transitional to Multiplica-
tive strategies as they develop understanding of foundational concepts 
such as unitizing, place value, and properties of operations and as they 
encounter a range of multiplicative problem situations and structures.

• Analyzing evidence in student work using the OGAP Multiplication and 
Division Progressions provides important information about where students 
are in their understanding of concepts and use of multiplicative strategies.

Looking Back

1. Become familiar with the OGAP Multiplicative Framework: The OGAP 
Multiplicative Framework is composed of two sections:  Problem Contexts 
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and Problem Structures on page 1 with sample problems on page 4, and 
the Multiplication and Division Progressions on pages 2 and 3.
(a) Examine these two sections of the OGAP Multiplicative Framework 

and answer the following two questions:
• What is the main purpose of each section of the OGAP Multiplica-

tive Framework?

• In what ways is the information in the OGAP Multiplicative 
Framework important to teachers who teach multiplication and 
division?

2. Use the OGAP Multiplicative Progression to sort student work samples: 
The OGAP Sort refers to the task of understanding a student solution 
and determining the level on the OGAP Multiplicative Progression that 
the solution best matches. Sorting student work is the first step in using 
evidence in student solutions to inform instructional decisions. Sort-
ing student work is described in the chapter section Using the OGAP 
Multiplication and Division Progressions as Instructional Tools as an 
Instructional Tool.
 The tricycle problem and four student solutions are shown next. Deter-

mine the level of the OGAP Multiplication Progression that best matches 
each solution. Record the evidence that supports your decision.

The Tricycle Problem

One tricycle has three wheels. How many wheels do 5 tricycles have?

Figure 2.16 Benjamin’s response to the tricycle problem.

Figure 2.17 Ella’s response to the tricycle problem.
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3. Practice using student work to inform instruction: Mr. Lorenzo used 
the following multistep problem to gather evidence of the ways four of his 
students are conceptualizing the important multiplication concepts they 
have been working on this past week.

The Photo Album Problem

The fourth grade class made an album of their favorite photos from 
across the school year. The album included 19 pages of small photos with 
3 small photos per page. The album also included 23 pages of large pho-
tos with 2 large photos per page. What is the total number of photos in 
the album? Show your work.

Use the following student work and the OGAP Multiplication Progression 
to analyze the evidence in each of the solutions. Record your analysis on 
a copy of the OGAP Evidence Collection Sheet shown in Figure 2.24.
(a) For each solution identify:

• The level on the progression the evidence is found. What is the 
evidence?

• Any Underlying Issues or Errors.
• Accuracy of the solution. Highlight the student solutions that are 

incorrect.

Figure 2.18 Rosie’s response to the tricycle problem.

Figure 2.19 Glenn’s response to the tricycle problem.
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(b) Based on the evidence you collected, how might Mr. Lorenzo adjust 
his instruction in the next several lessons to best meet the needs of 
these four students?

Figure 2.20 John’s response.

Figure 2.21 Ben’s response.

Figure 2.22 Emma’s response.
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4. Try This in Your Class: In Question 3, you practiced analyzing student 
solutions using the OGAP Multiplication Progression and the OGAP Evi-
dence Collection Sheet. Most importantly, you considered instructional 
implications in light of the evidence you collected.
(a) Try this process with your students. Follow the three steps here, and 

use ideas from Using the OGAP Multiplication and Division Progres-
sions as an Instructional Tool to guide this analysis.
• Design or select a multiplication question based on the mathe-

matical goal of the upcoming lesson.
• Administer the question as an “exit question” at the end of the 

lesson.
• Analyze your students’ responses and record the information on a 

copy of the OGAP Evidence Collection Sheet shown in Figure 2.24
(b) Use the evidence you collected in 4a to answer the following three 

questions:
• What are some developing understandings you noticed in the 

solutions that can be built upon in future lessons?
• What are some underlying issues or concerns across your class 

that future lessons should address?
• What are some implications for instruction, specific instructional 

actions you can take to address the evidence you collected?

Figure 2.23 Hannah’s response.
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Instructional Link

Use the following questions to analyze ways your math instruction and pro-
gram provide students opportunities to build fluency and understanding of 
important grade-level multiplicative concepts and skills.

1. To what degree do your math instruction and program focus on reg-
ularly gathering descriptive information about student learning to 
inform your instruction?

2. What are the ways in which your multiplication instruction uses strat-
egies and tools such as unitizing, area models and arrays, and skip 
counting to help students transition from Additive to Transitional 
strategies?

3. How do you and your math program use place value, open area mod-
els, and properties of operations to develop understanding and fluency 
with vital grade-level multiplicative concepts and skills?

4. Based on this analysis, identify specific ways you can enhance your 
math instruction by utilizing ideas from this chapter.
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3
The Role of Visual Models

This chapter introduces the role of visual models in the development of fluency 
with understanding. Chapter 4 centers on unitizing, place value, and properties 
of operations. Importantly, both chapters provide research-based instructional 
strategies that support the development of understanding and fluency when 
multiplying and dividing whole numbers. The ideas related to the use of visual 
models, as well as the concepts presented in Chapter 4, will be expanded upon 
in Chapter 7: Developing Whole Number Division, Chapter 8: Understanding 
Algorithms, and Chapter 9: Developing Math Fact Fluency.

As you read Chapters 3 and 4 reflect on your own experiences learning to 
multiply and divide whole numbers. You may remember memorizing steps to 
complete calculations and practicing those steps over and over again. In con-
trast, researchers indicate that fluency and understanding should be built using 
visual models and the mathematical concepts underpinning the operations 
rather than just rote memorization of algorithmic steps (e.g., Battista, 2012; 
Carpenter et al., 2003; Empson & Levi, 2011; Fosnot & Dolk, 2001; Kaput, 1989).

As we begin this discussion, it is important to re-emphasize the point that 
procedural fluency is more than just being able to successfully use an efficient 
procedure to multiply and divide whole numbers. Rather, it means that stu-
dents recognize a multiplicative relationship in a range of problem situations 
(e.g., equal groups, measure conversions, multiplicative comparisons) and find 
an efficient method to solve multiplication and division problems, regardless 
of the context, the magnitude or complexity of the numbers, or the number 
relationships.

Big Ideas
• Visual models play a key role in students’ development of 

multiplicative reasoning and fluency.
• Use of quick images supports both subitizing and visualization 

and can help students transition to more sophisticated visual 
models and to mental models.
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The Role of Visual Models

Look closely at the different levels of both the OGAP Multiplication and Division 
Progressions on pages 2 and 3 of the OGAP Multiplicative Reasoning Framework. 
Notice the prominent role of visual models at different levels of the progression. 
There are two important perspectives to consider when using the progressions 
in relation to visual models: 1) understanding evidence of the sophistication of 
student strategies, and 2) guiding instructional decisions. Both perspectives are 
described next.

Sophistication of Strategy

The use of a particular model to solve a problem is evidence of the level of 
sophistication of the strategy and can indicate how students understand multi-
plicative situations. Read the problem in Figure 3.1. This problem is engineered 
to specifically elicit a student-constructed model for multiplication of one-digit 
numbers. In general, problems that are designed in this way elicit students’ 
default model: the model they are most comfortable using when not influenced 
by context. The student responses in Figure 3.1 show the use of a range of visual 
models along the progression from least to most sophisticated. Solution A is an 
equal groups model. Solution B is an array. Solution C is an area model. Solu-
tion D is an open area model.

Figure 3.1 Students often rely on their default model when responding to a question 
that directly asks for a model.

Look at this equation

6 × 4 = 24

Draw a model that represents this equation.

Instructional Guidance

The graphic in Figure 3.2 depicts the instructional path along the progression 
moving from equal groups to a mental model. Importantly, “visual models should 
be used as a way to understand and generalize mathematical ideas; that is, visual 
models are a means to the mathematics, not the end” (Petit et al., 2015, p. 3).
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Equal Groups

Most students begin modeling multiplication by drawing equal groups models 
(Figure 3.1A). This is typical because it is a model of multiplication that is most 
closely related to repeated addition, which is a strategy most students first use 
to solve multiplication problems. Even the vocabulary we use when describ-
ing this model sounds like addition (e.g., 4 objects in 3 groups). Although this 
is a helpful beginning model for students to understand the importance of 
equal groups, it is limiting in its use and generalizability when factors increase 
in magnitude and as students expand and deepen their understanding of the 
properties of operations for multiplication. Teachers, therefore, need to help 
students move to a more useful model.

Using Arrays to Transition from Equal Groups

“A two-dimensional array is a rectangular arrangement of things into (hori-
zontal) rows and (vertical) columns, such that each row has the same number 
of things and each column has the same number of things” (Beckmann, 2014, 
p. 141). In an array each dimension is represented by a number of discrete 
objects (objects that are not connected to each other). At first students may 
focus on the sets of objects in each row or column, but the array can also be 
used to help transition students to focus on the dimensions rather than the 
equal groups. This is an important instructional step for many students because 
it directly connects the more familiar equal groups model to one that expands 
the meaning of multiplication. Although equal groups can be seen in the rows 
and columns of an array (see Figure 3.3), the goal is to move students from 
using the equal groups to using the dimensions in the array as the factors in a 
multiplication problem (see Figure 3.4). This rectangular arrangement in an 
array and the move to connect the dimensions of the array to factors is impor-
tant because it begins to set the stage for using area models. Area models are 

Figure 3.2 Hypothesized instructional path when using visual models to build multipli-
cative fluency and understanding (Hulbert, Petit, & Laird, 2015).
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vitally important to students’ understanding of the properties of operations 
that underpin fluency with multiplication.

The transition from equal group models to array models can include a point 
where students only consider one dimension of the array and as a result may 
display their objects in an array but still see the equal groups in the array only 
along one dimension. For example, Lainey’s work in Figure 3.3 provides evi-
dence that she is in the process of making the transition from an equal group 
model to an array model. She organized groups in an array; however, the evi-
dence suggests she is only considering one dimension of her array or she may 
not be seeing dimensions at all, but rather groups organized in rows.

Figure 3.3 Lainey’s solution. The evidence suggests that Lainey is considering the equal 
groups along one dimension.

Look at this equation

6 × 4 = 24

Draw a model that represents this equation.

In contrast, in Figure 3.4 Kelyn is considering both dimensions of the array, 
not simply the equal groups.

Figure 3.4 Kelyn’s response. Kelyn’s solution is focused on the dimensions.

How many wheels are there in 4 tricycles?

It is noteworthy here that the transition from seeing equal groups in an array 
along one dimension to seeing both dimensions of the array can present some 



The Role of Visual Models • 45

challenges for students. In particular, students often have difficulty realizing 
that the dimensions and not the items themselves represent the factors of a 
multiplication problem.

In general, as students interact with arrays, they move through four stages 
as shown in Figure 3.5 (Battista, Clements, Arnoff, Battista, & Borrow, 1998). 
These stages are not developmental stages that teachers need to progress stu-
dents through. Rather, they include errors (Stages 1 and 3) or developing 
understandings (Stage 2) evidenced in the use of arrays until students visualize 
and use both dimensions (Stage 4). Each of the stages is described in Figure 3.5.

Stage 1: Counting
the objects on the 
outside dimensions.

Stage 2: Seeing equal
groups along one
dimension.

Stage 3: Struggling
to understand how
the upper left corner
can be a part of 
both dimensions.

Stage 4: Visualizing
and using both
dimensions.

Figure 3.5 Stages in development of use of arrays.

Note that in Stage 3, students struggle to understand how the upper-left cor-
ner of an array can be a part of both the column and the row of the array. This 
is evidenced in a couple of ways. Students might express confusion about the 
object in the upper-left corner and why that piece appears to be double counted 
and/or they may neglect an entire row or column in the array trying to avoid 
what they think is a double count. In the example shown in Figure 3.5 Stage 3, 
a student might see that there are 6 circles in each row but think there are only 
3 rows because they have already counted the corner piece.

Area Models Strengthen Focus on Factors as Dimensions

The next step in the progression of visual models for multiplication is for stu-
dents to build area models from an understanding of arrays. In an area model, 
the factors represent continuous lengths rather than discrete amounts. There 
are many similarities between an area model and an array model. One similar-
ity is that the number of “tiles” in the area model can be counted to find the 
product, just like the number of items can be counted in an array model. This 
feature helps some students more easily transition from the array to the area 
model. An array can be composed of any object (e.g., apples, circles, marbles), 
whereas area models are composed of continuous square units as shown in 
Figure 3.6. This difference plays a key role in helping focus attention on dimen-
sions as factors.
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To help students transition from seeing rows and columns in an array or 
area model requires explicit instruction focusing attention on dimensions. This 
is easier in an area model because the area model is composed of continuous 
units, not discrete objects. The attention, therefore, is on determining the length 
of the dimensions of each side, not the number of squares on each side. As stu-
dents develop this understanding of the area model, they recognize that one 
factor refers to one dimension and the other factor refers to the other dimen-
sion as shown in Figure 3.7. In this example the dimensions are 3 units × 4 units 
and the product is 12 square units. Note that the focus is drawn away from the 
corner tile to the lengths of the edges of the tiles of each dimension.

Figure 3.6 An array and area model representing 3 × 4. In a discrete model the items 
are individual unconnected objects, as illustrated in the array on the left. In a continuous 
model the items are connected.

3 × 4 array 3 × 4 area

Figure 3.7 Area model 3 units × 4 units with an area of 12 square units.

4 units

3 
un

its

The Open Area Model Is the Final Bridge to Fluency

The open area model is the next step in the progression. It is the most flexible of 
the models and allows for work with larger numbers and ultimately with frac-
tions, decimals, and algebraic expressions. Use of the open area model bridges 
place value understanding with the distributive property to support more effi-
cient multiplicative strategies.

For example, in Figure 3.8 there is evidence that Haley knew the number 16 
is equal to 10 + 6. This knowledge allowed Haley to use the distributive prop-
erty to determine the product of 9 ×16 by distributing the 9 across (10 + 6) in 
the area model [(9 × 10) + (9 × 6) = 144].

The area model can help students develop strategies for multiplication that 
are based on understanding of place value as exemplified in Haley’s solution 
when she decomposed 16 into 10 and 6. Notice also that the proportionality of 
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See Chapter 4: The Role of Concepts and Properties, Chapter 8: 
Understanding Algorithms, and Chapter 9: Developing Math Fact 

Fluency for a more in-depth discussion on how the open area model can be 
used to develop place value understanding, support understanding of the dis-
tributive property, and develop understanding and fluency of both math facts 
and algorithms.

The Role of Subitizing and Quick Images

Teachers often ask how to effectively use visual models to help students develop 
understanding of, and fluency with, multiplication. For example, how can I 
help students transition from using an equal groups model to an array or area 
model? Of course, there is not one right answer to this question. However, 
researchers indicate that one way to help is by building and capitalizing on 
subitizing and the use of quick images (Clements, 1999).

Figure 3.8 Haley’s solution. Haley used the open area model to solve the multiplication 
problem.

Sarah and Beth are saving beads to make bracelets.

Sarah has 9 beads.

Beth has 16 times as many beads as Sarah.

How many beads do Beth and Sarah have altogether?

Show your work.

the partitioned area model provides a visual clue as to the relative magnitude 
of each of the products. Ultimately, the goal is for students to move away from 
reliance on the open area model to flexible use of efficient algorithms that are 
based on place value and the distributive property.
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Subitizing is the ability to quickly identify the number of items in a small 
set without counting each object. There are two types of subitizing: perceptual 
and conceptual. Perceptual subitizing involves “recognizing a number without 
using any other mathematical process” (Clements, 1999, p. 401). For example, 
very young children can recognize an organized group of two to four objects 
without counting. Conceptual subitizing, unlike perceptual subitizing, involves 
mathematical processes. For example, a student may recognize that the number 
of dots in the pattern in Figure 3.9 consists of 8 dots by seeing that each row in 
the pattern has 4 dots and that there are two groups of four or 4 + 4 or 2 × 4. 
The ability to see each row as having 4 dots without counting the dots in each 
row is evidence of unitizing; that is, seeing one row as 4 dots and two rows as  
2 rows of 4 dots. This ability to unitize is critical in the development of multipli-
cative reasoning and can be supported through the development of conceptual 
subitizing. Specifically, unitizing is critical in helping students move beyond 
counting by ones to recognizing and applying the many-to-one relationships 
in multiplication. (See Chapter 4 for a more in-depth discussion on unitizing.)

Figure 3.9 Conceptual subitizing—the student might see 2 rows of 4 circles.

“Conceptual subitizing must be learned and, therefore fostered, or taught” 
(Clements, 1999, p. 402) and can be used to help students transition to more 
sophisticated strategies and mental models. The use of quick images is one 
instructional strategy to build conceptual subitizing.

A quick image is best understood by providing an example. Imagine that 
you have the pattern in Figure 3.9 on a large piece of paper. You explain to the 
students that you are going to hold up the pattern for only a few seconds. Their 
job is to determine the number of dots in the pattern without counting each 
one. This promotes the use of mental images so important to developing more 
sophisticated strategies. Students may see two rows of 4 dots, or four columns 
of 2 dots, or two groups of 4 in the way that 4 is represented on dice. Examples 
of ways to use quick images to transition students from one visual model for 
multiplication to the next are described later.

Researchers indicate that subitizing is related to visualization (Markovits & 
Hershkowitz, 1997). Using quick images to develop conceptual subitizing com-
bines visualization with subitizing as students describe their mental image of 
the pattern. Figure 3.10 contains a progression that can help you think about the 
type of quick images you can use with your students who are using counting-
by-ones strategies.
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Using quick images is not a one-time event, but should be repeated over 
multiple times while increasing the number of objects in the familiar patterns 
until students can easily use their mental images to determine the number of 
objects in patterns like those in Figure 3.11.

Describing mental images with mathematical expressions can help students 
build understanding of various properties of operations. For example, a student 
might describe the number of dots in the 4 × 6 array in Figure 3.11 as 2 groups 

Figure 3.10 Sample quick images going from familiar patterns with small numbers to 
equal groups to area models.
Source: (Clements & Sarama, 2014).

Familiar patterns

Familiar patterns reoriented

Familiar patterns in equal groups

Familiar pattern increasing 
in the number of equal groups

Familiar patterns in an array

Area

To unitizing into
equal groups

Move from counting 
by ones

Move from equal groups
to seeing both dimensions
in arrays and area models

2 × (4 × 3) = 2 × 12 = 24 (2 × 4) × 3 = 8 × 3 = 24

Figure 3.11 These two different representations of the relationships in a 4 × 6 array help 
to illustrate the associative property.
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of 12 or 2 × (4 × 3) = 24, whereas another student might describe the number 
of dots in the patterns as 3 groups of 8 or (2 × 4) × 3 = 24. Highlighting these 
groupings and recording the strategies with equations provides a visual repre-
sentation of the associative property of multiplication.

One strategy to help students focus on the dimensions of an array is to cover 
part of the array (as shown in Figure 3.12) and ask how many dots are in the 
pattern, including the covered part.

Figure 3.12 A 6 × 4 array in which part of the array is covered to help students focus 
on the dimensions.

Some math programs have quick images as a regular part of the daily rou-
tine. Many teachers told us they often skipped the quick images because they 
did not understand their importance in helping move students away from equal 
groups models toward mental images involving arrays, area models, and open 
area models.

As a teacher, careful planning for the concepts one is trying to develop maxi-
mizes the impact of using quick images. For example, if a teacher’s goal is to 
develop understanding of the associative property, the teacher might use a 4 × 6 
array as shown in Figure 3.11. As students generate different equations to rep-
resent the number of dots in the array, the teacher writes the equations on the 
board and sketches the images as shown in Figure 3.13. The teacher then has 
students study the equations and make observations using questions that help 
focus their attention on understanding the associative property.

Sample questions to focus attention on the associative property include the 
following:

1. What do you notice about the factors in each of these equations? [Sam-
ple response: They are the same numbers, but organized  differently.]

2. What do you mean by organized differently? [Sample response: The 
order of the factors is different, as well as different numbers are in 
parentheses.]

3. Did this different organization change the number of dots in the fig-
ure? Why or why not?

4. Study the figures and matching equation for each figure. How are the 
equations related to the figures?
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As mentioned in the introduction to this chapter, there are two important 
perspectives to consider when using the progressions in relation to visual mod-
els: 1) understanding evidence of the sophistication of student strategies when 
they solve problems and 2) guiding instructional decisions. The two perspec-
tives work together. If a teacher knows the model a student is using, then they 
can use the progression as a guide to move the student’s strategy and under-
standing to a more sophisticated level. We will continue to explore the role of 
visual models in the upcoming chapters.

Chapter Summary

• Visual models play a key role in developing multiplicative reasoning 
and fluency.

• Use of quick images combines subitizing and visualization. Together 
they help students transition to more sophisticated visual models and 
to mental models.

Looking Back

1. Analyzing Common Visual Models for Multiplication: In this chapter 
you became familiar with different visual models for multiplication. You 
learned that visual models for multiplication differ in appearance, sophis-
tication, flexibility, and usefulness beyond whole number  multiplication. 

Figure 3.13 Equations and visual models on a white board representing some relation-
ships in a 6 × 4 array. Displaying on the white board as shown provides the opportunity 
for students to study relationships between the equations and the visual models repre-
senting the equations.

Because students have developed these equations from a visual model and 
studied the relationship between the equations and the images, they can build 
understanding that the associative property is not a trick or a definition to 
memorize, but rather a mathematical tool they can use when solving problems.
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The following questions provide an  opportunity for you to revisit ideas 
about visual models that were introduced in this chapter.
(a) In what ways are an equal groups model and an array alike? How are 

they different?

Figure 3.14 Equal groups model and array model representing 3 × 4 = 12.

Figure 3.15 Area model and open area model representing 3 × 4 = 12.

(c) Notice that the open area model is considered a Transitional Strat-
egy on the OGAP Multiplication Progression, whereas the area model 
is considered an Early Transitional Strategy. Why is the open area 
model considered a more sophisticated visual model than the area 
model?

(d) Use Haley’s strategy shown in Figure 3.8 to solve 16 × 19. How is an open 
area model that represents a 2 digit × 2 digit problem different from an 
open area model that represents a 1 digit × 2 digit problem? What would 
an open array model for a 3 digit × 3 digit problem look like?

2. Conceptual Subitizing: Conceptual subitizing involves using math-
ematical processes to determine a quantity. This differs from perceptual 
subitizing, which is the ability to recognize a number without using any 
mathematical process. For each of the following images, identify a spe-
cific mathematical process a student might use to determine the number 
of items in the image (Figure 3.16).

(b) Figure 3.15 shows two different area models that represent 
3 × 4 = 12. What is the major difference between these two types of 
models?
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3. Helping Students Transition to More Sophisticated Visual Models: 
Germain is comfortable using the array model for solving multiplication 
problems like the one shown in Figure 3.17. The class is beginning to 
operate with larger numbers, and his teacher, Ms. James, wants to help 
him transition to a more efficient model and eventually to a multiplica-
tive strategy for multiplication.

Figure 3.16 Conceptual subitizing images.

Figure 3.17 Sample of Germain’s array model.

(a) What model might Ms. James use to help Germain transition to 
next? Why did you choose this model?

(b) List some instructional strategies Ms. James can use to help Ger-
main transition to the model you chose.

4. Try This With Your Class: Administer a question like the one in 
 Figure 3.18 to help you understand the types of visual models your stu-
dents tend to use when solving multiplication problems. Sort the student 
solutions into equal groups, arrays, area models, and open area models. 
What did you find out about your students’ use of visual models? What 
instructional modifications will you make based on this information?
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Figure 3.18 Sample question to gather evidence on students’ use of visual models.

Look at this equation.

6 × 4 = 24

Draw a model that represents this equation.

Instructional Link

Use the following questions to analyze ways your math instruction and pro-
gram provides students opportunities to build fluency with and understanding 
of important grade-level multiplicative concepts and skills.

1. In what ways do your math program and instruction utilize equal 
groups models, arrays, area models, and open area models to help stu-
dents develop multiplicative reasoning and fluency?

2. How can you use quick images in your instruction to develop unit-
izing and understanding of the properties of operation?
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4
The Role of Concepts and Properties

Continuing the focus on developing procedural fluency with understanding 
that began in the last chapter, this chapter focuses on three mathematical ideas 
that are foundational for developing flexibility and procedural fluency when 
multiplying and dividing whole numbers:

1. Unitizing
2. Place value understanding
3. Properties of operations

The meaning of procedural fluency was described in detail in Chapter 1. 
Because of its importance to the topics presented in this chapter, the essential 
components of procedural fluency are reiterated here.

Procedural fluency includes the following:

1. Knowledge of the steps in a procedure
2. Knowledge of when to use the procedures appropriately
3. Skill in applying a procedure flexibly, accurately, and efficiently
4. Underlying conceptual understanding of mathematical ideas

Big Ideas
• Linking the learning of arithmetic to important foundational 

mathematical ideas is fundamental to developing multiplicative 
reasoning and procedural fluency with understanding.

• Foundational mathematical ideas for developing flexibility 
and fluency when multiplying and dividing whole numbers 
include unitizing, place value understanding, and properties of 
operations.

• In addition to supporting the development of unitizing and 
place value, visual models can be used to highlight and deepen 
understanding of the commutative, associative, and distributive 
properties.
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In this chapter, we focus on how to build conceptual understanding of the 
important mathematical ideas that underlie multiplication and division in 
order to develop procedural fluency.

CCSSM

The CCSSM supports this definition of the development of procedural fluency, 
as can be seen by the fact that place value and properties of operations play 
a prominent role throughout the standards that are focused on the develop-
ment of multiplicative reasoning (See Table 2.1 in Chapter 2 and Table 8.1 in 
Chapter 8). The CCSSM does not expect mastery of standard algorithms for 
multiplication and division until after students have developed strategies based 
on place value, properties of operations, and the inverse relationship between 
multiplication and division (CCSSO, 2010).

The OGAP Multiplication and Division Progressions

Unitizing, place value understanding, and properties of operations are key 
to transitioning students from less to more sophisticated and efficient ways 
to solve multiplication and division problems, as discussed in more detail in 
Chapter 2. These concepts and properties are listed on the arrow on the right 
side of the progressions to illustrate the important role in moving students to 
more sophisticated strategies. This chapter examines these mathematical ideas 
and includes discussion of instructional strategies that focus on these concepts 
and properties to develop students’ multiplicative reasoning, flexibility, and 
fluency.

Unitizing

When students first solve multiplication and division problems, they often 
bring additive reasoning and strategies to their solutions, such as counting 
by ones or repeated addition. Unitizing is a fundamental concept that allows 
students to transition from additive strategies toward more sophisticated mul-
tiplicative reasoning and strategies.

Unitizing is the ability to see a group, call it one group or unit, but also know 
that it is worth another value. For example, one tricycle can be understood as 1 
group of 3 wheels. This idea that one group can simultaneously be 3 ones and 1 
three is a new idea for students when they start to reason multiplicatively; it is 
the big idea of unitizing and it is foundational for the development of the con-
cepts of multiplication and division (Fosnot & Dolk, 2001; Steffe, 1988; Ulrich, 
2015).

In the problem “How many wheels on 29 tricycles?” one of the factors rep-
resents the number of groups (29 tricycles) and the other factor represents 
how many in each group (3 wheels per tricycle or per group). The number of 
groups and the number in each group have different associated units that are 
dependent upon each other: the total number of wheels is dependent upon the 
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number of wheels on each tricycle. At the heart of multiplication are these equal 
groups, or composite units.

Students who are counting each object within a group to solve problems 
involving multiplication or sharing out by ones when solving division prob-
lems have not begun to unitize or conceptualize composite units. That is, they 
have not begun to simultaneously count individual objects and groups. See Fig-
ures 4.1 and 4.2 for examples of solutions where individual objects are counted 
by ones rather than groups.

Figure 4.1 Hunter’s response. Hunter drew and counted each wheel by ones to find the 
total of 20 wheels as shown by the tick marks in each wheel.

There are 5 cars in a parking lot. Each car has 4 wheels. How many wheels are 
there in all? Show your work.

Figure 4.2 Diego’s response. Diego’s response has clear evidence that he distributed the 
cookies by ones.

There are 12 cookies and 4 children. How many cookies will each child get if 
the cookies are shared equally among the 4 children?

Focused instruction on unitizing can help students move beyond these Early 
Additive strategies of counting or sharing out by ones. Using quick images as 
discussed in Chapter 3 is one instructional strategy to help support students in 
making this transition to conceptualize groups. As students begin to unitize, 
they can think about each group as a quantity, allowing them to add that quan-
tity repeatedly. However, their reasoning at this stage is still additive.
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See Chapter 3 for more information about using quick images and 
their role in developing multiplicative reasoning and fluency.

As unitizing becomes internalized, students can move from repeated addi-
tion to skip counting or counting multiples of the number in each group, thereby 
keeping track of both the number in each group and the number of times it is 
repeated. The process allows for students to move from an Additive strategy to 
an Early Transitional strategy of skip counting. Often students initially draw or 
represent each object using a visual model to keep track of the number of mul-
tiples, as Tracy did in Figure 4.3. Students then transition from drawing each 
object to using a more efficient method to keep track of the groups, as reflected 
in Mark’s solution strategy in Figure 4.4.

Figure 4.3 Tracy’s response. Tracy drew each triangle and then counted by multiples of 3.

How many sides do 6 triangles have?

Figure 4.4 Mark’s response. Mark’s response shows evidence of skip counting by mul-
tiples of 3 without the use of drawing to keep track of the number of multiples.

How many wheels do 15 tricycles have?

In both of these examples, the fact that the students have recorded the accru-
ing unit shows that they are moving toward a more efficient approach to finding 
the total.

Fluency with multiples is key to the transition from Additive to Early Tran-
sitional strategies. This involves both knowing the skip count sequence and 
understanding the concept of multiples, that 3 × 5, for example, means 3 mul-
tiples or groups of 5, or 15. Study solutions A and B in Figure 4.5. The evidence 
in solution A suggests a transition from skip counting to an organized list of the 
multiples of the heights of the boxes. In contrast, in Solution B the multiples of 
12 and 14 are interpreted as a multiplication expression.
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By looking at both solutions side by side, students can make connections 
between the organized list of multiples to multiplicative thinking: there are 7 
multiples of 12 or (12 × 7) and 6 multiples of 14 or (14 × 6).

Understanding the base- 10 number system also requires understanding of 
unitizing. Fosnot and Dolk (2001) describe the prominent role of unitizing in 
the development of place value understanding.

Unitizing underlies the understanding of place value; ten objects becomes 
one ten. Unitizing requires that children use numbers to count not only 
objects but also groups—and to count them both simultaneously. The 
whole is thus seen as a group of a number of objects. The parts together 
become the new whole, and the parts (the objects in the group) and the 
whole (the group) can be considered simultaneously. For learners, this is 
a shift in perspective. Children have just learned to count ten objects, one 
by one. Unitizing these ten things as one thing—one group—requires 
almost negating their original idea of number (p. 11).

The base- 10 number system is remarkably efficient for representing and cal-
culating with numbers, but it is based on a multiplicative understanding that 
the position of a digit determines its value and the value of that position is 
always ten times the value of the place to its right.

At the most basic level, to understand the base- 10 number system, students 
need to understand that 1 ten can simultaneously be 10 ones, and 100 can simul-
taneously be 10 tens and 100 ones, and so on. This understanding is extended 
as students decompose numbers. For example, in the number 73 the 7 does not 
mean 7 ones. Rather it means 7 groups of tens or 7 units of 10. Using base- 10 
representations is one way to make a direct link between unitizing and place 

Figure 4.5 Two correct solutions to a problem designed to elicit strategies for solving 
problems involving multiples.

Abdi was stacking boxes that are 14 inches tall next to boxes that are 12 inches 
tall. Abdi wants to make both stacks the same height. At what height will the 
stacks be the same?

Solution A  Solution B
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value. Understanding the unitized nature of our number systems allows students 
to grasp the multiplicative relationships between the ones, tens, and hundreds 
blocks and, ultimately, to operate with larger numbers. Figure 4.6 illustrates how 
base- 10 blocks are used to represent a three- digit number and help students move 
from unitizing to skip counting to more formalized place value understanding.

Figure 4.6 Base- 10 blocks representing 262 that can be used to link skip counting and 
unitizing to place value.

The Role of Place Value

There are two interrelated aspects of student understanding of place value 
that help develop fluency and flexibility when multiplying and dividing whole 
numbers: 1) understanding place value of numbers and 2) understanding 
place value in computation for multiplication and division (Battista, 2012). To 
begin to understand how these two ideas are interrelated, study Pat’s response 
in  Figure 4.7. How did Pat use understanding of place value of the given fac-
tors to solve the problem? How did Pat use her understanding of place value 
in her computation?

Pat’s solution shows evidence of using place value understanding of indi-
vidual numbers when she correctly decomposed each of the factors and of 
applying place value understanding in computation when multiplying the fac-
tors and when adding the sum of the individual products. Pat’s solution is an 
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example of the open area model, which is more fully described and explained 
in Chapter 8.

There is a progression in the development of place value that begins with 
counting by ones, moving to unitizing by groups of ten, hundreds, thousands, 
etc., skip counting by place values to solve problems (e.g., 5 × 10 = 50 because 
10, 20, 30, 40, 50); and then operating on numbers by decomposing and com-
bining numbers (Battista, 2012). Decomposition by place value allows students 
to use Transitional strategies such as Pat’s use of the open area model in Figure 4.7 
and finally to solve multiplication and division of multidigit numbers using 
efficient algorithms at the Multiplicative level.

Multiplication by powers of 10 (e.g., 100 × 17 = 1700) is another important 
place value concept. This concept is often poorly understood and in some cases 
taught simply as a rule. That is, 100 × 17 = 1700 because there are two zeros 
in 100, and so to find the product you add two zeros to the other factor (17). 
However, adding zero does not change the value of a number (e.g., 17 + 0 = 17), 
so this rule is mathematically incorrect. Sometimes students are told instead to 
annex or attach zeros at end of the factor for each power of ten. Although this 
is a mathematically correct rule for whole numbers, it expires in grade 5 when 
students start multiplying and dividing decimals by powers of 10 (e.g., 2.5 × 
100 ≠ 2.500) (Karp, Bush, & Dougherty, 2014).

One should not underestimate the impact of the misconception of adding 
zeros for each power of 10. In a study conducted by OGAP involving 47 fifth 
grade students, 62 percent of the responses to the following OGAP item showed 
evidence of this misconception as shown in Tom’s response in Figure 4.8.

Figure 4.7 Pat’s response. Pat’s response shows evidence of understanding place value of 
the numbers 64 and 12 and using understanding of place value to compute the solution.

John bought 12 boxes of crayons. Each box contained 64 crayons. How many 
crayons were there altogether?
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IN OUT
1 10
10 100

1000100
1000 10000
10000 100000

Figure 4.8 Tom’s response. Tom’s response shows evidence of the misconception of add-
ing zeroes to find a product of a power of 10.

Jake was asked to explain the rule for the following function machine. He 
noticed that the numbers in the OUT column had one more zero than the 
number in the IN column on every row. Jake said that the rule is to add a 0 
to the IN column numbers to get the OUT column numbers. Is Jake correct? 
Why or why not?

The issue then, is how to help students understand and generalize the impact 
of multiplying and dividing by powers of 10 without overgeneralizing a rule 
that only applies to whole numbers. One strategy is to engage students in activi-
ties that involve linking visual models like base- 10 blocks to verbal and written 
words, equations, and place value charts, as is shown in Figure 4.9. Doing this 

Figure 4.9 In the problem 100 × 3 = 300 the 3 is shifted two places to the left for each 
power of 10.
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with multiple examples allows students to see the pattern that the digits are 
actually shifting to the left for multiplication for each power of 10 and to the 
right when dividing by powers of 10.

As stated earlier, this notion of digits shifting when multiplying or dividing 
by powers of 10 is important because it holds true for multiplication of decimal 
fractions. For example, in the problem 8.1 × 100 the digits shift two places to 
the left, just like in the whole number example shown earlier.

8.1 × 100 = 810

810 can also be thought of as 8.1 hundreds; the zero indicates that there are no 
groups of one. Student understanding of multiplying by multiples of powers of 
10 should be logically built upon the notions described earlier. Some examples 
of numbers that are multiples of powers of 10 include 30, 400, and 8,000. For 
example, using place value understanding, 5 × 60 can be expressed as 5 × 6 tens 
or 30 tens or (5 × 6) × 10. In all three cases we can reason that 30 tens are equal 
to 300. One way to help students understand this idea is by having them work 
through a sequence of problems using base- 10 representations and linking 
verbal and written language to the equations. Study the sequence of problems 
that follow. What patterns and relationships do you notice? In particular notice 
what is happening to the place value of the product as you multiply by powers 
of 10 and multiples of the power of 10.

Sample sequence:

1. 3 × 40 = 3 × 4 × 10 = 12 tens or 120
2. 3 × 400 = 3 × 4 × 100 = 12 hundreds or 1,200
3. 3 × 4,000 = 3 × 4 × 1,000 = 12 thousands or 12,000
4. 3 × 40,000 = 3 × 4 × 10,000 = 12 ten- thousands or 120,000
5. 80 × 50 = (8 × 10) × (5 × 10) = (8 × 5) × (10 × 10) = 40 hundreds = 4,000

Note that this last example involves both the commutative and associative 
properties, which are discussed in the next section. It may seem easier to simply 
provide students a series of rules to follow for multiplying by powers of 10 or 
by multiples of powers of 10. However, the conceptual understanding described 
earlier is vital for students to develop fluency and flexibility for reasoning and 
solving a variety of multiplication and division problems. In addition, knowl-
edge based on conceptual understanding is longer lasting than rule- based 
notions (Hiebert & Carpenter, 1992).

In contrast to Tom’s response in Figure 4.8, Mia’s response in Figure 4.10 
shows evidence that she understands the multiplicative relationship between 
the values in the IN column and the values in the OUT column. In addition, 
she seems to realize that adding zero to a number does not change the magni-
tude of the number. Her response shows understanding of the additive identity 
property of zero.
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Mia’s correct response, as well as the sample problem sequence earlier, leads 
us to the focus of the next section: using properties of operations to help build 
procedural fluency with flexibility and understanding.

Properties of Operations

The commutative and associative properties of addition, together with 
the other properties of arithmetic (which include the commutative and 
associative properties of multiplication and the distributive property) 
form the building blocks of all of arithmetic. Ultimately, every calcu-
lation strategy, whether a mental method of calculation or a standard 
algorithm, relies on these properties. These properties allow us to take 
numbers apart, to break arithmetic problems into pieces that are easier 
to solve, and to put the pieces back together. The strategy of decompos-
ing into simpler pieces, analyzing the pieces, and then putting them back 
together is important at every level of mathematics and in all branches of 
mathematics (Beckmann, 2014, p. 100).

Many students can use their intuitive understanding of the properties of 
operations to develop flexible strategies and structure their thinking when 
multiplying and dividing whole numbers. However, because it is known that 
not all students engage with the properties intuitively (Empson & Levi, 2011), 
it is important that teachers provide students rich and focused instruction that 
engages students in both understanding the properties and using this under-
standing to flexibly solve multiplication and division problems. Table 4.1 
provides a list of the properties and relationships relevant to multiplication and 
division that will be discussed throughout this section. It is not important that 
students possess a formal definition of the properties. Much more important 
is that students understand the properties and know how to use them to make 
sense of multiplication and division problems and to flexibly solve problems 
with a variety of contexts and numbers. Table 4.1 is followed by examples of 

IN OUT
1 10
10 100

1000100
1000 10000
10000 100000

Figure 4.10 Mia’s response. Mia’s response shows evidence of understanding the multi-
plicative relationship between the IN and OUT in the function machine.

Jake was asked to explain the rule for the following function machine. He 
noticed that the numbers in the OUT column had one more zero than the 
number in the IN column on every row. Jake said that the rule is to add a 0 
to the IN column numbers to get the OUT column numbers. Is Jake correct? 
Why or why not?
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ways to engage students in reasoning through instructional strategies such as 
questioning to highlight properties when students share solutions, using engi-
neered formative assessment questions, and making and testing conjectures.

Table 4.1  Properties and relationships – multiplication and division.

Properties

Multiplicative 
identity 
property

a × 1 = a
The product of any number 
and 1 is that number.

35 × 1 = 35
35 = 35

Commutative 
property of 
multiplication

a × b = b × a
When two numbers are 
multiplied together, the 
product is the same regardless 
of the order of the factors.

25 × 2 = 2 × 25
50 = 50

Associative 
property of 
multiplication

(a × b) × c = a × (b × c)
When three or more numbers 
are multiplied, the product 
is the same regardless of the 
grouping of the factors.

(3 × 5) × 4 = 3 × (5 × 4)
15 × 4 = 3 × 20
60 = 60

Distributive 
property of 
multiplication 
over addition

a × (b + c) = (a × b) + (a × c)
The sum of two numbers times 
a third number is equal to the 
sum of the products of each 
of the addends and the third 
number.

4 × (6 +2) = (4 × 6) + (4 × 2)
4 × 8 = 24 + 8
32 = 32

Relationships
Inverse 
relationship 
between 
multiplication 
and division

If a × b = c, then c ÷ b = a, and 
c ÷ a = b
There is an inverse relationship 
between multiplication and 
division.

4 × 6 = 24
24 ÷ 6 = 4
24 ÷ 4 = 6

Multiplication 
by zero

a × 0 = 0
Any number times zero is zero.

5 × 0 = 0 = 0 × 5

Highlighting Properties in Student Solutions

As noted earlier, the CCSSM states that students in grades 3–5 should solve 
multiplication and division problems with strategies that are based on place 
value, properties of operations, and/or the relationship between multiplication 
and division.

Study Olivia’s response in Figure 4.11. Notice that Olivia used her under-
standing of place value and the distributive property of multiplication over 
addition. Although we don’t know if this third grade student had any formal 
instruction in the use of the distributive property, the evidence suggests that 
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Olivia decomposed 19 and then used her understanding of multiplication to 
multiply 15 ft. × 10 ft. and 15 ft. × 9 ft. to solve the problem.

Figure 4.11 Olivia’s response. There is evidence in the response of decomposing 19 and 
then applying the distributive property.

How many 1- foot square tiles does it take to cover the school playground?

Notice that Olivia used units throughout her solution. However, the final 
unit in 285 ft. is incorrect and should be square feet (ft2), which could be easily 
illustrated with the given area model. The importance of the meaning of the 
quantities in multiplication and division problems is addressed in Chapter 5.

Whereas some children intuitively use the distributive property, others 
need more explicit instruction. The explicit instruction is not about teach-
ing the property directly and having students practice that strategy, but rather 
providing platforms upon which to have discussions that engage students in 
understanding how to use the underlying concepts in the property to flexibly 
multiply and divide numbers. For example, a teacher might capitalize on Oliv-
ia’s solution by sharing it with the entire class and asking probing questions that 
deepen all students’ understanding of the distributive property. Her solution 
can be further illustrated on the model provided in the problem.

Sample probing questions about Olivia’s solution:

1. Is Olivia’s solution correct or incorrect? Why or why not?
2. How did Olivia solve the problem?
3. Can Olivia’s strategy be used to solve other multiplication problems 

like 5 × 34? Why or why not?
4. Name some other multiplication problems that can be solved using 

this strategy.
5. Use the visual model to illustrate Olivia’s strategy.

In the example shown in Figure 4.12, Omar found the product of 25 × 6 by first 
finding the product of 24 × 6. Although we don’t know why he chose to do this, 
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it seems that he knew that the product of 24 × 6 was equivalent to the product 
of 12 × 12 through a strategy of doubling and halving the factors.

Figure 4.12 Omar’s response. Omar’s solution involves a doubling and halving strategy, 
which illustrates the distributive, commutative, and associative properties.

Samantha’s class has 25 bags of cookies. Each bag contains 6 cookies. How 
many cookies does Samantha’s class have all together?

Notice that to find the product of 25 × 6, Omar used the distributive prop-
erty to change the product into (24 × 6) + 6. To find 24 × 6, he first halved the 
24 and then doubled the 6 to get 12 × (6 × 2) or 12 × 12. By breaking down his 
solution into steps, we can see the distributive, commutative, and associative 
properties in this solution strategy:

25 × 6 = (24 × 6) + 6 Distributive property
= (12 × 2) × 6) + 6
= (12 × (6 × 2) + 6  Associative and commutative properties
= (12 × 12) + 6
= 144 + 6
= 150

In addition to asking probing questions about Omar’s strategies such as those 
shown earlier for Olivia’s solution in Figure 4.11, teachers can illustrate the 
properties visually with the open area model. In Figure 4.13, the associative 
property is illustrated by an open area model for 6 × 24. The shaded area has 
been moved, but the total area, or the product, remains the same. This model 

Figure 4.13 The doubling and halving strategy and the associative property can be illus-
trated with open area models.
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can help students reason that a doubling and halving strategy like Omar used 
can work for all numbers because of the associative property.

Tasks Engineered to Highlight Properties of Operations

Teachers may also design or select questions that provide the opportunity 
to use the different properties. For example, the problem in Figure 4.14 was 
engineered to elicit use of the commutative property and/or the associative 
properties of multiplication by using an area context and two- digit factors that 
can be decomposed into tens and ones. Study the problem in Figure 4.14. What 
aspects of the problem make it a good one to elicit use of commutative and 
associative properties? Study the solutions. How did the design of the problem 
allow for these different solutions?

Figure 4.14 Correct responses to the problem using different strategies and different 
levels of place value understanding.

Mr. Jones ordered 7 cases of paper. There are 10 packages of paper per case. Each 
package contains 500 sheets of paper. How many sheets of paper did he order?

You probably noticed that the problem has three factors. This fact alone 
opens the door for the use of the associative property and the commutative 
property to solve the problem. In addition, the factors include 10 and multiples 
of powers of 10. Solution A shows the use of the traditional US algorithm after 
first multiplying 7 × 10 to get 70. In solution B there is evidence that the student 
understood that 500 is 100 × 5 and 100 is 10 × 10 and then rearranged the fac-
tors to multiply 10 × 10 × 10 = 1,000. In solution C there is evidence of using 
the associative and commutative property to rearrange the factors: 7 × 10 × 5 
× 100 = (7 × 5) × (10 × 100). Of course not all three- factor problems elicit the 
need to use the associative property. However, both the order of the factors in 
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the problem and the fact that the problem involves numbers that are multiples 
of powers of 10 provides opportunities to draw on understanding of these prop-
erties to enact a flexible strategy to find the product of the three numbers.

To help students understand the underlying properties in these solutions, 
teachers can share the solutions with the class and have students explore the 
relationships between the solutions using probing questions.

Sample questions to pose about the student solutions in Figure 4.14 include 
the following:

1. How did each student solve this problem?
2. How are the solutions related to each other?
3. Do the calculations in the solution need to be completed in the same 

order that the numbers are presented in the problem? Why or why 
not?

4. Where do you see the 500 in solutions B and C?
5. Where do you see the 70 in solutions B and C? Is this okay to do? Why 

or why not?
6. Write another three- factor multiplication problem and solve it using 

the strategy demonstrated in solutions B and C. Explain why using this 
strategy makes the calculations easier to carry out.

It is also important to give students tasks that specifically target understanding 
of a certain concept or property. Study the problem and solutions in Figure 4.15. 
How was the problem designed to elicit understanding of the commutative 
property of multiplication or multiplication by zero? What do you notice about 
students’ understanding of these properties in solutions A, B, and C?

Figure 4.15 Problem designed to elicit application of the commutative property of mul-
tiplication or the impact of multiplication by zero.

Complete the following equation to make the statement true.

30 × ____ = 71 × ____
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The open number sentence in the question in Figure 4.15 provided the 
opportunity for students to complete the equations using their understanding 
of either the commutative property or multiplication by zero. Solutions A and 
C have correct responses based on either multiplication by zero or the com-
mutative property of multiplication. Solution B, however, shows evidence of 
having to carry out multiple computations to ultimately determine that 30 × 
71 = 71 × 30.

Another strategy for highlighting properties of multiplication is to ask 
students to make and test conjectures by determining whether equations are 
true or false (Carpenter et al., 2003). In the task shown in Figure 4.16, stu-
dents are given equations and asked to explain why they are true. In Solution 
A, the student recognizes the associative and commutative properties and is 
able to generate different true equations. In Solution B, the student had to 
perform the calculations to check, but then was able to generalize about why 
the products were equal. Ultimately, students should be able to recognize 
and use the properties to justify these equations without having to carry out 
calculations.

Figure 4.16 Two solutions to a problem engineered to engage students in making and 
testing conjectures.

Review the following true equations.

(a) 786 × 5 × 2 = 10 × 786

(b) 5 × 20 × 3 = 3 × 5 × 20

(c) 45 × 5 × 4 = 4 × 5 × 45

Solution A
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Representing Properties of Multiplication with Visual Models

Visual models are a powerful way to illustrate the commutative and associa-
tive properties of multiplication, the distributive property of multiplication 
over addition, and the inverse relationship between multiplication and divi-
sion. This section provides examples of ways to use visual models to help your 
students deepen their understanding of these three properties.

Commutative Property of Multiplication

The commutative property of multiplication states that when two numbers are 
multiplied together, the product is the same regardless of the order in which the 
factors are multiplied. The generalized case of the commutative property can be 
expressed as a × b = b × a. The area models in Figure 4.17 illustrate this property 

Figure 4.16 Continued.

Solution B
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because the areas of the two rectangles are congruent even though each rect-
angle is oriented differently. Note that it is harder to see this commutativity in 
an equal groups model (e.g., 3 baskets of 2 apples is different from 2 baskets of 
3 apples.) However, because the 2 × 3 rectangle and the 3 × 2 rectangle have the 
same area we can conclude that 2 × 3 = 3 × 2. The congruence of the figures, 
regardless of their orientation, illustrates the commutative property. An area 
model like the one in Figure 4.17 can be used to illustrate the commutative 
property with whole numbers, fractions, and decimals because we can create 
rectangles with fractional dimensions such as 3 feet, ¾ of a yard, or 0.75 miles.

Figure 4.17 The two rectangles have the same areas because 2 × 3 = 3 × 2 or 6 square units.

Many math programs use the convention that in a multiplication expression 
the first factor represents the number of rows and the second factor represents 
the number of columns. This is a convention, rather than a rule, because math-
ematically arrays and area models are congruent when rotated.

To extend this specific case to the generalized understanding of the commuta-
tive property of multiplication, one can assign the dimensions a units and b units to 
each rectangle; a and b can be any positive rational number and any linear dimen-
sion unit (e.g., inches, mm) (see Figure 4.18). In both rectangles, the value for a is 
the same and the value for b is the same. In this case, a represents the length of the 
shorter side of each rectangle and b represents the length of the longer side of each 
rectangle. The area, therefore, is the same in both rectangles. That is, the product of 
the factors is unaffected by the order in which they are multiplied (a × b = b × a).

Figure 4.18 If the lengths of a and b are positive numbers, then a × b = b × a and the 
areas of each of the rectangles is ab square units.
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Using quick images of arrays or area models, such as those suggested in 
Chapter 3, is another effective way to highlight the commutative property. 
For the 3 by 5 array shown in Figure 4.19, for example, one student might 
see 3 groups of 5 and another 5 groups of 3. The teacher can represent this as 
5 × 3 = 3 × 5.

Figure 4.19 Quick images can be used to generate the commutative property through 
equal groups in an array.

The Associative Property of Multiplication

This same line of thinking can be applied to understanding the associative 
property of multiplication. Study the rectangular prisms in Figure 4.20. Notice 
that all three prisms have a volume of 24 cubes regardless of their orientations. 
To help understand the associative property think of the total volume in terms 
of the number of 1 unit × 1 unit × 1 unit cubes that fill a given volume.

The prism can be oriented three different ways, each illustrating a different 
base.

• A is oriented so that the side with dimensions 2 × 4 × 1 is the base
• B is oriented so that the side with dimensions 2 × 3 × 1 is the base
• C is oriented so that the side with dimensions 3 × 4 × 1 is the base

In each case the total volume of the prism can be thought of as the area of the 
base of the prism, or one layer of cubes, multiplied by the height of the prism. 
Thus:

• A shows (2 × 4) × 3 = 24 cubic units
• B shows (2 × 3) × 4 = 24 cubic units
• C shows (3 × 4) × 2 = 24 cubic units

In each case notice that the expression in parentheses is the area of the base 
of the prism and the other factor is the height of the prism, which can also be 
thought of as the number of layers or iterations of the base needed to make 
the prism. This example illustrates that the three factors can be associated 
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in different ways while preserving the product: 24 cubic units. Note that the 
example also involves using the commutative property of multiplication as the 
order of the factors were changed.

Figure 4.20 Rectangular prisms illustrating the associative property of multiplication 
with an example.

(a) (2 × 4) × 3 = 8 × 3 = 24 cubes (b) (2 × 3) × 4 = 6 × 4 = 24 cubes

(c) (3 × 4) × 2 = 12 × 2 = 24 cubes
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Generalizing this idea, the two rectangular prisms in Figure 4.21 have the 
same dimensions (a, b, and c) and volume, but are oriented differently. Different 
orientations of the same prism illustrate that regardless of how the dimensions 
are associated or the order in which you multiply the dimensions, the volume 
remains the same.

See Chapter 3: The Role of Visual Models for an example of how to use 
quick images to highlight the associative property of multiplication.

The Distributive Property of Multiplication

Initial development of understanding of the distributive property can be built 
using quick images (see Chapter 3) as students describe the strategies they use 
to determine the total number of objects in an array. For example, students 
might describe how they determined the total number of dots in the pattern in 
Figure 4.22 by saying, “I saw 4 groups of 2 and 4 groups of 3 and added them 
together.” As students describe their solutions, writing multiplication equations 
to represent their descriptions can help students develop conceptual under-
standing of the distributive property.

Figure 4.21 Rectangular prisms illustrating the generalized representation of the asso-
ciative property of multiplication.

Figure 4.22 The equation represents the student’s description (“I saw 4 groups of 2 and 
4 groups of 3 and added them together”) using the distributive property.
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Figure 4.23 illustrates the generalized representation of the distributive 
property. In this case a + b is the decomposed length of the longest side of the 
rectangle, and c is the length of the shortest side. Distributing c over each of the 
additive parts (a + b) results in the total area of the open area model: (c × a) + 
(c × b) = ca + cb.

Figure 4.23 An open area model illustrating the generalized representation of the dis-
tributive property of multiplication over addition.

Further development of the distributive property of multiplication over 
addition is directly linked to the area and open area models used to transition 
students from Additive Strategies to Multiplicative Strategies with both whole 
numbers and fractions, and then again in middle and high school when mul-
tiplying algebraic terms. Initially, use of the area model helps students see the 
dimensions of a rectangle as the factors of multiplication problems. Using their 
intuitive understanding of the distributive property and place value under-
standing, students begin to decompose one or both factors and partition open 
area models into proportional parts.

Study Margo’s solution in Figure 4.24. Notice that her solution shows evi-
dence of using place value understanding to decompose one of the factors. Most 
importantly, the solution shows evidence that multiplying each addend of one 
factor by the second factor and then adding the two products (8 ×10) + (8 × 2) 
results in a product that is equal to the product of the original factors (8 × 12). 
As students work with larger numbers using open area models, they bring their 
place value understanding together with a developing understanding of the 
distributive property. Over time students no longer need to use the open area 
model, but apply the property inherent in the model to solve the problem using 
the distributive property, partial products, and the traditional US algorithm.

Chapter 8: Understanding Algorithms has an in- depth discussion 
on how the open area model, place value, and understanding of the 

distributive property of multiplication come together to bring meaning to the 
partial products and traditional algorithms for multiplication and division.
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Figure 4.24 Margo’s response. Margo used an open area model to multiply 12 × 8.

John bought 12 boxes of crayons. Each box contained 8 crayons. How many 
crayons were there altogether?

The Inverse Relationship Between Multiplication and Division

Just as every subtraction problem can be written as an addition problem, every 
division problem can be rewritten as a multiplication problem. For example, 
the division problem 12 ÷ 4 = ? can be rewritten as ? × 4 = 12 and interpreted as 
“What number multiplied by 4 equals 12?” In this way division can be thought 
of as a missing- factor multiplication problem. This highlights the inverse rela-
tionship between multiplication and division. “Understanding this relationship 
between multiplication and division is critical for learning division number 
facts and for dealing flexibly with problem situations involving multiplication 
and division” (Carpenter et al., 2003, p. 126).

The area models in Figure 4.25 provide an example of this inverse relation-
ship and show that 7 × 10 = 70, 70 ÷ 7 = 10, and 70 ÷10 = 7.

Figure 4.25 Example using area models to show the inverse relationship between mul-
tiplication and division.
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Students who understand the inverse relationship between multiplication 
and division can use multiplication to solve division problems. Study Oscar’s 
response in Figure 4.26. It appears Oscar interpreted this division situation, 
65 inches ÷ 5, as “What number can I multiply by 5 to equal 65 inches?” 
Through estimation and multiplication, he determined that 13 × 5 = 65.

Figure 4.26 Oscar’s response. Oscar’s response has an incorrect unit but is based on the 
inverse relationship between multiplication and division.

A piece of elastic stretches to 5 times its length. When fully stretched the 
elastic is 65 inches long. How long is the original length of the elastic?

There are a number of ways to help students understand and become com-
fortable with the inverse relationship between multiplication and division. First, 
the idea of an inverse relationship between operations is not new to students. 
In grades 1 and 2 students use visual models and create related addition and 
subtraction equations to understand that subtraction is the inverse operation 
of addition. Building on this understanding, visual models like the area model 
in Figure 4.25 can be used to help understand the relationship between multi-
plication and division. In that visual model students can see the total number of 
square units is 70. They can also see the length of each of the dimensions. Using 
models like this one to understand and generate related multiplication and divi-
sion equations can support both the learning of multiplication and division facts 
and the flexibility to use multiplication to solve division problems. Although 
the OGAP Multiplicative Reasoning Framework contains both a Multiplication 
Progression and a Division Progression, when looking at student solutions for 
division problems, teachers often need to look at both progressions.
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See Chapter 9: Developing Math Fact Fluency for a discussion on how 
to use understanding of the inverse relationship between multiplica-

tion and division to help students learn their division facts.

Chapter Summary

• Unitizing is a key understanding to help students move away from 
additive strategies to more sophisticated strategies for solving multi-
plication and division problems.

• Understanding and using place value and the properties of operations 
can help students develop procedural fluency with understanding to 
solve multiplication and division problems.

• Having students share and justify their strategies for solving multipli-
cation and division problems is a context from which properties of 
operations can be highlighted, explored, and justified.

• Visual area models are foundational for understanding the properties 
of operations and other important multiplication relationships.

Looking Back

1. Unitizing and Student Solutions: As described in this chapter, unitizing 
underlies the concepts of multiplication, division, and place value. The fol-
lowing problem allows students the opportunity to simultaneously see that 
each octopus is both 1 group and 8 legs. This is an example of unitizing.

The Octopus Problem

Each octopus has 8 legs.
There are 6 octopuses at the aquarium.
How many legs are there in all?

Four student solutions to the octopus problem are shown. Examine each 
piece of work and identify how the students represented each octopus in 
their solution.



Maurice’s Solution

Shantel’s Solution

Carmi’s Solution

Figure 4.27 Four student solutions to the octopus problem.

Clarissa’s Solution
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2. Unitizing and Multiplication on an Array: Students’ ability to see differ-
ent units in multiplicative situations can support fluency and flexibility 
when solving multiplication and division problems. Study the array of 
24 objects shown in Figure 4.28. Identify the various units that comprise 
this array and indicate where you see each unit.

Figure 4.28 An array representing 24 objects.

3. The Commutative and Associative Properties of Operations: Recall 
that the properties of operations “form the building blocks of all arith-
metic” (Beckmann, 2014). The commutative and associative properties 
play a particularly important role in a student’s understanding and fluent 
use of multiplication.

(a)  We learned in this chapter that the commutative property for 
multiplication states that the order in which two factors are mul-
tiplied does not affect the product. How is this property helpful as 
students are learning the basic multiplication facts?

(b)  The following two expressions represent the total number of 
objects in the array shown in Figure 4.28.

• (4 × 3) × 2
• 4 × (3 × 2)

 Indicate on the array how each of these expressions represents the 
total number of objects in the array.

4. Study Juan’s solution to the gymnasium problem shown in Figure 4.29. 
What property or relationship is evidenced in Juan’s solution?
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5. Devon’s solution to the equation problem is shown in Figure 4.30. Iden-
tify the property or relationship evidenced in Devon’s solution.

Figure 4.29 The gymnasium problem and Juan’s solution.

The Gymnasium Problem
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Figure 4.30 The equation problem and Devon’s solution.

6. Place Value: Using place value understanding and properties of opera-
tions, describe different ways that students can solve the following 
problems.

(a) 3 × 25 × 4 =
(b) 5 × 700 =
(c) 500 × 400 × 6000 =
(d) 45 × 7 =

7. Multiplication by Powers of 10: The rule, “When you multiply a number 
by 10, just add a zero to the end of the number,” has too often dominated 
instruction related to multiplication by powers of 10. In this chapter you 
learned the inherent problems with this rule. Provide a sequence of five 
or more problems that can help students develop understanding of the 
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impact of multiplying or dividing by powers of 10. Indicate how you would 
engage students in these problems.

Instructional Link

Use the following questions to help you think about the ways your instruc-
tion and math program provide students opportunities to develop fluency with 
understanding through instructional emphasis on properties and other foun-
dational concepts of multiplication.

1. To what degree do you or your math problem focus on place value 
understanding to develop fluency?

2. To what degree does your math instruction and program provide stu-
dents intentional and systematic opportunities to understand and use the 
properties of operations to develop understanding of multiplication?

3. What modifications can you make to your instruction to ensure that 
students consistently engage with place value understanding and 
properties of operations as they are developing understanding and 
fluency with multiplication?

Resources to delve deeper into understanding of the properties of opera-
tions and place value are:

Battista, M. (2012). Cognitively- based assessment of place value. Portsmouth, 
NH: Heinemann.

Carpenter, T., Franke, M., & Levi, L. (2003). Thinking mathematically: Inte-
grating arithmetic & algebra in the elementary school. Portsmouth, NH: 
Heinemann.

Empson, S., & Levi, L. (2011). Extending children’s mathematics: Fractions and 
decimals. Portsmouth, NH: Heinemann. (Chapters 4 and 5).
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5
Problem Contexts

Big Ideas
• The context of multiplication and division problems often 

influences the difficulty of problems and the strategy that 
students use to solve problems.

• Semantic structures provide a lens through which to understand 
the structural differences between the different contexts in 
multiplication and division problems.

• Reliance on immature strategies for solving multiplication 
and division problems can be offset by varying the context of 
problems.

This chapter illustrates the range of problem contexts students encounter while 
developing understanding and fluency when multiplying and dividing. As 
you read this chapter we suggest you have the OGAP Multiplicative Reason-
ing Framework on hand—particularly page 4, which has examples of different 
problem contexts that are discussed throughout the chapter. On page 1 of the 
framework notice the list of the contexts as shown above. These are the contexts 
that will be addressed in this chapter and are part of the CCSSM expectations 
for grades 2–6.

Contexts

Equal groups
Equal measures
Measure conversions
Multiplicative comparisons
Patterns
Unit Rate
Rectangular area
Volume
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Note: This chapter uses the term problem contexts to distinguish between 
equal groups, equal measure, measurement conversions, multiplicative com-
parison, patterns, unit rates, area, and volume problems. This is not to be 
confused with contextual situations that describe the scenarios in which prob-
lems are found (e.g., sharing brownies compared to sharing marbles).

CCSSM and Multiplication and Division Contexts

Table 5.1 summarizes the multiplication and division contexts that students 
encounter as they develop the understanding, flexibility, and fluency that are 
expected in the CCSSM. Importantly, one can see the progression of problem 
contexts across the grades starting with equal groups in grade 2 to unit rates 
and constant speed at grade 6. The bold indicates problem contexts that are 
new to the grade.

Table 5.1  Summary of CCSSM context expectations for multiplication and division of 
whole numbers for grades 2–6.

Grade CCSSM Multiplicative Problem Contexts 
(BOLD indicates new for that grade level)

2 Equal groups
3 Equal groups, arrays, equal measures, introduction to area
4 Equal groups, equal measures, multiplicative comparisons, measurement 

conversions within systems, area, patterns
5 Equal groups, equal measures, multiplicative comparisons, area, 

measurement conversions between systems, the concept of volume, 
patterns, and scaling

6 Volume, unit rate including those involving unit pricing and constant 
speed, and common factors and multiples

The focus of this chapter is on how the context of multiplication and division 
problems influences the difficulty of problems. To understand and describe dis-
tinctions between the different multiplication and division contexts, researchers 
use the term semantic structures. The semantic structures that influence the dif-
ficulty of problems are associated with the quantities in the problem and how 
they relate to each other (Bell, Fischbein, & Greer, 1984; Bell, Greer, Grimison, 
& Mangan, 1989; Brown, 1982; Carraher, Carraher, & Schlieman, 1987; De 
Corte, Verschaffel, & Van Coillie, 1988; Fischbein, Deri, Nello, & Marino, 1985; 
Nesher, 1988; Vergnaud, 1988).

Specifically, semantic structures in problems include:

1. The types of quantities in the problems (e.g., equal groups, dimen-
sions, scale factors, conversion factors)
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2. How the quantities interact with each other in the problem (e.g., mul-
tiple groups, repeated measure, change of size, conversion to new unit)

3. Impact on units (e.g., new unit created, scaling up or down, conversions)

Unlike other problem structures that are discussed in Chapter 6 (e.g., magni-
tude of factor, number of factors) that can be applied to problems of any context 
(e.g., How many wheels in ___ tricycles?), semantic structures are specific to 
the context of the problem.

Multiplication and Division Contexts

This chapter includes a discussion about different problem contexts and their 
semantic structures for equal groups, equal measures, measurement conversion, 
multiplicative comparisons, multiplicative patterns, area, volume, and unit rates. 
At the end of the chapter you will be asked to reflect on the degree to which your 
instruction or your math program varies the problem contexts consistent with 
the demands of the grade level shown in Table 5.1. As you read through the rest 
of the chapter, think about the implications that these different contexts and their 
unique semantic structures have on your instruction. At the end of the chapter 
Table 5.4 provides a summary of the discussion about each problem context.

Equal Groups

Equal groups problems involve iterations of many- to- one relationships as dis-
cussed in Chapter 1. The basic structure of equal groups problems involves 
multiple groups (Bell et al., 1989). For example, in the following problem there 
are 68 groups with 4 wheels in each group.

There are 68 cars in the parking lot. Each car has 4 wheels.
How many wheels are there in all?

The quantities in the problem are the number of cars, and the composite 
unit is the number of wheels on each car. The solution is expressed as the total 
number of wheels. Look closely at the equation that represents this problem 
situation:

68 cars × 4 wheels on each car = 272 wheels

Notice that the unit associated with each quantity is different. Particularly note 
that the answer (total number of wheels) involves a different unit than either 
the multiplier (number of cars) or the multiplicand (wheels on each car). Cre-
ating a new unit when multiplying or dividing is a new idea for students when 
they first engage in multiplication and division (Schwartz, 1988; E. Silver, per-
sonal communication, 2006). Although one can fashion an addition problem 
with different units such as 5 cars + 4 trucks = 9 vehicles, the general conven-
tion in addition and subtraction problems is that the quantities in the problem 
describe the same unit, unlike in multiplication and division.
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When students first solve equal groups multiplication problems, they often 
use additive strategies. That is, students recognize the equal groups and then 
either count by ones or use repeated addition as evidenced in the student work 
samples in Figures 5.1 and 5.2, respectively.

Notice in Figure 5.1 that Samantha drew each window pane. Pencil marks in 
each of the panes of the windows suggest she counted each pane to determine 
the number of panes in 4 windows. On the OGAP Multiplication Progression 
this is considered an Early Additive Strategy.

Figure 5.1 Samantha’s response. The tick marks on Samantha’s response provides evi-
dence of a counting by ones strategy when solving this problem.

Figure 5.2 Wyatt’s response. Wyatt used repeated addition and a building up strategy to 
solve this equal groups multiplication problem.

Mark bought 12 boxes of crayons. Each box contained 8 crayons. How many 
crayons are there in all?
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In contrast, Wyatt, in Figure 5.2, does not need to represent each crayon and 
instead operates with the composite unit (8 crayons in a box). Wyatt’s solution 
also shows evidence of building up, which is an Early Transitional Strategy.

Equal Measures

Equal measures problems also involve many- to- one situations. The basic 
structure of equal measures problems involves repeated or iterated measures 
of a continuous quantity (Bell et al., 1989). For example, in the problem and 
equation that follow the repeated measure is 4 feet of ribbon in each bow. The 
multiplier is 14 bows. The solution is the total feet of ribbon.

One bow uses 4 feet of ribbon. How many feet of ribbon are needed to 
make 14 bows?

The quantities—number of bows, feet of ribbon in each bow, and total feet of 
ribbon—are represented in the following equation:

14 bows × 4 feet of ribbon in each bow = 56 feet of ribbon

A related equal measures division problem is shown here:

Tyler is making bows that each require 4 feet of ribbon.
How many bows can Tyler make with 56 feet of ribbon?

Notice that the quantities (14 bows, 4 feet of ribbon per bow, and 56 feet of rib-
bon) are used in both problems. The multiplicative relationship among these 
quantities is also the same in both problems. The difference is the unknown 
quantity contained in each problem. In the original problem the total number 
of feet needed is the unknown, and in the second problem, the number of bows 
is the unknown quantity. This small change makes the second problem a divi-
sion or a missing factor problem. The following two equations illustrate these 
two interpretations of this problem:

Division interpretation: 56 feet of ribbon ÷ 4 feet in each bow = n bows
Missing factor interpretation: n bows × 4 feet in each bow = 56 feet of 
ribbon

This is an example of the inverse relationship between multiplication and 
division.

For a more detailed discussion of division see Chapter 7: Division.

Unit Rates

Unit rates become an instructional focus in the CCSSM starting at grade 6. 
Unit rates play an important role in bridging elementary school multiplication 
and division contexts with proportionality in the middle grades. As has been 
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stated many times throughout this book, by the end of fifth grade students 
should have a deep understanding of, and flexible and efficient methods for, 
solving problems involving multiplicative relationships in a range of contexts 
and contextual situations in order to be prepared to engage in middle school 
topics. Proportionality, in particular unit rates, is often the first of these middle 
school topics.

Unit rate problems are many- to- one situations that involve a special ratio 
that compares two quantities with different units of measure. As previously 
indicated, equal groups and equal measures problems also involve many- 
to- one situations (e.g., balloons in a bunch or feet per bow). One thing that 
distinguishes rate problems from equal groups and equal measures problems, 
however, is that rate problems involve recognizable quantities (e.g., price per 
pound, miles per hour, miles per gallon) rather than the arbitrary quantities 
created in equal group and equal measure problems. That is, a rate is a more 
commonly accepted quantity.

Although the CCSSM does not expect students to formally engage in rate 
problems until grade 6, students in earlier grades encounter unit rates in their 
everyday lives. From that exposure students will begin to build an under-
standing of the relationships in rates (e.g., if apples cost $2.00 per pound, then 
3 pounds of apples will cost $6.00). As students enter middle school teachers 
can draw on these earlier experiences to work with more complicated and less 
intuitive rates like speed.

Speed is one of the “most common rates” and at the same time “poorly 
understood by most people” (Lamon, 2005, p. 203). Researchers have found 
that students have a difficult time understanding that speed cannot be mea-
sured directly; rather it is a measure of motion that comes about by comparing 
two other quantities (the ratio of distance to time) (Lamon, 2005).

In the case of speed as a rate, the two different quantities can be miles and 
hours. Considered independently, miles define distance, and hours define time. 
As a rate they form a new unit that describes the relationship between miles and 
time. This new unit is a measurement of speed.

Compare Margo’s and Alex’s responses in Figure 5.3. What is the evidence in 
Margo’s response that she understood the relationship between distance and time 
in the problem? What is the evidence in Alex’s response that makes you question 
his understanding of the relationship between distance and time in the problem?

As you probably noticed, Margo’s solution shows strong evidence of under-
standing the relationships between distance and time represented in the speed 
of 8 miles per hour. Margo identified the distance traveled after 1 hour and 
then 2 hours using the multiplicative relationship. Additionally, she recognized 
4 miles would take half the time as 8 miles. In contrast, there is no evidence that 
Alex understood the relationship between distance and time in the problem. 
Alex divided 20 by 8, ignored the remainder, and decided that the quotient was 
2 miles per hour.
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One strategy to help students like Alex build an understanding of speed as 
a measure that comes from comparing the ratio of distance to time is to intro-
duce a double number line (see Figure 5.4) while asking questions focused on 
the relationship between distance and time. Study the double number line in 
Figure  5.4. Notice the two parallel number lines coordinate the relationship 
between distance traveled and time.

Figure 5.3 Margo’s and Alex’s responses. The evidence in Margo’s and Alex’s responses 
show a very different level of understanding of the meaning of 8 miles per hour.

Bob rides his bike at a speed of 8 miles per hour. How long did it take him to 
ride 20 miles? Show your work.

Margo’s Response

Alex’s Response

0                          5                         10                       15          

0                          1                          2                          3          

Distance in Miles

Time in Hours

At the rate of 5 miles per hour Bob rides his bike 15 miles in 3 hours

Figure 5.4 A double number line illustrating the relationship between miles and hours 
as miles per hour.

Bob rides his bike at a speed of 5 miles per hour. How far will Bob travel if he 
rides his bike at the same speed for 3 hours?

Sample Questions:

1. What does the double number line tell you about how far Bob travels 
after 1 hour if he is riding his bike at 5 miles per hour? Two hours? 
How do you know?
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2. If Bob continues to ride his bike at 5 miles per hour, how far will Bob 
travel in 4 hours? How do you know?

3. How much time will it take Bob to travel 25 miles? How do you know?

By having students interact with a range of unit rate problems (e.g., speed, unit 
pricing), using double number lines or other strategies that show the relation-
ships between the quantities (e.g., ratio tables), students will begin to build an 
understanding of ratios as a comparison of two quantities.

Measure Conversions

Measurement conversion problems involve a different understanding of multi-
plication than equal groups or equal measure problems. The basic structure of 
conversion problems involves a change in the size of the unit using a conversion 
factor (Bell et al., 1989). The conversion factor is a many- to- one relationship 
(e.g., 12 inches to a foot). In measurement conversion problems the total 
amount does not increase or decrease; only the size of the unit changes. That 
is, a single piece of ribbon has the same absolute length regardless of whether 
it is measured in inches or feet. This requires an understanding that the larger 
the unit of a measure, the fewer number of units in a given measure (Sarama & 
Clements, 2009). For example, it takes more inches than feet to measure a given 
distance because inches are smaller units than feet (see Figure 5.5).

In the following problem, the conversion factor is 1 foot = 12 inches. To be 
successful students need to understand the relationship between these different 
size units. That is, there are 12 inches in every foot.

A bow uses 2 feet of ribbon. How many inches of ribbon are needed to 
make the bow? (1 foot = 12 inches)

2 feet of ribbon × 12 inches for each foot = 24 inches

Figure 5.5 illustrates how the quantities in this problem are related. For every 
1 foot of ribbon there are 12 inches of ribbon. Therefore, 2 feet of ribbon is equal 
to 24 inches of ribbon. The size of the measurement unit and the number of 
units change, but the length of the ribbon stays the same.

2 feet of ribbon

24 inches of ribbon

Figure 5.5 Visual model illustrating 2 feet of ribbon equal to 24 inches.

Figure 5.6 is an example of a measurement conversion problem that involves 
converting ounces to pounds. Tyler applies the conversion factor accurately to 
solve the problem.
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Figure 5.6 Tyler’s response. The evidence in his work suggests the number of ounces 
was correctly converted to pounds.

Katrina carried some groceries home from the deli. Here is what was in her bag.
36 ounces of cheese
16 ounces of turkey
16 ounces of ham
4 ounces of roast beef
How many pounds of food did she carry? Show your work.
1 pound = 16 ounces

Figure 5.7 is a multistep problem in which students first interact with an equal 
measures problem (20 cans each containing 355 ml of soda) and then convert 
milliliters of soda to liters of soda. Gavin accurately found the total number of 
liters in 20 cans of soda and then accurately converted milliliters to liters of soda.

Figure 5.7 Gavin’s response. Gavin accurately solved this multistep problem involving 
equal measures and a conversion by first determining the total number of liters in 20 
cans of soda and then converting milliliters to liters.

Trina bought 20 cans of soda. Each can of soda contains 355 milliliters. How 
many liters of soda did she buy? [1000 milliliters = 1 liter]

In an OGAP pilot of this item, 14 out of 26 (53 percent) sixth grade students 
solved this question correctly. The remaining 47 percent of the students attempted 
or correctly solved the equal measures portion of this question but not the conver-
sion portion. This may be an example in which the change in semantic structure 
from an equal measures to a conversion factor influenced student solutions.

Area and Volume

An important semantic feature of area and volume problems is that they involve 
dimensions. More specifically, area problems require an understanding that the 
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product of the two dimensions of a rectangle identifies the number of unit squares 
that completely cover the area of the rectangle. Likewise, inherent to volume prob-
lems is the notion that multiplication of the three dimensions of a rectangular 
prism counts the total number of unit cubes that completely fill the prism. As 
with other multiplication situations discussed previously, the product in area and 
volume problems describes a different unit than the associated factors. The prod-
uct in area problems is a square unit, and the product in a volume problem is a 
cubic unit. To build understanding of these new units and the relationship of area 
to multiplication, students should engage in problems in which they build rect-
angles using unit squares, as shown in Figure 5.8. By constructing rectangles with 
the unit squares, students can see the relationship between the dimensions of the 
rectangles and the number of unit squares covering the surface of the rectangle.

The CCSSM at grade 3 explicitly recommends this strategy to help strengthen 
understanding of the relationship between area and multiplication by stating 
that students are to “find the area of a rectangle with whole number side lengths 
by tiling it, and show that the area is the same as would be found by multiplying 
the side lengths” (CCSSO, 2010).

Figure 5.8 Using unit squares to build understanding of area as the product of dimen-
sions. In this case 15 square units is the product of 3 units × 5 units.

Problems involving area and volume first draw on the understandings 
developed using squares and cubes, respectively, as shown in Shawna’s work in 
Figure 5.9 and Thomas’s work in Figure 5.10.



Figure 5.9 Shawna’s response. Shawna determined the number of unit squares that 
comprise a rectangle with 6 rows and 5 unit tiles in each row.

Figure 5.10 Thomas’s response. Thomas decomposed the original figure to show that 
the volume is the same in Figure 1 as in Figure C.
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The transition from volume problems that involve countable cubes as shown 
in Figure 5.10 to problems in which the total number of cubes is not provided 
requires students to generalize the multiplicative relationship between the 
dimensions of a rectangular prism and its volume. In particular, through an 
understanding of the associative property students can flexibly find the volume 
of rectangular prisms, regardless of orientation.

See Chapter 4 for a more in- depth discussion about how the associa-
tive property is related to finding the volume of a rectangular prism.

Multiplicative Comparisons

The key distinguishing feature of multiplicative comparison problems involves 
scale factors. Unlike other multipliers, a scale factor does not have an associated 
unit. The scale factor indicates how many times more or how many times less 
one quantity is than another quantity.

For example, in the problem that follows the multiplier—4 times the original 
amount—does not have an associated unit. Additionally, the type of quantity 
(cups of flour) does not change; only the total amount changes (12 cups of 
flour).

A recipe requires 3 cups of flour. If the recipe is quadrupled, how many 
cups of flour are needed to make the recipe?

4 × 3 cups of flour = 12 cups of flour

In some multiplicative comparison problems, the scale factor is given (as 
in the problem earlier and the problem in Figure 5.12). In other multiplicative 
comparison problems, like the one next, the amounts are given and the scale 
factor must be determined.

A recipe calls for 3 cups of flour. Robert used 12 cups of flour. How many 
times more flour did he use than in the original recipe?

12 cups of flour ÷ 3 cups of flour = 4

A third type of multiplicative comparison problem involves using a scale fac-
tor to scale down a value. Read the motorcycle problem that follows. Notice that 
the solution involves using a scale factor to determine the number of motor-
cycles in 1960 by scaling down from the number of motorcycles in 2004. In 
multiplicative comparison problems, scaling down requires a more complex 
understanding than a scaling- up situation, such as finding 4 times the original 
amount of flour.

In 2004 there were about 5,760,000 motorcycles in the United States. 
That is about 10 times more than the number of motorcycles in 1960. 
About how many motorcycles were there in the United States in 1960?



Problem Contexts • 97

Examine the three solutions in Figures 5.11–5.13 to this problem involving 
scaling down. What do you notice about how the students solved the problem?

Figure 5.11 Leah’s response. Leah disregarded the meaning of the quantities in this prob-
lem and inappropriately subtracted the scale factor from the number of motorcycles.

Figure 5.12 Luke’s response. Luke correctly interpreted this multiplicative comparison 
situation as evidenced when he used the scale factor to determine the number of motor-
cycles in 1960.

Figure 5.13 Thomas’s response. Thomas incorrectly found 10 times the number of 
motorcycles in 2004.

You probably noticed that only Luke determined the number of motorcycles 
in 1960 by dividing the number of motorcycles in 2004 by 10. Leah incorrectly 
subtracted 10 from the number of motorcycles in 2004, and Thomas incorrectly 
multiplied the number of motorcycles in 2004 by 10. Solutions like Leah’s and 
Thomas’s are not uncommon when students are asked to solve problems involving 
scaling down, which is more complex than scaling up. In a small OGAP study of 51 
students, 35 percent of the students solved this problem like either Luke or Leah.



98 • Problem Contexts

Table 5.2 summarizes the differences between the different types of multipli-
cative comparison problems exemplified in this section. Note that the equations 
represent the problem situation but do not necessarily represent the strategy 
that students will use to solve the problem.

Table 5.2 Multiplicative comparison problem situations.

Finding the Scale 
Factor

Scaling Up Scaling Down

Situation Given two quantities, 
find the scale factor 
between the two 
quantities

Given one quantity, 
scale up to the 
larger quantity 

Given one quantity, 
scale down to the 
smaller quantity

Equation 
(n is the 
unknown)

Larger quantity ÷ 
smaller quantity = n 
(scale factor)

Scale factor × 
smaller quantity = 
n (larger quantity)

Quantity ÷ scale 
factor = n (smaller 
quantity)

Example Sam used 12 cups of 
flour in a recipe. The 
original recipe called 
for 3 cups of flour. 
How many times 
more flour did he use 
then was required in 
the original recipe?

A recipe called for 
3 cups of flour. 
Sam quadrupled 
the recipe. How 
many cups of flour 
did he use after 
quadrupling the 
recipe? 

A recipe called for 
12 cups of flour. 
That is 4 times as 
much as the original 
recipe called for. 
How much flour did 
the original recipe 
call for?

Multiplicative Patterns

Multiplicative patterns involve the application of a scale factor in many- to- one 
situations. To understand how the scale factor applies, study the problem and 
Saffra’s solution in Figure 5.14. Notice that the ratio of the number of flowers to 
the number of vases to be filled is 4 to 1. That is, the many- to- one relationship 
is 4 flowers to 1 vase. The scale factor is × 4.

Figure 5.14 Saffra’s response. Saffra applied the scale factor × 4 to determine the num-
ber of flowers needed to fill 15 vases.

Tammy is decorating tables with vases of flowers for a party. She used the 
following chart to keep track of how many flowers she needed. Based on the 
information in the table, how many flowers does she need to fill 15 vases?
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CCSSM and Multiplicative Patterns

The CCSSM emphasis at grade 4 is on students examining, describing, and 
extending number and shape patterns. At grade 5 this work is extended to 
studying the relationships between ordered pairs in tables and graphs, as well 
as graphs of ordered pairs on the first quadrant of a coordinate plane. This work 
lays the foundation for studying proportional relationships and functions in 
middle school. Of note the CCSSM emphasis on patterns “does not require stu-
dents to infer or guess the underlying rule for a pattern, but rather asks them to 
generate a pattern from a given rule and identify features of the given pattern” 
(Common Core Standards Writing Team, 2011).

Marco’s solution in Figure 5.15 is an example of generating a pattern from a 
given rule and identifying the features of a pattern. In this case Marco identi-
fied the multiplicative relationship (doubling) between the two variables or 
ordered pairs.

Figure 5.15 Marco’s response. Marco identified and applied the multiplicative scale fac-
tor (doubling) between ordered pairs.

Complete the table following the rules listed in the column headings. What do 
you notice about how the numbers in the two columns relate? Explain why.

Not all students recognize or describe the multiplicative relationship between 
the ordered pairs, as can be seen in Albert’s solution in Figure 5.16.
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Figure 5.16 Albert’s response. Albert identified an additive rather than a multiplicative 
relationship between the quantities in the ordered pairs.

Complete the table following the rules listed in the column headings. What do 
you notice about how the numbers in the two columns relate? Explain why.

Instructionally, this is a good opportunity to show both solutions to engage 
students in a focused discussion that helps students recognize the multiplicative 
relationships.

1. How are the solutions alike? Different?
2. Generate other patterns that have doubling patterns (or tripling pat-

terns, and so on).
3. If you know the number in column one, can you determine the num-

ber that will be in column two? How?

The next section provides a case study that reinforces the impact of students 
interacting with different problem structures.



Problem Contexts • 101

Impact of Semantic Structures: Instructional Implications

To understand the potential impact of the different semantic structures found 
in different contexts researchers study student responses to arithmetically 
equivalent problems that are semantically different (De Corte et al., 1988). To 
explore the impact of semantic structures on the challenge of different problem 
situations, solve the problems in Task 1 and Task 2. How are these problems 
alike and how are they different?

Task 1: The school band stores instruments in a closet that has 13 shelves 
in it. There are 117 instruments in the closet. Each shelf holds the same 
number of instruments. How many instruments are on each shelf?

Task 2: The typical house mouse can run at a top speed of 13 km per hour. 
The typical cheetah can run at a top speed of 117 km per hour. How many 
times faster is the cheetah than the house mouse when they are each run-
ning at top speed?

Notice these problems are arithmetically equivalent but semantically 
different. That is, both Task 1 and Task 2 involve the division of 117 by 13 
(arithmetically equivalent). However, because the problems vary semantically, 
the tasks have very different levels of difficulty. Study Shelby’s solution to both 
problems in Figures 5.17 and 5.18.

Figure 5.17 Shelby’s response to Task 1. Shelby correctly determined the number of 
instruments on each shelf.

Task 1: The school band stores instruments in a closet that has 13 shelves in it. 
There are 117 instruments in the closet. Each shelf holds the same number of 
instruments. How many instruments are on each shelf?
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Semantically, these are different problems. Task 1 involves equal groups 
in which the total number of instruments (total) and the number of shelves 
(number of groups) is given. The solution involves determining the number 
of instruments on each shelf (number in each group). In contrast, Task 2 
involves comparing two rates. The speed for each animal is given (13 km per 
hour and 117 km per hour). The unknown, or the quantity asked for in the 
problem, is the scale factor. Researchers indicate that both speed and scale 
factor are difficult concepts for students to understand (Lamon, 2005), and 
therefore add a level of challenge to Task 2 that is not found in equal groups 
problems such as Task 1.

The equations for Tasks 1 and 2, written here with associated units, help 
illustrate these semantic differences:

Task 1: 117 instruments ÷ 13 shelves = n (number of instruments on each 
shelf)

Task 2: 117 km per hour ÷ 13 km per hour = n (scale factor)

Which of these semantic structures (quantities, nature of the multiplier, use of 
rate, and “per” vs. “each”) affected the student solutions is not known. However, 
data from a small OGAP study highlight the impact these different semantic 
structures might have on student solutions. Tasks 1 and 2 were administered to 
21 fifth grade students. (Shelby’s responses shown earlier were collected during 
this study.) Interestingly, the students solved both of these tasks on the same 
day; in fact both tasks were even presented on the same page. However, in all 
but four cases, students solved the two problems differently. Table 5.3 summa-
rizes the differences in student responses to the two problems.

Figure 5.18 Shelby’s response to Task 2. Shelby incorrectly interpreted the problem as 
multiplication.

Task 2: The typical house mouse can run at a top speed of 13 km per hour. The 
typical cheetah can run at a top speed of 117 km per hour. How many times faster 
is the cheetah than the house mouse when they are each running at top speed?
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As Table 5.3 shows, all 21 students interpreted Task 1 correctly as a divi-
sion problem. However, five students used a less efficient strategy on Task 2, 
and over half of the students misinterpreted Task 2 as a multiplication problem 
(perhaps because of the word “times”).

The results from this small classroom study are consistent with research that 
student strategies move from more to less sophisticated strategies as they are 
introduced to new problem structures (Kouba & Franklin, 1995; OGAP, 2006). 
Importantly, Kouba and Franklin (1995) have also found that it is important for 
students to interact with a range of contexts with different semantic structures 
to help overcome the use of immature strategies.

Together, these two pieces of research can be used to help make purposeful 
and knowledgeable instructional decisions. First, multiplication and division 
are found in a range of everyday problem contexts; elementary students should 
interact with the different contexts discussed in this chapter. Second, under-
standing that student strategies often move from more to less sophisticated 
strategies as they are introduced to problem structures (e.g., change of context, 
change of magnitude of factors) helps teachers be instructionally proactive.

Sample proactive or anticipatory instructional moves:

1. Focused questioning using student solutions: After students have solved 
a problem involving a new context, engage students in an understand-
ing of the mathematics in the problem by asking focused questions 
about their solutions. Looking back at Shelby’s solution in Figure 5.18 
you might ask Shelby and other students with similar solutions ques-
tions like: A) What does it mean when it says the house mouse runs 
13 km per hour? Sketch a picture. B) What does it mean when it says 
the cheetah runs 113 km per hour? Sketch a picture. C) Which animal 
runs farther after 1 hour? Explain how you know. D) Which animal 
runs the fastest? How do you know? E) About how much faster does 
the cheetah run than the house mouse? How do you know?

2. Word problem strategy: Use the word problem strategy described at the 
end of this chapter to focus students on understanding the problem 
situation as they are introduced to new problem contexts.

Table 5.3 Solution strategies for Task 1 and Task 2 for 21 fifth grade students.

Strategies Number of Students (%)  
(n=21)

Division using an efficient procedure on both tasks.  4 (19%)
Division on both Task 1 and 2. However, the strategy 
for Task 2 was less efficient.

 5 (20%)

Division at a range of sophistication for Task 1, but 
used multiplication for Task 2.

12 (60%)
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The OGAP Multiplicative Reasoning Framework: Problem Contexts

All problem contexts are listed on the front page of the OGAP 
Multiplicative Reasoning Framework under the heading 
 Application/Context. You can use this knowledge about problem 

contexts to assure that your students interact with a range of problems with 
different semantic structures as appropriate for the grade level. Also remember 
the importance of varying other problem structures (discussed in Chapter 6) 
and of using problems that address foundational mathematics concepts and 
properties (discussed in Chapter 4).

Fifth and sixth grade students should fluently use strategies at the Multi-
plicative level for whole numbers, regardless of the problem context or other 
problem structures. Teachers using the OGAP formative assessment system 
have found it important to keep records of the problem contexts students have 
engaged in and the level on the progression that is evidenced in their work. 
Teachers have found that this information is important because it informs their 
instructional decisions. For example, if students are using Multiplicative Strat-
egies for solving both equal measures problems and conversion problems, a 
teacher might decide to engage them in a multistep problem that involves two 
different problem contexts such as the problem in Figure 5.7.

Strategies to Help Students Solve Multiplication and Division Problems

Most teachers will say that students have difficulty solving word problems. This 
chapter, as well as Chapter 6: Problem Structures, provides explanations for 
why solving word problems are challenging for some students. Everything from 
the magnitude of factors to the semantic structures in different contexts influ-
ence the difficulty students have with word problems. The questions teachers 
always ask is: “How can we help students solve word problems?”

This section presents two different approaches to help students become 
more confident and competent solving word problems: 1) exposing students to 
a wider range of problem contexts and range of problem structures (Kouba & 
Franklin, 1995) and 2) adopting a literacy practice to engaging students in mak-
ing sense of word problems.

Exposing Students to a Wider Range of Problem Situations

As has been stated, researchers have found that varying problem structures and 
contexts can help students develop flexibility and fluency when solving word 
problems (e.g., Kouba & Franklin, 1993). This approach is not necessarily intui-
tive; some teachers and some textbooks support the notion that more of the 
same type of problem is better than varying the problem contexts and struc-
tures. For example, teachers might think that until all students can solve equal 
group problems, new contexts shouldn’t be introduced.
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In contrast Kouba and Franklin (1993) suggest exposing students to a range 
of problem contexts in the classroom, as well as in other subjects and in daily 
life, rather than just during the designated time for mathematics. They recom-
mend that students keep a journal about multiplicative situations they see in 
school; at home; in stores; and in newspapers, magazines, and the Web. Addi-
tionally, teachers should intentionally engage students in multiplication and 
division problems in different subject areas and different everyday applications 
consistent with the CCSSM demands at specified grade levels (see Table 5.1).

Adopting a Literacy Practice to Engage Students in Making  
Sense of Word Problems

Another strategy that has been adopted by OGAP teachers that they have 
found effective in helping students solve word problems was adapted from a 
research- based reading comprehension strategy: read, retell, and anticipate 
next (Gambrell, Koskinen, & Kapinus, 1991; Morrow, 1985). As you will see, 
this strategy puts the emphasis on understanding the context and the contex-
tual situation before students solve the problem.

The strategy involves four parts that are exemplified here:

1. Remove the question from the problem and have students read and 
retell the situation (read and retell).

2. Have students generate questions that can be asked and answered 
given the problem situation (anticipate next).

3. Have students solve the problems that are generated.
4. Read the original question and have students solve it.

The following problem is used to illustrate these strategies.

During a physical education class 24 students played soccer, 8 students 
played basketball, and 16 students played kickball. Each student only 
played one game. What fraction of the students played soccer?

Step 1: Remove the question from the problem situation and have students 
retell the problem situation.

During a physical education class 24 students played soccer, 8 students 
played basketball, and 16 students played kickball. Each student only 
played one game.

When retelling the problem situation, have students turn to a partner and 
retell the story in their own words. Provide students about one to two minutes 
to do this. At the end of the two minutes ask someone to retell the story to the 
class. List the facts that were given in the story on chart paper (e.g., each student 
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played only one game, 24 students played soccer, 8 students played basketball, 
16 students played kickball).

Step 2: Have students generate questions.

Have students work with a partner to generate three to five questions that 
can be answered given the context and the information provided in the prob-
lem. Before you read further generate some questions that you think students 
might ask based on the situation and the information given in the problem.

You probably noticed that the context and the numbers in the problem allow 
for many more questions than the actual question associated with the problem. 
That is, the problem allows for addition (e.g., how many students altogether?), 
subtraction (e.g., how many more students played soccer than basketball?), 
division (e.g., how many times more students played soccer than basketball?), 
or fractions (e.g., what fraction of the students played basketball?).

After partners have completed their list of questions, have students share 
their questions with the class. Post all the questions for the full class to see. 
Students are usually very surprised by all the different questions that can be 
answered using similar information.

Step 3: Have students solve questions generated by the class that help meet the 
lesson goals.

This is a good opportunity to let students select the questions that they are 
interested in solving, or it can be a very good opportunity for you to differenti-
ate instruction by assigning students different problems. Anticipating questions 
that students might generate before engaging students with the problem allows 
the teacher to think about which questions might be assigned to which students.

Step 4: Unveil the original question and have students solve the problem.

This word problem strategy should be applied multiple times in order for 
students to reap the benefits of it. You may want to begin math class a few days 
a week using this strategy. If students run into difficulty solving problems on 
their own, you can ask them to cover the question and retell the problem situ-
ation to refocus them. Students will get used to this strategy and understand 
the purpose.

The two strategies described here can help students see that multiplication 
and division involve a range of everyday problem situations, and it can help 
provide them with a strategy to engage in and develop flexibility when solving 
word problems.
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The Limitations of Key Words as a Strategy

A strategy that many teachers use to help students solve word problems is to 
have students underline or highlight key words to help identify the operation 
embedded in the problem. However, researchers indicate that teaching the use 
of key words is a “limiting, detrimental strategy” (Kouba & Franklin, 1993, 
p. 106) for multiple reasons. First, key words often take on multiple meanings 
in word problems. Students are often taught that the word altogether implies 
addition. However, the following problem requires multiplication rather than 
addition to find the total amount:

Sam had 3 boxes with 4 balloons in each.
He bought twice as many balloons at the store.
How many balloons does he have altogether?

Second, many word problems do not contain any key words, as shown in the 
following example:

One bow uses 4 feet of ribbon.
How many feet of ribbon are needed to make 14 bows?

Third, this strategy encourages students to focus on specific words, rather 
than the context within which those words are used in the problem. This 
chapter has focused on the fact that understanding problem contexts involves 
focusing on the meaning of the problem situation, including the quantities in 
the problem, how the quantities interact, and the units. Students need to first 
make sense of the situation in order to understand and use the appropriate 
operation and strategy. Rather than isolating specific words, the focus should 
be on making sense of the context.

Summary

• It is important that students experience a variety of multiplicative 
problem contexts (as appropriate for each grade level) so that they can 
develop flexibility and fluency.

• The semantic structure of multiplication and division problems varies 
across different problem contexts. These semantic structures influ-
ence the strategies students use to solve the problems, as well as their 
understanding of the multiplicative relationship in different problem 
situations. Table 5.4 summarizes some of the differences in semantic 
structures between different multiplicative problem contexts.

• Students can learn to be successful problem solvers by focusing on 
the meaning of the problem situation—including the quantities in the 
problem, how the quantities interact, and the units—using strategies 
such as the ones described in this chapter.
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Looking Back

1. Review the following multiplication and division problems.
(a) What type of problem context is represented in each problem? What 

is the evidence?

(b) What are important distinguishing semantic structures of each of the 
problems?

Problem 1:

Each octopus has 8 legs. There were 12 octopuses at the aquarium. How 
many legs are there in all?

Problem 2:

Karen’s garden is 6 feet by 5 feet. The area of Steph’s garden is 10 times 
bigger than the area of Karen’s garden. What is the area of Steph’s garden?

Problem 3:

How many centimeters are in 140 millimeters?
10 millimeters = 1 centimeter

Problem 4:

Mrs. Cook is rearranging the books in the library. She put 7 books on the 
first shelf and three times as many books on the second shelf. How many 
books are on the second shelf?

2. Review the student work in Figures 5.3, 5.6, 5.7, 5.9, and 5.18.
(a) What solution strategy is evidenced in each solution?
(b) Where along the OGAP Multiplication Progression is the evidence 

for each piece of student work?

3. What questions might you ask Shelby (Figure 5.18) or how might you 
alter the structure of this multiplicative comparison problem to help 
Shelby understand the problem situation?

Instructional Link: Your Turn

Use the following questions and Table 5.1 to help think about how your instruc-
tion and math program provide students the opportunity to engage in a range 
of problem contexts and other problem structures (Chapter 6) for the grade 
level that you teach.

1. Do you or your instructional materials provide opportunities for students 
to engage in the range of problem contexts targeted at your grade level?
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2. Based on this analysis are there gaps between your instruction (and 
math program materials) and what is expected in the CCSSM and 
the research that supports the use of a range of problem contexts to 
strengthen student multiplicative reasoning?

3. If yes to question 2, what modifications should you make in your 
instruction?
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6
Structures of Problems

Chapter 5 investigated different problem contexts and how the different seman-
tic structures in problems influenced student solutions. This chapter focuses on 
other underlying structures of multiplication and division problems that have 
been shown to influence the difficulty of problems, as well as the strategies 
students use to solve them. Problem structures refer to how problems are built. 
That is, how the features of the problems are organized and interact with each 
other. Throughout the chapter and the book there are examples of engineered 
problems. Engineering a problem means to alter the structures to elicit devel-
oping understandings, as well as common errors and misconceptions. As you 
read this chapter and think about the discussion in Chapter 5 about semantic 
structures, you can begin to build your understanding of what it means to engi-
neer a problem.

There are three important ideas related to the structure of multiplication and 
division problems:

1. The structure of problems may play a role in the strategies students use 
to solve problems (OGAP, 2005).

2. The structure of problems may play a role in the level of difficulty chil-
dren experience while solving problems (e.g., De Corte et al., 1988).

Big Ideas
• The structure of a problem can affect the difficulty of the 

problem and the strategy that students use.
• Varying problem structures can increase student flexibility when 

solving multiplication and division problems.
• Problems can be engineered to gather specific evidence to 

inform instruction.
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3. Student flexibility is increased through interaction with different 
problem structures and when teachers attend and respond to the diffi-
culties they encounter while solving problems (Cobb, Yackel, & Wood, 
1988; Peterson, Carpenter, & Fennama, 1989).

The influences of each of the following problem structures are discussed in this 
chapter:

1. The numbers in the problem
2. Number and language relationships
3. Multiplicative representations or models

The Numbers in Problems

Researchers suggest the numbers in a problem play a role in the difficulty chil-
dren experience when solving problems (Bell, Swan, & Taylor, 1981; Kouba & 
Franklin, 1995; Steffe, 1994). This section explores the influence each of the 
following has on student solutions:

• The magnitude of the factors
• The presence of powers of 10 and multiples of powers of 10
• Having more than two factors in a problem

Magnitude of Factors

Magnitude refers to the size of a number. In the case of multiplication, the size 
of the factors are significant (e.g., 6 × 8 compared to 6 × 86), whereas in division 
it is the size of the divisor and dividend (e.g., 20 brownies shared by 2 students 
compared to 20 brownies shared by 40 students). To explore the impact of the 
magnitude of factors on solutions, researchers suggest giving students contex-
tual problems where the factors are single digits and then changing the factors 
to multidigit numbers while the context remains the same (Greer, 1987, 1988; 
OGAP, 2006). Figures 6.1–6.3 provide some examples of the impact on student 
solutions when problems are engineered in this way.

Study Samira’s solutions in Figure 6.1. As you read the problem and solu-
tions, notice what is the same and what changed in the problem and in Samira’s 
strategy for solving the problem.

You may have noticed that the context (e.g., equal groups) and the num-
ber of boxes of crayons (12 boxes) remained the same in both Parts A and B. 
What changed in Part B was the number of crayons in each box (i.e., 8 crayons 
in each box to 64 crayons in each box). In Part A, Samira used the distribu-
tive property to decompose 12 into 10 and 2 and multiply both by 8. From 
that evidence alone, one might conclude that Samira understood the problem 
involved multiplication and applied a strategy at the Multiplicative level on the 
progression. However, the evidence in Part B, in which the problem involved 
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two- digit by two- digit multiplication, shows that Samira added the factors. The 
evidence raises questions about whether Samira understood the problem in Part 
A and whether in Part B her solution was highly influenced by the magnitude of 
the factors.

To gather additional evidence of Samira’s thinking and extend her under-
standing, her teacher could engage her in a discussion that focuses on the 
context of the problem and the number relationships in the problem by asking 
probing questions such as:

• What is the story in Problem A and Problem B?
• How are the problems the same and how are they different?
• I noticed that you used multiplication to solve Part A and addition to 

solve Part B. Explain why.
• Because the problems are identical except for the number of crayons in 

each box, what operation would you use to solve both parts? Show me 
how you would solve each problem.

• How does the number of crayons in each box in Part A relate to the 
number of crayons in each box in Part B? How could this relationship 
be used to solve the problem?

Study Santiago’s solutions to a similar set of problems with different size factors 
in Figure 6.2. In this example, unlike Samira’s solution in Figure 6.1, the student 
recognized that both problems involved multiplication. In the first part with 

Figure 6.1 Samira’s response. Samira used the distributive property to solve the problem 
in Part A and inappropriately added the factors in Part B.

(a)  Mark bought 12 boxes of crayons. Each box contained 8 crayons. How 
many crayons were there all together? Show your work.

(b)  John bought 12 boxes of crayons. Each box contained 64 crayons. How 
many crayons were there all together? Show your work.
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smaller numbers Santiago used his understanding of multiples of 25 to solve 
the problem. However, when he solved the second problem, which is identical 
except for the number of cookies in a bag (i.e., 6 cookies in a bag was changed 
to 24 cookies in a bag), Santiago unsuccessfully attempted to use an algorithm. 
His solution to this part indicates that he may not have developed the under-
standing or a strategy that would allow him to successfully solve a problem with 
two multidigit numbers.

Santiago’s teacher could engage him in a discussion to gather additional evi-
dence of his thinking and extend the understanding he demonstrated in Part A. 
One place to begin a discussion with Santiago might be with questions such as:

• Tell me about your strategy for Problem A.
• How did you know you needed to multiply to solve both problems?
• Would the strategy you used to solve Problem A work for solving 

 Problem B?
• How might you use the strategy you used to solve Problem A to solve 

Problem B?
• Show me other strategies you have for solving part B.

The goal of asking Santiago these questions is to help him see how his success-
ful strategy to solve Problem A might be built upon to solve Problem B and to 
see if he has effective strategies for multiplying multidigit factors.

In contrast, study Omar’s solution to the same set of problems in Figure 6.3. 
What do you notice about his strategies for solving both problems?

You may have noticed in Figure 6.3 that Omar recognized that the number 
of cookies in a bag increased four times from Problem A to Problem B. He used 

Figure 6.2 Santiago’s response. Santiago correctly used his understanding of the mul-
tiples of 25 to solve Part A, but incorrectly applied an algorithm to solve Part B.

(a)  Samantha’s class has 25 bags of cookies. Each bag contains 6 cookies. How 
many cookies does Samantha’s class have all together? Show your work.

(b)  Samantha’s class has 25 bags of cookies. Each bag contains 24 cookies. How 
many cookies does Samantha’s class have all together? Show your work.
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this relationship to calculate the solution to Problem B. The engineered prob-
lem made visible that Omar recognized and used the multiplicative relationship 
between the factors to solve this problem. As shown in Samira’s and Santiago’s 
solutions earlier, using problems engineered like these can also make visible 
the struggles students are encountering when the magnitude of the numbers 
is changed.

Figure 6.3 Omar’s response. Omar recognized the multiplicative relationship between 
the number of cookies in each bag in Part A and Part B and used that information to 
solve Part B of the problem.

(a)  Samantha’s class has 25 bags of cookies. Each bag contains 6 cookies. How 
many cookies does Samantha’s class have all together? Show your work.

(b)  Samantha’s class has 25 bags of cookies. Each bag contains 24 cookies. How 
many cookies does Samantha’s class have all together? Show your work.

To elicit students’ developing understanding and strategies, the problems in 
this section were engineered in two ways: 1) the magnitude of the factors was 
changed, but the context and language remained stable and 2) the magnitude was 
changed in a way that provided an opportunity for students to capitalize on the 
multiplicative relationships between the factors in the two problems (e.g., Omar’s 
solution in Figure 6.3).

Influence of Powers of 10 and Multiples of Powers of 10

This section illustrates how problems can be engineered to focus on student 
understanding of multiplication by powers of 10 and multiples of powers of 10. 
Chapter 4 includes more detail about developing conceptual understanding of 
multiplication by powers of 10 and multiples of powers of 10. Some examples of 
numbers that are powers of 10 are 10, 100, 1000, etc. Some examples of multiples 
of powers of 10 are 50, 60, 200, 400, 3,000, etc. Study the following problem. In 
what way was this problem engineered to elicit student understanding of the 
impact of multiplying by powers of 10?

Simon knows that 40 ÷ 5 = 8.
Explain how Simon can use this to find the answer to 400 ÷ 5.
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In this problem, you may have noticed that the dividend is 10 times as large 
in the second problem (400 is 40 × 10). Students should understand that this 
will cause the answer to the second division problem to be 10 times as large. 
Understanding this relationship will help students develop more efficient strat-
egies for multiplication and division.

Study the problem in Figure 6.4. In what ways was the problem engineered 
to provide an opportunity for students to use their understanding of multiplica-
tion by multiples of powers of 10 and the relationships between powers of 10? 
Examine Taiye and Jean- Guy’s responses. What is the evidence of understand-
ing of these ideas in their work?

Figure 6.4 Taiye’s and Jean- Guy’s responses. Taiye shows understanding of the relation-
ship between powers of 10 in his conversion. Jean- Guy shows understanding of multi-
plying by 20, a multiple of 10.

Trina bought 20 cans of soda. Each can of soda is 355 milliliters. How many 
liters of soda did she buy? Show your work.

1,000 milliliters = 1 liter

Taiye’s response.

Jean- Guy’s response.
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Note that this problem, unlike the previous problem about division, is cast in 
a contextual situation and engineered to provide the opportunity for students 
to recognize both multiplication by a multiple of a power of 10 (20) and the 
powers of 10 relationship between milliliters and liters (i.e., 1,000 milliliters ÷ 
1,000 = 1 liter, or 1 liter × 1,000 = 1,000 milliliters).

The student work for this problem illustrates different evidence about each 
student’s understanding of these concepts and relationships. Jean- Guy showed 
flexible and accurate multiplication by multiples of powers of 10 when applying 
the partial products algorithm (i.e., 20 × 5 = 100, 20 × 50 = 1,000, and 20 × 600 = 
12,000). However, Jean- Guy did not use the multiplicative relationship between 
powers of 10 when making the conversion; rather he used repeated subtraction. 
In contrast, the evidence in Taiye’s response shows an understanding of the 1000 
to 1 relationship between 7,100 ml and 7.1 liters when she shows 7100 ml equals 
7 1

10 liters. Ultimately we want students to recognize and apply their understand-
ing of these multiplicative relationships when working with powers of 10 and 
multiples of powers of 10 as they solve problems.

See Chapter 4: The Role of Concepts and Properties for more on 
developing understanding of multiplication by powers of 10 and 

multiples of powers of 10.

The understanding of using the powers of 10 and the multiples of the powers 
of 10 becomes crucial for students as they begin to use the open area model, 
partial products, partial quotients, and the traditional US multiplication and 
division algorithms for solving problems with numbers that are larger than 
single digits. See Chapter 8 for a more detailed discussion of developing under-
standing of algorithms.

Three or More Factors

Students also encounter difficulty understanding problem situations when 
there are three or more factors in a problem, such as in the problems shown in 
Figure 6.5. What do you notice about Tannisha’s solution?

Figure 6.5 Tannisha’s response. Tannisha added 6 and 5 and multiplied that sum by 3.

Karen and Steph each have gardens.

Karen’s garden is 6 feet by 5 feet. Steph’s garden is three times as big as 
Karen’s garden.
How big is Steph’s garden?
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In problems with three factors students often ignore the verbal context of the 
problem and add the numbers (Greer, 1987, 1988). Tannisha’s work reflects this 
research in that she added the 6 and 5, which are the dimensions of the garden. 
Because Tannisha then multiplied that sum by 3, we can hypothesize she did 
this because the problem says “three times as big.” The evidence in this work 
would be classified on the OGAP Multiplication Progression as Nonmultiplica-
tive because she added two of the factors. However, the student did recognize 
the scale factor (three times as big), and this is something that her teacher can 
build upon to deepen her understanding.

CCSSM: Progression of the Numbers in Problems

Table 6.1 highlights the progression of the CCSSM expectations for multiplica-
tion and division in relation to the numbers used in problems from grades 3 to 5.

3rd Grade 4th Grade 5th Grade

Multiplication Within 100
1- digit by multiples 
of 10

4- digit by 1- digit
2- digit by 2- digit

Multidigit whole numbers
Powers of 10
Multiples of powers of 10
Decimals to hundredths
Fractions
Mixed numbers

Division Within 100 4- digit by 1- digit 4- digit by 2- digit
Powers of 10
Multiples of powers of 10
Decimals to hundredths

The Influence of Number and Language Relationships

Research suggests that the relationships of the numbers and the language in 
a problem can influence the operation students use on a problem and the 
calculation performed (e.g., Brown 1981; Vergnaud, 1983). This is not a chal-
lenge restricted to elementary students. Graeber and Tirosh (1988) found that 
preservice teachers wrote division equations in the order in which the num-
bers were presented rather than writing the equation based on the meaning 
of the problem. For example, when given the problem, “There are 15 friends 
sharing 5 pounds of cookies. How much does each friend get?” preservice 
teachers wrote the equation 15 ÷ 5 because they thought the order of the 
numbers in the equation should reflect the order of the numbers in the prob-
lem. However, in this partitive division problem, the pounds of cookies are 
being shared by 15 friends, and so the equation should be written as 5 ÷ 15.

Table 6.1  CCSSM expectations
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A second challenge students face is interpreting the meaning of the words 
in the problem. Look at the following two problems. What do you notice about 
the two versions of this problem?

Problem A

Sally had 64 crayons in each box. She had 12 boxes of crayons. How many 
crayons did she have in all?

Problem B

Sally had 64 crayons per box. She had 12 boxes of crayons. How many 
crayons did she have in all?

The words in a rate problem may explicitly define the rate as a unit rate by 
identifying the number in each group, as in Problem A, or the words may imply 
the unit rate by using the word per, as in Problem B (Zweng, 1964). The expec-
tation is that students understand “per” as a word that is used to represent a rate. 
This often needs to be explicitly discussed with students in multiple situations 
before they internalize this aspect of mathematics language. There are words 
like “per” that have specific mathematical meanings. There are other words like 
“table” and “product” that have one meaning in mathematics and a different 
meaning outside of mathematics, and this can also pose challenges for students.

The Influence of Multiplicative Representations and Models

Some problems are engineered with an explicit model, meaning a model is 
given as a part of the problem. Other problems may have an implied model, 
meaning a model is suggested by the context of the problem. Students should 
encounter problems with both implied and explicit models. It is important for 
teachers to be aware of how models are used or suggested in problems. Being 
aware of the models may help teachers make choices about what problems stu-
dents will be able to solve and what strategies to expect students to use.

Figure 6.6 illustrates a problem that explicitly suggests the use of an area 
representation as a way to solve the problem. Ricardo used the given window 
as an area model, iterated that model three times, and then counted each of the 
individual window panes.

In contrast, the following problem implies an equal groups model because 
there are two groups of discrete objects being shared out into 8 equal groups:

There are 52 cards in one deck of cards.

Two decks of cards are combined to play a game.
Eight people are playing the game.

How many cards will each person receive if all the cards are passed out 
equally?
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The language of the problem does not directly indicate which representation to 
use when solving the problem. However, the context may influence the visual 
model that students imagine or draw to solve the problem. Study the work of 
Jenna, Mohammed, and Luciana (Figures 6.7–6.9). What do you notice about 
each of their solutions?

You may have noticed Jenna (Figure 6.7) drew 8 groups and then shared out 
the cards by ones consistent with the contextual situation. Jenna sketched each 
card that was shared out to the 8 children. Mohammed (Figure 6.8) did not 
need to draw a visual model and used multiplication and division to express 
his solution to the problem. Luciana (Figure 6.9) began by recognizing that 
two decks of cards is 104 cards. She then made 8 groups, distributed 10 to each 
group, and then the remaining 24 in equal groups of 3.

If you use this problem in your classroom, you might select work similar to 
Jenna, Mohammed, and Luciana to begin a discussion about the problem. To 
move student understanding forward, you could ask questions of the whole 
class such as:

• How are these strategies similar to and/or different from each other?
• Jenna and Luciana both made equal groups. Where can you see Luci-

ana’s groups in Jenna’s drawing?

Figure 6.6 Ricardo’s response. Ricardo used the area model to iterate the given window 
and accurately determined the number of panes in three windows.
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Figure 6.7 Jenna’s response. Jenna drew 8 groups and shared out the cards equally.

Figure 6.8 Mohammed’s response. Mohammed used multiplication and division to 
solve the problem.

• How did Luciana represent the equal groups?
• What connections do you see between Luciana’s solution and Moham-

med’s equations?

One goal of this discussion is to expose students to ways the implied model can be 
used to solve the problem. A second goal is to help students see connections between 
strategies that are at different levels on the OGAP Multiplication Progression.
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Engineering Problems

As stated in the beginning of the chapter, engineering a problem means to 
alter the structures to specifically elicit developing understandings, as well as 
common errors and misconceptions, based upon findings in math education 
research. Every problem in this chapter (and throughout the book) is an exam-
ple of an engineered problem.

Teachers who have participated in OGAP studies consistently say that hav-
ing knowledge of the math education research about problem structures and 
progressions has provided a new lens through which to make instructional 
decisions. Understanding how problems are engineered can inform instruction 
in a number of ways, including helping to:

1. Anticipate the kinds of solutions students might generate and the chal-
lenges they might experience

2. Consider and plan responses to students’ solutions

Figure 6.9 Luciana’s response. Luciana shared out cards in equal groups by representing 
the cards with numbers rather than drawing each card.
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3. Select problems based on the goals of the lesson
4. Balance the types of problems and the structures in the problem that 

students encounter
5. Analyze instructional materials to engage students in a variety of 

problem structures
6. Analyze the next textbook lesson to address concepts students are 

struggling with

Engineering problems by itself will not do all the work of strengthening stu-
dents’ understanding, but carefully selected problems in combination with 
classroom discussions can help develop students’ conceptual understanding 
and multiplicative reasoning.

Summary

• The structure of a problem can be engineered to elicit student under-
standing of foundational concepts, as well as common errors and 
misconceptions.

• Structures of problems include the complexity of the numbers, the 
number and language relationships, and the implied or explicit models 
in a problem.

• The information about student understandings gathered from engi-
neered problems can be used to guide instruction.

Looking Back

1. Explicit and Implied Models: We learned in this chapter that multiplica-
tion and division problems can have a particular associated visual model. 
These models can be either explicit or implied. Examine the five prob-
lems shown in Figure 6.10 and:
(a) Identify the model associated with each problem

(b) Explain whether the model is explicit or implied

Figure 6.10 Five problems.
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Figure 6.11 Four student solutions to the model problem.

Imani’s Solution

2. Analyzing Student Solutions: The following problem is an example of 
a problem that is not associated with any particular model. This type of 
problem can help teachers understand how students are visually interpret-
ing multiplication situations. Examine the problem and study each student 
solution (Figure 6.11). For each solution identify:
(a) The type of model the student drew
(b) The student’s developing understanding(s) suggested by the solution
(c) Any underlying issues or concerns to consider in future instruction

Model Problem

Look at this equation:

8 × 4 = 32

Draw a visual model that represents this equation.
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3. Using Understanding of Multiplying and Dividing by Multiples of 10 
to Solve Related Problems: Examine the problem and answer the ques-
tions that follow.

The Calculator Problem

Matilda accidentally entered 4,500 ÷ 5 into her calculator instead of 
4,500 ÷ 10. What can she do to the answer of 4,500 ÷ 5 to find the answer 
to 4,500 ÷ 10?

Jane‘s Solution

Joaquin‘s Solution

Trina‘s Solution
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(a) How might a student who has an understanding of place value, as well 
as an understanding of the impact the magnitude of a divisor has on 
the quotient, answer this question?

(b) What specific errors might you expect from students who are still 
making sense of multiplying by powers of 10?

(c) Imagine the question was changed to a multiplication situation like 
the next example. How would the reasoning needed to solve this 
problem differ from the reasoning needed to solve the original divi-
sion question?

The Calculator Problem 2

Matilda accidentally entered 4,500 × 5 into her calculator instead of 
4,500 × 10. What can she do to the answer of 4,500 × 5 to find the 
answer to 4,500 ×10?

4. Try This with Your Class: Administer a question like the following soc-
cer problem to help you collect information on how the magnitude of 
numbers in a multiplication problem might affect student solutions. Use 
the following prompts to guide your analysis of your students’ work:
• Which students answered both parts of the question correctly using 

the same strategy? Were these correct strategies Additive, Early Tran-
sitional, Transitional, or Multiplicative? What is the evidence?

• Which students used a less efficient strategy on Part B than on Part A?
• Which students used a Nonmultiplicative strategy on Part B but not 

on Part A? Did any students use Nonmultiplicative strategies on both 
parts of the question?

• What instructional modifications will you make based on this 
information?

The Soccer Problem

There are 16 players on each soccer team in the Smithville Soccer League.
(a) How many total players are there if there are 8 teams in the league? 

Show your work.
(b) How many total players are there if there are 24 teams in the league? 

Show your work.

5. Review the student work in Figures 6.1–6.9.
(a) What strategy is evidenced in each solution?
(b) Where along the OGAP Multiplication Progression is the evidence for 

each piece of student work?
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Instructional Link: Your Turn

Use the following questions to help you examine ways in which your math 
instruction and math program provide students opportunities to work with 
problems containing various structures.

1. What are the ways that you and your instructional materials provide 
opportunities for your students to engage with problems that vary in 
relation to the:
• Magnitude of numbers?
• Number and language relationships?
• Types of models, implied or explicitly described?

2. Given your findings in Question 1, identify instructional modifica-
tions that you can make to ensure that your students have regular 
opportunities to work with a variety of multiplicative problems that 
differ in structure.
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Students’ conceptions and competencies develop over long periods of 
time, through experience with a large number of situations, both in and 
out of school. When faced with new situations (new domain, new rela-
tionship, new numerical data), they use the knowledge that has been 
shaped by their experience with simpler and more familiar situations and 
try to adapt it to this situation (Vergnaud, 1988, p. 141).

Development of understanding and fluency with whole number division is 
not something that begins with formal instruction in second and third grade. 
Rather, as Vergnaud (1988) suggests, “whole number division understanding 
and competencies, like other new concepts, are developed over time and are 
built on earlier school and non- school experiences” (p. 141).

The foundations of understanding of division as a concept come from equal 
sharing experiences during preschool years. For example, children share with 
their peers by partitioning food portions into equal parts or dealing out equal 
shares of discrete objects before they even enter formal schooling situations. 
More formal instruction at grade 3 builds on these sharing experiences as stu-
dents solve division problems such as, “Three children share 6 brownies equally. 
How many brownies does each student get?”

7
Developing Whole Number Division

Big Ideas
• Students should solve a range of division problems involving 

different problem structures, different contexts, and different 
contextual situations.

• A focus on the meaning of the quantities in division problems 
is critical for understanding the contextual situation and the 
interpretation of remainders (Fosnot & Dolk, 2001).

• The OGAP Division Progression can be used to gather evidence 
of students’ developing understanding of division and help 
facilitate instructional decision- making.
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Division as an operation builds from students’ developing understanding 
of multiplication and the inverse relationship between multiplication and divi-
sion. Students begin to understand that division is related to multiplication in 
much the same ways that subtraction is related to addition.

They understand, for example, that 6 brownies shared among 3 people 
results in 2 brownies per person. They see that there are two related equations: 
one division and the other multiplication.

6 brownies ÷ 3 people = 2 brownies per person
3 people × 2 brownies per person = 6 brownies

For more about the inverse relationship between multiplication and 
division go to Chapter 4: The Role of Concepts and Properties.

As soon as formal instruction begins on division, partitive and quotative 
situations should be introduced and taught simultaneously. These terms will 
be fully exemplified and defined in the next section of this chapter. Over time 
students should be introduced to, and solve, division problems in a range of 
contexts and contextual situations with larger dividends and divisors, using 
understanding of place value and an understanding of the inverse relationship 
between multiplication and division.

This chapter focuses on understanding partitive and quotative division, 
interpreting remainders, and the different levels on the OGAP Division Pro-
gression.

Partitive and Quotative Division

Researchers indicate that students should solve both partitive and quotative 
division problems, as well as those division problems involving area, multipli-
cative comparisons, scale, volume, and measurement conversion problems. 
However, some researchers have found that there is a greater instructional 
focus on partitive problems than quotative problems (Greer, 1992). To begin 
to understand the difference between partitive and quotative division prob-
lems, solve Problems 1 and 2. How are these problems alike and how are they 
different?

Problem 1

Twenty students equally share 100 jellybeans. How many jellybeans does 
each student get?

Problem 2

There are 100 jellybeans. Each package holds 20 jellybeans. How many 
packages of jellybeans are there?
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You probably noticed that both problems are arithmetically equivalent 
(100 ÷ 20 = 5). However, these are very different problem situations involving 
different semantic structures.

For a discussion explaining semantic structures and their impact 
of solving multiplication and division problems, go to Chapter 5: 

Problem Contexts.

Problem 1 is a sharing or partitive division problem. That is, the problem is 
asking how many jellybeans are in each group. We know the total number of 
jellybeans (100) and we know the number of groups (20 students).

100 jelly beans ÷ 20 students = 5 jelly beans per student
Total number of objects ÷ number of groups = number in each group

Problem 2 is a quotative division problem. In this case we are given the total 
number of jellybeans (100) and the number of jellybeans in each package (20 
jellybeans per package). The problem is asking for the number of packages 
(groups) of jellybeans with 20 jellybeans in each package.

100 jelly beans ÷ 20 jelly beans per package = 5 packages
Total number ÷ number in each group = number of groups

The difference in the semantic structures in quotative and partitive divi-
sion problems often affects the strategies students use to solve each type of 
division problem as they are developing understanding of division. Also, the 
quantities in the solutions to partitive and quotative problems have different 
meanings. Partitive division problems result in the number in each group (the 
composite unit). Quotative division problems result in the number of groups.

Beginning Strategies Evidenced in Partitive and Quotative  
Division Problems

Figure 7.1 contains two responses with evidence of dealing or sharing out—
often the first strategy students use to solve partitive division problems. Dealing 
or sharing out is evidence that these students understood the concept of divid-
ing a quantity into four equal groups as pictured.

In quotative division problems the number in each group (the composite 
unit) is known, but not the number of groups. Students cannot share out into 
groups if they don’t know how many groups to make. Instead, students tend 
to use additive strategies to either add up the number in each group until they 
arrive at the total or subtract from the total until they arrive at zero. Examples 
of these two strategies are shown in Figure 7.2.

The solutions in Figures 7.1 and 7.2 are classified as Additive Strategies 
on the OGAP Division Progression because students are counting, adding, or 
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Figure 7.1 Two responses to a partitive division problem in which the responses contain 
evidence of dealing or sharing out. Response A shows evidence of sharing out by ones, 
whereas Response B shows evidence of sharing out by groups of tens and then threes.

The fourth grade class earned $132 from a bake sale. The class decided to 
donate an equal amount of the money to four different organizations. How 
much money did the class donate to each organization? Show your work.

Figure 7.2 Two correct solutions to a quotative division problem in which the responses 
contain evidence of repeated addition (A) and repeated subtraction (B).

A class of 234 students is going on a field trip. The buses used to transport the 
students each seats 28 students. How many buses will be needed to take all 
the students on the field trip? Show your work.

Response A—sharing out by ones

Response A—repeated addition

Response B—repeated subtraction

Response B—sharing out by groups 
of tens and then groups of 3S
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subtracting the amount in each group. As mentioned, it is the structure of 
these division problems that influences these beginning strategies. As students 
begin to solve partitive division problems they tend to share out because they 
are given the number of groups and the total number of objects that need to 
be shared. In contrast, in quotative division problems they are given the total 
number of objects and the number in each group, so as students begin to solve 
quotative division problems they tend to either repeatedly subtract the number 
in each group or build up to the total. It is important for students to engage in 
both partitive and quotative division, as well as engage in division problems that 
are neither partitive nor quotative that involve area, volume, conversions, and 
multiplicative comparisons.

Interpreting Remainders

Studies have shown that students often select the correct operation (division) 
when solving division word problem involving remainders but do not return 
to the problem situation or context to interpret the remainders appropriately 
(Silver, Shapiro, & Deutsch, 1993). This finding has important instructional 
implications as students engage in different division contexts and contextual 
situations. Samantha’s response in Figure 7.3 exemplifies this point. Samantha’s 
use of the open area model and calculations are correct, but the lack of labels 
indicating that each person received 9 pens with 10 pens left over provides 
evidence that she may not have returned to the problem context after obtaining 
her answer.

Figure 7.3 Samantha’s response. Samantha accurately calculated an answer of 9 R 10. 
However, the lack of labels in her answer may be evidence that she did not return to the 
problem context to make a decision about how to treat the remainder.

There are 145 pens to share equally with 15 people. How many pens will each 
person get?

In contrast, the solutions in Figure 7.2 show evidence of returning to the 
problem situation to determine what to do with the remainder. In both cases 
the students reasoned that an extra bus was needed to transport the remaining 
students. Figure 7.4 is a schematic that shows the idealized path to a successful 
solution to a division problem with a remainder.
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It is the contextual situations (e.g., sharing 6 balloons compared to sharing 
brownies) of a division problem that determines how remainders should be 
interpreted. “Students should not just think about remainders as ‘R3’ or ’3 left 
over’. Addressing what to do with remainders should be central to the teaching 
of division” (Van de Walle, Karp, & Bay- Williams, 2012, p. 161). Additionally, 
“children should encounter division problems involving remainders from the 
time they begin work on division ideas” (Reys, Lindquist, Lambdin, & Smith, 
2009, p. 256).

These two ideas have implications for instruction with regard to teach-
ing and learning division and the meaning of remainders. That is, students 
should encounter division with remainder problems as they learn about divi-
sion and be asked to think about what to do with that remainder. One might 
question whether it is too early to deal with remainders when students are 
first learning about division. However, think about the many real- life situ-
ations students experience that have remainders from a very early age (e.g., 
12 cookies shared by 5 students equally; 32 marbles shared equally among 5 
children). This provides the opportunity for students to engage in the mean-
ing of remainders before formal instruction on division even begins. When 
instruction on division begins, students already will understand that in some 
division situations there will be remainders that they need to consider in 
their solutions.

In general, depending on the contextual situation, remainders to division 
problems can be a fraction, be discarded, be rounded up, or be rounded to 
the nearest whole number. Table 7.1 provides some problem examples with 
explanations on how the contextual situation drives the decision about how to 
treat the remainder in division problems. Read and solve each problem. Then 
think about how the contextual situation influenced how the remainder was 
interpreted.

Figure 7.4 Schematic showing the idealized path to a division problem that involves 
remainders. (Adapted from Silver et al., 1993, p. 120.)
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Notice that it is the contextual situation of the problem that influences 
the decision about how to interpret the remainder. There are no set rules to 
impart to students about how to interpret remainders other than focusing 
on the situation in the problem and using that to guide decisions about how 
to treat the remainder. One way to help students think more deeply about 
the contextual situation is to use the Word Problem Strategy described in 
Chapter 5.

Another way to help students interpret remainders is by having them solve 
application problems in which they must select between different interpreta-
tions of the remainders. See the problems in Figures 7.5 and 7.6. This type 
of problem is engineered to force students to think about the meaning of the 
remainder and can provide a platform for meaningful discussion about inter-
preting remainders. The student solutions in Figures 7.5 and 7.6 are different 
interpretations of the remainders in the same problem that could be used for 
discussion. Review Caleb’s and Omar’s responses in Figures 7.5 and 7.6 and 
think about how you might engage students in a discussion about the remain-
ders in this problem.

Figure 7.5 Caleb’s response. Caleb determined that each student would get 2 brown-
ies with 10 brownies left over without considering that brownies can be divided into 
fractional pieces.

Twenty- five students are sharing 60 brownies equally. How many brownies 
should each student get?
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Figure 7.6 Omar’s response. Omar correctly determined that each student would get  
2 2/5 brownies

Twenty- five students are sharing 60 brownies equally. How many brownies 
should each student get?

A strategy to use these solutions to guide a discussion about the interpreta-
tion of remainders is to project both Caleb’s and Omar’s solutions in front of 
the class and ask a series of guiding questions that starts with the context of 
the problem and extends to the bigger idea of interpreting remainders. Some 
sample guiding questions follow.

Sample guiding questions:

1. Look at both Omar’s and Caleb’s solutions. How are they alike and how 
are they different?

2. Under what conditions would Omar’s solution be correct?
3. Under what conditions would Caleb’s solution be correct?
4. Neither Omar nor Caleb thought that answer (G) was correct. Under 

what conditions would (G) be a correct response?
5. In this context the extra brownies can be divided into fractional pieces. 

What are other situations that involve sharing that the extras can be 
divided into fractional pieces? Are there times when dividing up the 
extras would not make sense?

6. What are sharing situations where the leftovers cannot be divided up? 
For each of the situations what are ways that the leftovers can be treated?
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These examples point to two important instructional ideas with regard to 
helping students interpret remainders: 1) students should pay careful atten-
tion to the meaning of remainders in a range of problem situations and 
contexts, and not just focus on the development of the procedure to divide 
and 2) teachers should avoid teaching rules about how to treat remainders. 
Rather, teachers should encourage students to reason about the meaning of 
the remainder in relation to the contextual situation of the problem and the 
quantities involved.

The OGAP Division Progression

The same principles that apply to the OGAP Multiplication Pro-
gression discussed in Chapter 3 apply to the OGAP Division Progression.

• The evidence in student work falls along the levels from Nonmultiplica-
tive to Multiplicative strategies.

• The progression is not linear. Rather, strategies students use move up 
and down on the progression depending on the problem situations, 
contexts, and the problem structures.

• Students will be at different places at different times.
• The progression provides instructional guidance for moving student 

strategies along the continuum.
• The progression is not evaluative.
• Collection of Underlying Issues and Errors is important (such as inter-

pretation of remainders).

The progression levels represent the continuum of evidence from Nonmul-
tiplicative to Multiplicative Strategies that is visible in student work as students 
develop their understanding and fluency for whole number division. The levels 
are at a grain size that is usable by teachers to gather actionable evidence to 
influence instructional decision- making.

Open to pages 2 and 3 of the OGAP Multiplicative Reasoning Framework. 
You will notice that the OGAP Multiplication Progression is on page 2 and the 
OGAP Division Progression is on page 3. Notice that the levels along the division 
progression are the same as they are with multiplication: Multiplicative Strat-
egies; Transitional Strategies; Early Transitional Strategies; Additive Strategies; 
Early Additive Strategies; Nonmultiplicative Strategies. In addition, when using 
the OGAP Division Progression, it is important to consider the levels on the 
progression, as many students will use multiplicative strategies to solve division 
problems. For example, in Figure 7.6 Omar used multiplication to determine 
that each student would receive 2 2

5 of a brownie.
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The design of the OGAP Division Progression is to provide a learning path 
based on mathematics education research that develops procedural fluency 
with understanding. The Transitional Level in both progressions is the bridge 
between additive reasoning and strategies that reflect procedural fluency with 
understanding at the multiplicative level.

From Early Additive to Additive Strategies

As discussed earlier in the chapter, when students first engage in division 
problems, they often draw on additive strategies to solve them. These strate-
gies include sharing out by ones or in groups as shown in Figure 7.1 or use of 
repeated subtraction as shown in Figure 7.2.

Early Additive strategies involve sharing out and counting by ones. As stu-
dents’ understanding of numbers develops, they are able to conceptualize and 
work with units larger than one, for example, sharing out and counting by larger 
groups (Figure 7.1) or repeated addition or subtraction (Figure 7.2). These strat-
egies that involve unitizing with units larger than one are considered Additive.

From Additive to Transitional

The Additive solutions of repeated addition and repeated subtraction evidenced 
in Figure 7.2 are accurate, including the interpretation of the remainder. However, 
they are not efficient, nor do they show evidence of understanding the multiplica-
tive relationships so important to being procedurally fluent with understanding. 
The focus at the Transitional level is to bridge students from additive reasoning to 
procedural fluency with understanding at the multiplicative level.

At the Early Transitional level building- up strategies and skip counting 
are evidenced as students move away from their counting strategies to oper-
ate on groups. Ashley’s response in Figure 7.7 combines skip counting by 

Figure 7.7 Early Transitional strategy. Ashley’s response shows evidence of using skip 
counting to accurately determine the amount donated to each group.

The fourth grade class earned $132 from a bake sale. The class decided to 
donate an equal amount of the money to four different organizations. How 
much money did the class donate to each organization? Show your work.
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fours and then counting the number of skips (33) to determine the amount 
to donate to each group. Ashley’s solution is correct. However, there are no 
units labeled, so one is not certain that she understands that her answer, 33, 
refers to dollars.

Important in the move from Early Transitional to Transitional Strategies is 
understanding and fluency with the use of the inverse relationship between 
multiplication and division. For example, in Eli’s solution in Figure 7.8 there 
is evidence that he understands the inverse relationship between multiplica-
tion and division when he used multiplication to solve this division problem. 
However, the solution is at the Transitional Strategy level because it was not 
efficient.

Figure 7.8 Transitional Strategy. Eli’s solution shows evidence of understanding the 
inverse relationship between multiplication and division by using multiplication to 
solve a division problem. It is classified as Transitional because the solution was not 
efficient.

The fourth grade class earned $132 from a bake sale. The class decided to 
donate an equal amount of the money to four different organizations. How 
much money did the class donate to each organization? Show your work.

At the Transitional level there may also be evidence of using the partial quo-
tient algorithm, but not efficiently. Roberta’s solution in Figure 7.9 shows use 
of partial quotients, but the continuous use of 3 as a partial quotient without 
considering more efficient dividends makes the strategy inefficient.

See Chapter 8 for more on making sense of the partial quotient 
algorithm.
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Multiplicative Strategies

At this level, students use efficient strategies (e.g., partial quotients, tradi-
tional US algorithm), as well as appropriately understanding place value and 
the inverse relationship between multiplication and division, to solve division 
problems. By sixth grade students should be using Multiplicative Strategies to 
solve whole number division problems involving equal groups, equal measures, 
measurement conversions, multiplicative comparisons, unit rates, factors and 
multiples, rectangular area, and volume problems.

Solutions at the Multiplicative Strategy level include efficient partial quo-
tients (Figure 7.10), the traditional US long division algorithm (Figure 7.11), 
and efficient use of the inverse relationship between multiplication and division 
(Figure 7.12).

Chapter 8: Understanding Algorithms provides an in- depth dis-
cussion about how area models can be used to make sense of the 

traditional US division algorithm.

Figure 7.9 Transitional Strategy. Roberta’s response shows evidence of using the partial 
quotient algorithm. Note that Roberta made sense of the remainder in this problem 
situation.

There are 15 teams in a town soccer league. The league made sure that about 
the same number of players are on each team. There are 200 players in the 
league. How many players will be on each team?



Figure 7.10 Multiplicative Strategy. The solution contains efficient use of partial quotients.

In 2004 there were about 5,760,000 motorcycles in the United States. That 
is about 10 times more than the number of motorcycles in 1960. About how 
many motorcycles were there in the United States in 1960?

Figure 7.11 Multiplicative Strategy. The solution contains evidence of using the tradi-
tional US long division algorithm.

Dean put a fence around his garden. The area of the garden is 252 square 
feet. One side of the garden is 18 feet long. How long is the other side of the 
garden? Show your work.
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Nonmultiplicative Strategies

At the bottom of the progression notice a box labeled Nonmultiplicative Strate-
gies. As students engage in new topics or are just beginning division concepts 
they often add or multiply the dividend and the divisor, use the incorrect 
operation, or guess. Figures 7.13 and 7.14 are some examples of solutions with 
evidence of Nonmultiplicative Strategies.

Figure 7.12 The solution contains evidence of efficiently using the inverse relationship 
between multiplication and division.

The average price of a home in 1960 was $12,700. The average price of a 
home in 2008 was $238,880. About how many times more was the cost of the 
home in 2008 than in 1960?

Figure 7.13 Nonmultiplicative Strategy. The solution contains evidence of multiplying 
the dividend and the divisor instead of determining the scale factor between 19 inches 
and 194 inches.

A piece of elastic that is 19 inches long can be stretched to 194 inches. How 
many times its original length can it be stretched? Show your work.
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See Chapter 2: The OGAP Multiplication Progression for more on 
how the sorting and analysis of evidence process is used to inform 

instruction for both the OGAP Division Progression and OGAP Multiplication 
Progression. As one collects evidence of underlying issues for division, partic-
ular attention should be paid to the interpretation of the remainder and units.

The progression, as you can see, shows that student strategies move from 
counting by ones, to counting by groups, to operating on groups multiplicatively, 
to using models, to developing efficient strategies that are built on conceptual 
understanding. Although students first engage in division using additive strat-
egies, the Transitional level is the bridge from these additive strategies to the 
efficient strategies at the Multiplicative level.

Chapter Summary

This chapter focused on whole number division and the OGAP Division 
Progression.

• Across time students should encounter a range of division problem 
situations (e.g., partitive, quotative, multiplicative comparisons).

• The contextual situation of the problem influences the interpretation 
of remainders.

• Research shows that students often correctly calculate solutions to divi-
sion problems, but do not return to the problem situation to interpret 
the meaning of the remainders.

• Instruction should focus on strategies to help students understand 
the context of the problem and its influence on how the remainder is 
interpreted.

• The OGAP Division Progression is an example of a learning progression 
founded on mathematics education research and written at a grain size 

Figure 7.14 Nonmultiplicative Strategy. The solution contains evidence of subtracting 
the divisor from the dividend instead of determining the scale factor between the aver-
age cost of a home in 1960 and 2008.

The average price of a home in 1960 was $12,700. The average price of a 
home in 2008 was $238,880. About how many times more was the cost of the 
home in 2008 than in 1960?
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that is usable by teachers and students in a classroom across a range of 
multiplicative reasoning concepts.

• The OGAP Division Progression was specifically designed to inform instruc-
tion and monitor student learning from a formative assessment perspective.

Looking Back

1. Partitive and Quotative Division Problems: It is important that students 
have ample opportunities to solve both partitive and quotative multipli-
cation problems.
(a) For each of the following four problems:

• Indicate whether the problem is a partitive or quotative division 
problem

• Indicate the quantities given in the problem and the unknown 
quantity

Problem 1: Ann and Billy baked 60 cookies for the bake sale. They 
put an equal number of cookies on 5 plates. How many cookies 
did they put on each plate?

Problem 2: The class collected 65 pounds of food for their food 
drive. The students filled each box with 5 pounds of food. How 
many boxes did they fill?

Problem 3: Jillian has 45 ounces of apple juice. The apple juice is 
packaged in bottles that each contains 15 ounces. How many 
bottles of apple juice does Jillian have?

Problem 4: Three children equally share 45 ounces of apple juice. 
How much juice does each child get?

(b) Two distinct division problems can usually be created from one 
multiplication problem. All three of these problems utilize the same 
context and the same quantities. Write two different division problems 
related to the following multiplication problem. Identify each divi-
sion problem you wrote as either partitive or quotative.

The Jellybean Problem

Five friends buy enough jellybeans so that each friend gets 6 ounces of 
jellybeans. How many ounces of jellybeans do the 5 friends buy?

2. Student solutions to partitive and quotative division problems:
(a) The bake sale problem in Figure 7.1 and also shown here is an exam-

ple of a partitive division problem. Use the OGAP Division Progres-
sion to help you analyze Responses A and B in Figure 7.1. What level 
of the progression best describes each strategy? What is the evidence 
that supports this analysis?
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The Bake Sale Problem

The fourth grade class earned $132 from a bake sale.
They donated an equal amount to four different organizations.
How much money did the class donate to each organization?

3. Two student solutions to a quotative division problem are shown here. 
Use the OGAP Division Progression to help you analyze Joy’s and Andrew’s 
solutions (Figures 7.15 and 7.16) to the music festival problem. What 
level of the progression best describes each strategy? What is the evidence 
that supports this analysis?

The Music Festival Problem

Buses will take 2881 participants from the parking lot to the music 
festival site.

One bus holds 67 participants.
How many bus trips will it take to get all participants from the parking 

lot to the music festival site?

Figure 7.15 Joy’s solution to a quotative division problem.

Figure 7.16 Andrew’s solution to a quotative division problem.
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(c) What are some differences between Responses A and B to the parti-
tive problem in Figure 7.1 and Joy’s and Andrew’s solutions to the 
quotative problem?

4. Division Problem Involving Multiplicative Comparison: Multiplica-
tive comparison is an example of a context that is neither partitive nor 
quotative. Study the multiplicative comparison problem next and the five 
student solutions that follow (Figures 7.17–7.21).
(a) Use these solutions and the OGAP Multiplication Progression to ana-

lyze the evidence in each of the solutions. Record your analysis on a 
copy of the OGAP Evidence Collection Sheet shown in Figure 2.24. 
For each solution identify:
• The level on the progression the evidence in the solution is 

located. What is the evidence?
• Any Underlying Issues or Errors.
• Whether or not the answer is correct. Highlight the student solu-

tions that are incorrect.

Multiplicative Comparison Division Problem

(b) Based on your analysis, identify understandings that can be built 
upon and potential strategies you could use to help each student 
build understanding toward the next level on the OGAP Division 
Progression.

In 2004 there were about 5,760,000 motorcycles in the United States.
This is about 10 times more than the number of motorcycles in 1960.
About how many motorcycles were there in the United States in 1960?

Figure 7.17 Jon’s response to a multiplicative comparison division problem.



Figure 7.18 Emma’s response to a multiplicative comparison division problem.

Figure 7.19 Kat’s response to a multiplicative comparison division problem.

Figure 7.20 Ben’s response to a multiplicative comparison division problem.

Figure 7.21 Jaylen’s response to a multiplicative comparison division problem.
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5. Interpreting Remainders in Division Problems: As described in this 
chapter, the contextual situation of a division problem determines how 
remainders should be interpreted. Study each of the following prob-
lems. For each, determine if there is a remainder, how the remainder 
should be interpreted, and the features of the problem that affected your 
decision.
Problem 1: Five friends earn money by mowing lawns in their neigh-

borhood. They evenly divide the money they earn each month. 
Last month the friends earned $125.00. How much did each friend 
receive?

Problem 2: An average 4- year- old child is about 3½ feet tall. A typical 
giraffe is about 19 feet tall. About how many times taller is a typical 
giraffe than an average 4- year- old child?

Problem 3: The fifth grade class celebrated the last day of school with a 
pizza lunch. The 24 students in the class equally shared 64 pieces of 
pizza. How many pieces of pizza did each student receive?

Problem 4: A school parent group donated 50 markers to be shared 
equally among the 18 kindergarten students. How many markers 
should each kindergarten student receive?

Problem 5: One hundred and twenty- three players signed up for the 
basketball league. The league organizers plan to create teams with 
8 players per team. How many teams should the league organizers 
create?

6. Try This in Your Class: Follow the three steps to gather evidence of how 
your students are conceptualizing division.
• Design or select a division question based on the mathematical 

goal of an upcoming lesson. Consider the different types of divi-
sion problems you learned about in this chapter, as well as particular 
problem structures that can provide the type of information most 
helpful to you.

• Administer the question as an exit question at the end of the lesson.
• Analyze your students’ responses and record the information on a 

copy of the OGAP Evidence Collection Sheet shown in Figure 2.24.
(a) Use the evidence you collected earlier to answer the following three 

questions:
• What are some developing understandings you noticed in the 

solutions that can be built upon in future lessons?
• What are some underlying issues or concerns across your class 

that future lessons should address?
• What are some implications for instruction? What are some spe-

cific instructional actions you can take to address the evidence 
you collected?
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Instructional Link

Use the following questions and Table 5.2 to help you think about the ways in 
which your instruction and math program provide students multiple oppor-
tunities to engage in a range of problem contexts and structures involving 
division.

1. Do you or your instructional materials provide opportunities for 
students to:
(a) Solve a range of partitive and quotative division across different 

problem contexts?
(b) Solve a range of problems differing in contexts and structures that 

require students to interpret remainders?
2. To what degree does your math program focus on developing under-

standing and fluency for division through Transitional Strategies such as:
(a) Visual models?
(b) Place value understanding?
(c) Properties of operations?

3. To what degree do you collect and analyze evidence in student solu-
tions to inform instruction and student learning?

4. Based on your responses in Questions 1, 2, and 3 identify modifica-
tions you can make in your instruction to help your students gain a 
deeper conceptual understanding of whole number division.
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Researchers have consistently indicated that students may struggle with the use 
and understanding of formal algorithms when their knowledge is dependent 
primarily on memory rather than anchored with a deeper understanding of the 
foundational concepts. Understanding and procedural fluency should be built 
in a way that brings meaning to both (Hiebert & Carpenter, 1992; Lampert, 
1986; NRC, 2001; Russell, 2000). This chapter focuses on building procedural 
fluency with understanding through exploring the relationships among the 
open area model, properties of operations, and different algorithms for multi-
plication and division.

The importance of the open area model for developing understanding of 
multiplication and division and the properties of these operations has been 
established in previous chapters. On the OGAP Multiplication Progression, the 
use of the open area model is considered a Transitional strategy. As students’ 
understanding of the operations and related concepts such as place value 
develops over time, it is important that they develop strategies that are increas-
ingly efficient and generalizable, as represented at the Multiplicative level of the 

8
Understanding Algorithms

Big Ideas
• The open area model builds conceptual understanding of both 

the distributive property and place value that can help students 
make sense of multidigit multiplication and division.

• Students should have opportunities to build explicit 
connections between the open area model and multiplication 
and division algorithms in order to build procedural fluency 
with understanding.

• Over time, as conceptual understanding is built and deepened, 
students should move away from models and less efficient strategies 
toward generalizable and efficient algorithms for multiplication and 
division.
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progression. Anchoring procedures to visual models is key to this process and 
involves several of the Standards for Mathematical Practice (CCSSO, 2010).

See Chapters 3: The Role of Visual Models, Chapter 4: The Role of 
Concepts and Properties, and Chapter 7: Developing Whole Num-

ber Division for more information about using area models in the development 
of fluency.

In mathematics an algorithm is a procedure or series of efficient steps for 
solving a problem. Many different algorithms for multiplication and division 
are used across the United States and across different countries and cultures 
(Fuson & Beckmann, 2012). Figure 8.1 shows two multiplication algorithms 
and two division algorithms that are commonly presented in US mathematics 
textbooks. There are variations in how the steps of these algorithms are written, 
but here we show the most common recording methods. You will notice that 
these algorithms appear at the Multiplicative level, along with other strategies 
that are based on recall or properties of operations, on the OGAP Multiplication 
and Division Progressions.

Figure 8.1 Standard algorithms for multiplication and division.

Traditional US Multiplication 
Algorithm

Traditional US Division
Algorithm

57
  8

5

456

-400 -
4568

57

56

0

50

7-56

Partial Products 
Algorithm

57
  8

400
  56
456

8
57

-40
456

56
-56

0

Partial Quotients 
Algorithm

These are all examples of standard algorithms that are efficient, accurate, 
and generalizable for all whole numbers and decimals. In this book, we refer to 
the multiplication and division algorithms on the left side of Figure 8.1 as the 
traditional US algorithms because they are more widely used in this country, but 
it is important to note that we are not suggesting they are preferred methods. 
More importantly all algorithms should be built upon a strong foundation of 
place value understanding, properties of operations, and connections to visual 
models in order to develop procedural fluency with understanding.
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CCSSM

In the CCSSM, fluency with standard algorithms for multiplication and divi-
sion is not expected until students have developed conceptual understanding 
of strategies based on place value and properties of operations. Table 8.1 shows 
the progression of models, strategies, and algorithms that are expected from 
grade 2 to grade 6 in the domains of Operations and Algebraic Thinking and 
Numbers and Operations in Base 10.

Note the important role of strategies based on visual models, place value, 
properties of operations, and inverse relationships between operations during 
the two years before students are expected to be able to use the standard algo-
rithms. In addition, the standards include the expectation that students should 
be able to “illustrate and explain the calculation by using equations, rectangular 
arrays, and/or area models” for both multiplication and division before fluency 
with a standard algorithm is expected. Thus, the CCSSM also reflects a progres-
sion from the use of visual models to develop conceptual understanding to the 
use of standard procedures without models.

Table 8.1  Progression of multiplication and division models and strategies in the CCSSM.

Grade 2 3 4 5 6

Use of Models Equal groups
Arrays

Equal groups
Arrays
Area

Arrays
Open area

Volume
Arrays
Open area

Multiplication 
Strategies

Repeated 
addition

Strategies based on place 
value and properties of 
operations

Standard 
algorithm

Division 
Strategies

Strategies based on place 
value, properties of 
operations, and/or the 
inverse relationship between 
multiplication and division

Standard 
algorithm

The CCSSM does not provide a specific definition of standard algorithms, but 
in the Progression for the Common Core State Standards in Mathematics for the 
domain of Number and Operations in Base 10, the following definition is offered:

Standard algorithms for base- ten computations with the four operations 
rely on decomposing numbers written in base- ten notation into base- ten 
units. The properties of operations then allow any multi- digit compu-
tation to be reduced to a collection of single digit computations. These 
single- digit computations sometimes require the composition or decom-
position of a base- ten unit (Common Core Standards Writing Team, 
2015, p. 13).
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The authors of the progression go on to explain that the algorithm is “defined 
by its steps” and that “minor variations in recording standard algorithms are 
acceptable” (p. 13).

Later in the chapter, we will consider the implications of this defining char-
acteristic that standard algorithms can be “reduced to a collection of single digit 
computations” for developing procedural fluency with understanding, but first 
we explore the importance of developing understanding of multidigit multipli-
cation and division through visual models.

Multiplication: Linking Open Area Models and Algorithms

In order to explore the meaning of multidigit multiplication more deeply, try this: 
solve a two- digit by two- digit multiplication problem in three different ways—
using open area, partial products, and the traditional US algorithm—and then 
explicitly try to draw connections between the strategies. As you carry out the 
steps in each strategy, try to think about the mathematics behind the steps you are 
carrying out, the words you say to yourself as you carry them out, and the place 
value of those quantities in the original problem (See Looking Back #1).

To further explore the connections among the open area model, the partial 
products algorithm, and the traditional US algorithm we will look more closely 
at student solutions to an equal measures problem that involves multiplying 
two- digit quantities.

Open Area and Partial Products Algorithm

Look at Alyssa’s and Gavin’s solutions to the problem shown in Figure 8.2. What 
connections can you find between the open area model and Gavin’s use of par-
tial products in Figure 8.2? Do you see some of the same numbers? Where? 
Where do these numbers come from?

Figure 8.2 Comparing open area and partial product solutions. The four partial areas 
are equivalent to the four partial products.

Twenty- three inches of string are needed to hang each decoration. How many 
inches of string are needed to hang 27 decorations?
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Note that in Alyssa’s open area model, the dimensions of the partial areas 
are the factors of the four partial products in Gavin’s solution (20 × 20= 400, 
3 × 20 = 60, 20 × 7 = 140, and 3 × 7 = 21). In Figure 8.2, the product of 20 × 
20 = 400 is circled in both strategies. Can you identify the other three partial 
products in Alyssa’s model?

Open Area and Traditional US Algorithm

Now compare Kayla’s use of the traditional US algorithm in relation to Alyssa’s 
open area model in Figure 8.3.

The partial products in the traditional US algorithm are a little harder to find 
because they have been combined to create the two partial products of 81 and 
540. That is, 81 comes from 27 × 3 = (7 + 20) × 3 = (7 × 3) + (20 × 3) = 21 + 60. 
These are also the products on the bottom row of Alyssa’s open area model (60 
and 21) as shown in Figure 8.3. Likewise, the 540 in Kayla’s solution comes from 
27 × 20 = (7 + 20) × 20 = (7 × 20) + (20 × 20) = 140 + 400. Can you identify 
these partial products in Alyssa’s open area model?

Recognizing that each of the numbers that are produced in the traditional 
US multiplication algorithm is a sum of the partial products can help bring 
meaning to the standard algorithm. In this way, the open area model helps 
bring meaning to multidigit multiplication and can eventually become a men-
tal model to support sense making. Researchers indicate that fluency and 
understanding be built using visual models and the mathematical concepts 
underpinning the operations rather than just rote memorization of algorithmic 
steps (e.g., Battista, 2012; Carpenter et al., 2003; Empson & Levi, 2011; Fosnot & 
Dolk, 2001; Kaput, 1989).

Figure 8.3 Comparing open area and traditional US algorithm. Two partial products 
are added together in the traditional US algorithm.

Twenty- three inches of string are needed to hang each decoration. How many 
inches of string are needed to hang 27 decorations?

Alyssa’s Solution              Kayla’s Solution
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Note that in her open area model, Alyssa has drawn the dimensions propor-
tionally (20 is longer than both 7 and 3). Her solution shows how the product 
of 20 and 20 make up the largest proportion of the total area and provides a 
rough estimate of the magnitude of the answer to 23 × 27. It is important to 
encourage students to continually make sense of the open area model by asking 
questions such as:

• What multiplication problem does your open area model represent?
• What does this part of the area model represent? How do you know? 

Can you write an equation?
• How did you decompose this number? Why?
• Which part can give you an estimate of the total answer?
• Why do you add, not multiply, the partial products?
• Why does this answer make (or not make) sense?

Over time, students should be able to imagine the open area model to determine 
the number of partial products based on the magnitude of the factors without 
having to actually draw it out. For example, 273 × 6 will have three partial areas 
because 273 can be decomposed into 200 + 70 + 3, which are each multiplied by 
6. In 364 × 25 there will be 6 partial products (see Figure 8.4) because 264 can 
be decomposed into 300 + 60 + 4, each of which will be multiplied by 5 and by 
20 because 25 = 20 + 5. Understanding the distributive property and linking it 
to the open area model and partial products is critical for students to develop 
procedural fluency with understanding.

See Chapter 4: The Role of Concepts and Properties for more on the 
distributive property.

Figure 8.4 Open area model for 364 × 25.



Understanding Algorithms • 157

From Models to Standard Algorithm

The partial product algorithm is easily connected to the open area model. 
Note that in Alyssa’s solution in Figures 8.2–8.3 she has written the four partial 
products next to the open area model. A logical next step for her would be to 
introduce the partial products method and show that it is simply writing out 
the products without drawing the model. In addition to being easy to connect 
to the open area model, the partial products algorithm has several advantages. 
In each step, the place value of the quantities is kept intact, forcing students to 
work with place value and develop deeper understanding of multidigit quanti-
ties. Unlike the traditional US algorithm, all the multiplication is done first 
and then the addition. Furthermore, students can work from right to left or 
left to right, which for some students may seem more natural because they 
learn to read both numbers and text from left to right (Fuson & Beckmann, 
2012). When working from the left to right, the partial products algorithm 
starts with the largest, rather than the smallest, place value of each factor, pro-
viding students with a rough estimation of the magnitude of the answer after 
the first step.

The traditional US algorithm also has advantages: it is efficient and concise 
for multidigit calculations and can be generalized across all whole numbers 
and decimal quantities. Historically, it was very useful for doing multidigit 
arithmetic before calculators and computers were available because it reduces 
difficult calculations to a series of one- digit products and sums (Fosnot & 
Dolk, 2001).

Fuson and Beckmann (2012) argue that this generalizability applies to varia-
tions such as partial products, which can also be considered a standard algorithm: 
“The standard algorithms are especially powerful because they make essential 
use of the uniformity of the base- ten structure. This results in a set of iterative 
steps that allow the algorithm to be used for larger numbers” (p. 16). Exploring 
and recognizing this uniformity and regularity allows students to engage in two 
important mathematical practices described in the CCSSM: “Look for and make 
use of structure” and “Look for and express regularity in repeated reasoning” 
(CCSSO, 2010).

However, pedagogically standard algorithms are not as useful when intro-
duced before students have developed strong place value understanding. The 
very thing that makes the traditional US algorithm so efficient—the reduction 
to single- digit calculation—also ends up masking the place value or meaning 
of the quantities. It also makes it difficult to carry out mentally or make an 
estimate of the product. By combining two operations in one step (two partial 
products are calculated and then added), it is harder for students to make sense 
of the place value of the quantities being operated on and the underlying math-
ematics of the operation. By reducing the calculation to a series of one- digit 
multiplications, the arithmetic becomes easier, but students are not required to 
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draw on or develop place value understanding or operate on groups of 10. In 
fact, premature introduction of algorithms that mask place value can constrain 
student opportunities to reflect on the tens- structure of the number system 
(Ebby, 2005; Kamii, 1998).

Try this: Compute 27 × 38 using the traditional US algorithm (see Figure 8.5). 
Talk through each step and note how many times you say something that is not 
mathematically true. Table 8.2 shows that only the first and last steps are true to 
the mathematical meaning of the numbers being multiplied.

This activity shows that, in essence, students need to leave their number 
sense aside when carrying out this algorithm. It is not so surprising, then, that 
students often make errors when they learn standard algorithms before devel-
oping understanding.

Table 8.2  Deconstructing the steps of the traditional US algorithm for 27 × 38 in relation 
to the mathematical meaning.

What is Said: Not True The Mathematical Meaning

7 times 8 is 56
Put down the 6 The 6 is in the one’s place of the product, 56
Carry the 5 X The 5 is really 50 from 56
8 times 2 is 16 X 8 × 20 is what you are solving and it is 160
Plus 5 is 21 X The 5 really means 50 and 160 + 50 = 210
Put a zero (or an X) 
to hold the place

X You are multiplying by a multiple of a power 
of 10 (30) so the product will end in a zero

3 times 7 is 21 X 30 × 7 is what is being multiplied
Put down the 1 X The 1 is a 10 because 30 × 7 = 210
Carry the 2 X 30 × 7 = 210 and the 2 represents 200
3 times 2 is 6 X This is really 30 × 20 = 600
Plus 2 is 8 X The 2 is 200 and the 8 is 800
Add 216 and 810

Figure 8.5 Solving 27 × 38 with the traditional US algorithm.

 27
 38
216
810

1026

2
5
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Algorithms Without Understanding

The compactness of standard algorithms makes them very useful but at the 
same time makes them prone to procedural use without understanding. As 
Bass (2003) notes, this is particularly problematic for traditional algorithms 
that have opaque steps:

Traditional algorithms have evolved over time for frequent daily users 
who want to do routine calculations, essentially mechanically. They 
tend to be cleverly efficient (minimizing the amount of space and writ-
ing used) but also opaque (the steps are not notationally expressive of 
their mathematical meaning). Therefore, if these algorithms are learned 
mechanically and by rote, the opaque knowledge, unsupported by sense 
making and understanding, often is fragile and error- prone, as many 
researchers have documented (p. 326).

In the examples shown in Figure 8.6, students are solving a multidigit equal 
groups problem by attempting to use the traditional US algorithm. Both stu-
dents started out with the correct first step (3 × 6 = 18) and seemed to be able 
to use some parts of the procedures. The errors seem to crop up when students 
have to combine the multiplication and addition in one step.

1 + 7 = 8
6 × 8 = 48

Multiplies 6 × 3 to get 18 and
6 × 7 to get  42. Adds the 1 from
10 to get 43, but then records the 3
and carries a 1 instead of a 4 from 43.
Perhaps an overgeneralization that
you always carry a one.

Multiplies 6 × 3 to get 18, but then 
adds the 1 (from the 10 in 18) to 
the 7 and then multiplies 6 × 8 to 
get 48. Makes the same error in
adding the 4 to the 2 and then
multiplying 6 × 6 to get 36. Adds 
then  multiplies instead of multiplying
and then adding. 

Figure 8.6 Common errors when using the US traditional algorithm.

The Arbor Tree farm planted 6 fields with 273 trees in each field. How many 
trees did they plant in all?
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Both students are correctly following some of the steps of the traditional 
US algorithm but are not able to put all of the steps together. In Solution A, the 
student may have overgeneralized the idea that a 1 is always carried. In Solu-
tion B, the student may be confused about why the operations of addition and 
multiplication are combined in one step. Although some might argue that these 
are careless errors, the evidence suggests that the students are not using the pro-
cedure with understanding. Solution B also has an unreasonable answer. Both 
solutions would be considered Nonmultiplicative on the OGAP Multiplication 
Progression—the students are attempting to use a multiplicative strategy but are 
not demonstrating underlying multiplicative thinking. These students would 
most likely benefit from going back to the open area model to conceptualize the 
three partial products and develop the understanding that 200, 70, and 3 are all 
multiplied by a factor of 6.

In Figure 8.7, Jesse is able to solve the first question by using the traditional 
US algorithm to multiply a 2- digit by a 1- digit number. However, in the sec-
ond part, which involves multiplying two 2- digit quantities, the fragility of his 
understanding becomes evident. (Some might say he just forgot to put in the 
“place holder,” which highlights the procedural nature of the use of this algo-
rithm. What exactly is a place holder?) More importantly, he doesn’t seem to 

Figure 8.7 Limits of procedural understanding. Jesse uses the traditional US algorithm 
to solve multiplication problems, but runs into problems when there are two- digit factors.

(a)  Mark bought 12 boxes of crayons. Each box contained 8 crayons. 
How many crayons were there all together? Show your work.

(b)  John bought 12 boxes of crayons. Each box contained 64 crayons. 
How many crayons were there all together? Show your work.
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notice his answer is unreasonable given the factors in the problem. Open area 
model and partial products could be used to help Jesse see the second product 
as 720 rather than 72 and recognize that the answer to 12 × 63 cannot possibly 
be 120, because 12 × 10 is 120. Jesse’s work on the second part of this problem 
would be considered Nonmultiplicative on the OGAP Multiplication Progres-
sion because he is using a procedure incorrectly. More importantly, his use of 
the algorithm is not anchored to conceptual understanding of place value and 
properties of operations.

It may be the case that Jesse was introduced to the traditional US algorithm 
too early, before he developed understanding of place value and multiplica-
tion by multidigit numbers. Students are also apt to make errors if the partial 
products algorithm is taught procedurally, and they need to have solid under-
standing of place value in order to use the procedure effectively. In the example 
shown in Figure 8.8, Jasmine has multiplied 200, 70, and 3 by 6 to find the 
partial products, but has made a place value error in computing 200 × 6 as 
12,000. However, because the place value of the quantities and the steps to the 
procedure are transparent in this algorithm, it is easier for a teacher to identify 
and remedy these errors by making connections back to the open area model.

Figure 8.8 Errors with the partial products algorithm. Jasmine’s work shows a place 
value error.

In sum, both the traditional US algorithm and the partial products algorithm 
can be taught and learned as rote procedures, which make them “highly depen-
dent on memory and subject to deterioration” (Kieren, 1988, p. 178). However, 
if students have developed strong and deep understanding of the operations, 
the properties of multiplication and division, and place value through open area 
models, they are better positioned to understand the meaning behind the steps 
of the standard multiplication and division algorithms and can also appreciate 
the generality these algorithms afford: “Generality is one of the most important 
and powerful characteristics of mathematics” (Bass, 2003, p. 326).
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Algebraic Connections

This generality can be seen in the fact that the partial products algorithm and 
the open area model are related to how one can multiply algebraic expressions 
or polynomials. A polynomial is an algebraic expression consisting of variables 
and coefficients, such as 5x2 + 4x + 7. A polynomial with only two terms, such 
as 6x + 8, is called a binomial. The method for multiplying binomials that many 
people will remember from algebra class relies on the distributive property and 
is sometimes referred to as FOIL for “first, outer, inner, last.” These four terms 
signify the four partial products: For (3x + 8)(2x + 3) one multiplies the first 
terms of each binomial (3x ·2x = 6x2), then the outer terms—first term of 
the first binomial and second term of the second binomial (3x ·3 = 9x), then 
the inner terms— the second term of the first binomial with the first term of the 
second binomial (8 ·2x = 16x), and then finally the last term of each binomial 
(8·3 = 24). The result is 6x2 + 9x + 16x + 24 or 6x2 + 25x + 24. Study the diagram 
in Figure 8.9 which highlights the connections between this method and the 
open area model. If one thinks of a two- digit quantity such as 38 in expanded 
form, as (3 × 10) + 8, the connections to 3x + 8 become apparent.

Figure 8.9 Using the open area model to see connections between whole number and 
binomial multiplication.

In fact, most algebra textbooks use the open area model to explain the mul-
tiplication of polynomials, and many programs have students use area- based 
manipulatives called algebra tiles. Thus, providing students with experiences 
to make sense of the open area model in grades 3–5 for multiplication can 
help them make stronger connections and develop meaning for the algebraic 
manipulations they will use and learn later on in mathematics.

Division Algorithms

The open area model can also be used to develop understanding of the inverse 
relationship between multiplication and division and help students make sense 
of division and division algorithms. (See Chapter 2 for more on the area model 
and Chapter 7 for more on division.) Because division is a missing factor prob-
lem, finding the quotient can be thought about as finding one dimension of a 
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rectangle when the area and the other dimension are known. In Figure 8.10, the 
problem 852 ÷ 6 is shown as a rectangle with area of 852 and one dimension 
of 6. The other dimension is the unknown. In this case, because the product is 
much greater than the dividend of 6, we know we are finding a much longer 
dimension. Building on the open area model to make sense of division can also 
help students make sense of the standard symbol separating the dividend from 
the divisor in the standard division algorithms.

Figure 8.11 Connecting division algorithms with the open area model.

Figure 8.10 Understanding division with the open area model.

The open area model can be used in this way to help students make sense of 
division, but it is important to note that it is not necessarily an effective method 
for students to use to solve division problems. In Figure 8.11, the steps of the 
partial quotients and traditional US long division algorithm can be connected 
to the area model to help students make sense of steps of the algorithms that 
otherwise might seem opaque. This is particularly important in the long divi-
sion algorithm where the place values of the quantities are not represented.
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Figure 8.12 Cary’s response. Cary misuses the traditional US long division algorithm.

The Champlain Music Festival will be held in an area where there is no parking. 
This means that all 2881 participants will have to take a shuttle bus from the 
parking lot to the festival site. If a shuttle bus can transport 67 riders each trip, 
how many trips will it take to get all the participants from the festival site?

As Figure 8.11 illustrates, the partial areas in the open area model are also the 
partial quotients in the partial quotient algorithm. One can think “how many 
6’s are in 852” and begin by taking out 100 groups of 6 because the product of  
6 × 100 = 600. Because 600 is only part of the total area, one then subtracts 
to find that 252 units remain. In the second step, one takes out 40 additional 
groups of 6, or 240. There are then 12 units left, or 2 groups of 6 (step 3).

This is also parallel to the steps of the traditional US long division algorithm, 
but here the quantities are again reduced to single- digit computations (6 × 1, 6 × 4, 
and 6 × 2 rather than 6 × 100, 6 × 40, and 6 × 2). Try the same exercise from 
Table 8.2 with these division algorithms. As you talk through the steps of the 
traditional US long division algorithm, how many times do you say something 
that is not mathematically true (“1 × 6 is 6”) or mathematically vague (“6 goes 
into 8” or “bring down the 5”)?

Now talk through the partial quotients algorithm. What is the difference in 
the language you use in each of these algorithms? Notice that as you talk through 
the partial quotients steps all the statements you make are true, and you are also 
drawing on number sense and estimation. For example, how many 6’s are in 852? 
There are at least 100 because 100 × 6 = 600, and 852 minus 600 equals 252. How 
many 6’s are in 252? At least 40 because 40 × 6 = 240, and 252 minus 240 is 12, so 
there are two more 6’s because 6 × 2 is 12. Every statement is mathematically true 
and maintains the meaning of the quantity (i.e., the base- 10 number system). 
In addition, all the computations involve multiples of 10, 100, etc.

Although the traditional US long division algorithm may seem easier because 
of the reduction to one- digit computations, it can be hard for students to keep 
track of the place value of the quantities, particularly when there are zeros in 
the dividend or when the divisor has multiple digits. In the example shown in 
Figure 8.12, Cary attempts to use the traditional US long division algorithm 
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Figure 8.13 Bianca’s response. Bianca uses the traditional US long division algorithm.

Figure 8.14 Alex’s response. Alex uses the partial quotient algorithm to repeatedly sub-
tract multiples of 10.

to solve a quotative division problem. His miscalculation that 67 × 4 equals 
208 rather than 268 resulted in needing to subtract 67 twice, which he has 
recorded with two 1’s in the quotient, resulting in an unreasonable answer 
of 411. In this case, he seems to be following the steps of the traditional US 
long division algorithm without connecting those steps to an understanding 
of division, or the process of taking out equal groups of 67. He also misin-
terprets the remainder, as there cannot be a fraction of a trip taken. (See 
Chapter 7: Developing Whole Number Division for more on interpreting 
remainders.)

On the other hand, if students are fluent with multiplying by powers of 10 
and multiples of powers of 10 (see Chapter 4), the partial quotients algorithm 
does not require difficult calculations and keeps the place value of the quanti-
ties intact. Compare the following two solutions to the same quotative division 
problem in Figures 8.13 and 8.14.
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In Bianca’s solution in Figure 8.13, it appears she may have multiplied 67 by 
5, then 3, and then finally 4 using the traditional US multiplication algorithm 
in order to find the appropriate product to start with in the first step of the long 
division algorithm. In Figure 8.14 Alex, on the other hand, began with an easy 
product (67 × 10) and then repeatedly took that product out of the quotient. 
An advantage of the partial products algorithm is that students can work with 
products they can calculate mentally if they have a strong foundation in work-
ing with multiples of powers of 10. Note, however, that Alex’s solution involves 
a lot of steps and a lot of subtraction.

Study the two solutions in Figures 8.15 and 8.16. Both students used the 
partial quotients algorithm, but in Figure 8.16 Savannah began with a larger 
product (3 × 80 = 240), making the algorithm more efficient and potentially 
more accurate. Both Alex’s (Figure 8.14) and Nasir’s (Figure 8.15) less effi-
cient approaches are considered Transitional Strategies on the OGAP Division 
Progression.

Figure 8.15 Transitional Strategy. Nasir’s solution shows evidence of inefficient partial 
quotients by repeatedly subtracting multiples of 10.

Tennis balls come in packages of 3. Jordan bought 258 tennis balls. How many 
packages did he buy?
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Helping students develop more efficient strategies is an important part of 
moving from the Transitional to the Multiplicative stage on the OGAP Mul-
tiplication and Division Progressions (see Chapter 2). One way to do this with 
division is to have students brainstorm all the products they can mentally cal-
culate with the divisor in order to find the most efficient partial quotient. In the 
example shown in Figure 8.17, Quadir has created a list, or menu, of products 
of 22 before starting to divide 341 by 22.

Figure 8.16 Multiplicative Strategy. Savannah’s use of the partial quotient algorithm is 
efficient as she starts by taking out the largest multiple of 10 possible.

Figure 8.17 Quadir’s response. Quadir first creates a menu of products of 22 before 
choosing which one to start with for the partial quotients algorithm.

The area of a rectangular garden is 341 square feet. If the length is 22 ft., 
what is the width of the garden?
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These products can be generated easily by using relationships between the 
factors. For example, 22 × 2 and 22 × 10 are easily derived facts from doubling 
and multiplying by powers of 10, respectively. Then 22 × 5 can be derived by 
halving the product of 22 × 10. (22 × 15, 22 × 30, or even 22 × 500 could also 
be easily derived from this list). The menu allows Quadir to take out efficient 
partial quotients of 10 and 5 and solve the problem in fewer steps.

Unlike the traditional US long division algorithm, the partial quotients 
algorithm keeps the place value of the quantities intact, so that students are 
estimating the value of the quotient in the beginning steps. In addition, by 
working with powers of 10 and multiples of powers of 10, the multiplication and 
subtraction calculations are not difficult or cumbersome, often leading to less 
frustration on the part of the student.

Chapter Summary

As the authors of the Number and Operations in Base 10 Progression state, 
“By reasoning repeatedly about the connection between math drawings and 
written numerical work, students can come to see multiplication and division 
algorithms as abbreviations or summaries of their reasoning about quantities” 
(CCSSM writing team, 2015, p. 14). In the OGAP Multiplication and Division 
Progressions, standard algorithms can be found at the Multiplicative level, but 
they should be built upon a strong foundation on and connection to visual 
models in the Transitional level.

This chapter focused on:

• Developing procedural fluency with understanding by connecting 
algorithms to place value, visual models, and properties of operations

• The importance of developing foundations of conceptual under-
standing along with efficiency as student strategies move along the 
progression

• The advantages and disadvantages of different algorithms for ease of 
computation, efficiency, and student learning and understanding of 
multiplication and division

• The danger of introducing standard algorithms, particularly those 
where the quantities are reduced to single- digit computations, before 
developing understanding of place value in multidigit operations

Looking Back

1. Making Sense of Three Methods for Multiplying: Solve the following 
calculation using an open area model, partial products, and the tradi-
tional US algorithm for multiplication.

27 × 38 =

(a) Explain how the partial products algorithm is related to the open 
area model.
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(b) Explain how the traditional US algorithm is related to the open 
area model.

(c) Explain how the open area model and partial products algorithm 
can be used to solve mixed- number multiplication problems such 
as 1½ × 1¼.

(d) Explain how the open area model is related to multiplying alge-
braic expressions like (2x + 3)(3x + 4).

2. Examining the Traditional Algorithm for Division: Study the example 
of the traditional algorithm for division shown in Figure 8.18.

(a) Where in the algorithm is the answer to 3 × 12?

Figure 8.18 An example of the traditional US algorithm for division.

(b) Where in algorithm is the answer to 200 × 12? How do you know?
(c) Use the example to reason about the answer to 270 × 12 and then 

203 × 12.

3. Comparing Student Solutions: Kira’s and Jovan’s solutions to the crayon 
problem are shown in Figures 8.19 and 8.20.

The Crayon Problem

John bought 12 boxes of crayons. Each box contained 64 crayons. 
How many crayons were there all together? Show your work.
Figure 8.19 Kira’s solution.

Figure 8.20 Jovan’s solution.
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(a) Why does Kira’s open area model have only two partial products 
rather than four as one might expect for a two- digit by two- digit 
calculation?

(b) How are Kira’s and Jovan’s solutions alike? How are they different?
(c) What questions could you ask both students to ensure they have 

conceptual understanding of the algorithms they are using?
(d) Imagine you have both Kira and Jovan share their solutions with 

the class. What questions could you ask the class to help them see 
the connections between the two strategies?

4. Analyzing a Student Solution: Ms. Bright brought the student work 
shown in Figure 8.21 to share with her colleagues at a team meeting.

Figure 8.21 Lily’s solution to an area problem.

(a) What is the evidence of developing understanding in Lily’s work?
(b) What issues or concerns are there in Lily’s solution?
(c) Where would this solution fall on the OGAP Multiplication 

Progression?
(d) What instructional strategies or models could Ms. Bright use to 

help address these concerns and help Lily develop strategies based 
on multiplicative reasoning?

5. Analyze Kamal’s Solution to a Pre- Assessment Question: Mr. Johnson 
gave a pre- assessment to his fifth grade class and brought the student 
solution shown in Figure 8.22 to the fifth grade team meeting to discuss.
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(a) What is the evidence of developing understanding in Kamal’s 
work?

(b) Are there any issues or concerns in Kamal’s solution?
(c) Where does Kamal’s solution fall on the OGAP Multiplication 

Progression?
(d) How is Kamal’s solution related to the partial quotients algorithm?
(e) What instructional moves could Mr. Johnson make to help him 

develop more efficient division strategies?

6. Student Responses to a Partial Products Problem: Ms. Jackson’s 
students were working with the open area model to solve multidigit mul-
tiplication problems. She gave the partial products problem as an exit slip 
at the end of a lesson. Study the three student solutions in Figure 8.23 and 
answer questions a–c.

(a) What are the developing understandings evidenced in each 
solution?

(b) What issues or concerns are evidenced in each solution?
(c) What are possible next instructional steps for each student based 

on the evidence in their work on this problem?

Partial Products Problem

Label the four rectangles with the multiplication equations that rep-
resent the partial products model. In the following spaces write and 
solve the equation that matches the model. Show your work.

Figure 8.22 Kamal’s solution to an area division problem.



Figure 8.23 Three student solutions to the partial products problem.

Mona’s Solution

Charlotte’s Solution

Andrew’s Solution
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Instructional Link

Use the following questions to help you think about how your instruction and 
math program provide students opportunities to develop procedural fluency 
with understanding for the algorithms appropriate for your grade level.

• What multiplication and division algorithms are introduced in your 
math program, and when are they introduced?

• Is there sufficient attention to developing understanding of the opera-
tions, foundational place value knowledge, the relationship between 
multiplication and division, and properties of operations before stan-
dard algorithms are introduced?

• Does your program draw explicit connections between algorithms, 
open area models, place value, and properties of operations?

• What are some ways to address any shortcomings or gaps you identi-
fied in your answers to the earlier questions?
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Any teacher of mathematics will tell you students need to have automatic recall 
of single- digit math facts. The debate lies, however, in how to achieve this 
goal. The importance of automaticity with basic facts becomes most compel-
ling when students do not have easy access to them. While students struggle 
to recall facts, the focus of a lesson can be lost and the pace of a lesson may be 
slowed, drawing away from the goals of the lesson (Forbringer & Fahsl, 2009). 
Additionally, researchers indicate:

Basic math facts are considered to be foundational for further advance-
ment of mathematics. They form the foundation for learning multi- digit 
multiplication, fractions, ratios, division, and decimals. Many tasks 
across all domains of mathematics and across many subject areas call 
upon basic multiplication as a lower order of the overall task (Wong & 
Evans, 2007, p. 91).

Clearly learning the basic multiplication and division facts is important. The 
question is how best to support students in gaining automaticity and fluency 
with them. This chapter focuses on what it means to develop fluency and auto-
maticity, strategies that build fluency of the facts through understanding, as 
well as a discussion on targeted and general practice to support the develop-
ment of fluency.

9
Developing Math Fact Fluency

Big Ideas
• Development of concepts and strategies must come prior to drill, 

practice, and memorization of basic math facts.
• Students need multiple experiences developing strategies for 

finding products of basic math facts.
• Mastery of single- digit multiplication facts is critical for supporting 

flexibility and understanding of more complex mathematics 
concepts.
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Let us begin with what we mean by fluency and automaticity. It is generally 
agreed that fluency of basic facts means that students can recall the fact with 
relative ease, often requiring a mental computation to occur. Fluency may not 
be as quick as automaticity, but it results in an accurate and relatively efficient 
response. Automaticity is effortless recall within about 3 seconds (Van de Walle 
et al., 2012 ) without performing any mental computation. Automaticity is syn-
onymous with “know from memory.”

It is important to understand that automaticity is not the same as simply memo-
rizing. Automaticity is reliant on instruction that is initially focused on fluency. 
One reason that memorizing facts is so challenging for students and discouraged 
by both cognitive neuroscientists and math education researchers is that it is not 
reasonable to memorize so many pieces of isolated knowledge. According to the 
cognitive neuroscientist Stanislaw Dehaene (2011), “If our brain fails to retain 
arithmetic facts, that is because the organization of human memory, unlike that of 
a computer, is associative: It weaves multiple links among disparate data” (p. 113).

Strategies such as counting all or adding a series of numbers, which are con-
sidered low- level strategies, to derive an answer to a single- digit math fact is not 
efficient and is prone to errors. Because deriving multiplication facts with low- 
level strategies can be more time consuming than it is for addition facts, it is 
even more imperative that students develop efficient methods that rely on mul-
tiplicative relationships. This idea is the foundation of what is meant by fluency.  
Bill McCallum, one of the authors of the CCSSM, writes:

“[F]luently” refers to how you do a calculation, whereas “know from mem-
ory” means being able to produce the answer when prompted without 
having to do a calculation. In the CCSSM, “fluent” means “fast and accurate.”

April 26, 2012

Developing both fluency and automaticity will be discussed further in this 
chapter.

What Are the Basic Multiplication Facts?

Basic facts are all the possible products of the digits 0 through 9 and the accom-
panying quotients. Often the products of 10 are included in this list because they 
play a key role in understanding multiplication of double- digit numbers and can 
be useful for deriving the “nine facts.” Students should have quick recall of these 
basic multiplication facts. Because division facts can be easily derived when stu-
dents understand the inverse relationship between multiplication and division, 
instruction should focus on developing automaticity with multiplication facts.

For more about the inverse relationship between multiplication and 
division go to Chapter 4: The Role of Concepts and Properties and 

Chapter 7: Developing Whole Number Division.
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CCSSM and Math Facts

The CCSSM expectation states that by the end of grade 3 students will know 
from memory all products of two one- digit numbers. That is, the CCSSM 
expects students to focus on understanding the meaning for, and finding 
products of, single- digit multiplication and related quotients. To know from 
memory is not the same as memorization. Students can come to “know” their 
facts from memory in various ways, not necessarily through memorization. 
Although achieving fluency with single- digit facts is time consuming because 
there are many strategies and relationships that must be developed towards this 
end, it is manageable.

A Manageable Task

One aspect that makes learning multiplication facts so daunting is that students, 
teachers, and parents often think there are an overwhelming number of facts. 
Their perception is these facts are isolated bits of information to be recalled on 
demand and there is a seemingly endless list of them. When the approach to 
learning facts is based on memorization, this is the case; but in truth the task is 
much more manageable. If one considers the math facts from 0–10 then there 
are 121 multiplication math facts to learn. However, by applying the identity 
property of multiplication, the commutative property, and multiplication by 0, 
the number is quickly reduced to fewer than 50 unique math facts.

The commutative property shows us that once we have learned one fact we 
also know the fact partner to that fact (i.e., 3 × 4 is the partner to 4 × 3). Students 
will often discuss the relationship between 3 × 4 and 4 × 3 as the opposite, or the 
flip, of each other. Another common term used in classrooms is turn- around 
facts. Teachers can help link these student- invented phrases with the more pre-
cise language of commutative property in order to expose students to accurate 
math terminology.

Understanding the commutative property allows for the reduction of the 
total number of math facts students need to learn by almost half. For example, 
3 × 4 and 4 × 3 can be considered one multiplication fact. Table 9.1 illustrates 
this idea. Each math fact shaded in gray has a partner fact in the nonshaded 
portion of the chart. This decreases the number of separate combinations 
from 121 to 66.

The multiplication facts where one factor is zero provide another opportunity 
to reduce the total number of math facts that must be learned. Multiplication by 
0 should be discussed as 0 × a = 0, which means 0 groups of a. In using this defi-
nition of multiplication students begin to picture no groups of a number and 
therefore no objects to be accounted for. This is a straightforward set of facts for 
students to recall once students understand the concept behind multiplication 
by zero. Removing facts that have 0 as a factor (the first row of Table 9.1) further 
reduces the number of math facts to be learned to 55.
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The identity property of multiplication helps to illustrate multiplication by 
one; 1 × a = a, or a × 1 = a. Simply stated, the multiplicative identity property 
says that any time you multiply a number by 1, the product is that original 
number. Because students easily learn these facts, we can decrease the overall 
count by 10 (the second row of Table 9.1), leaving a total of 45 facts to develop 
with fluency and automaticity.

For an in- depth discussion of the commutative and identity prop-
erties of multiplication go to Chapter 4: The Role of Concepts and 

Properties.

Helping students see that there is a finite list of multiplication math facts 
to learn can decrease anxiety and frustration related to recall of math facts. 
Because 45 basic math facts remain to be learned with automaticity, we must 
consider how to accomplish this goal with a focus on sense making, reasoning, 
and relationships.

What Does It Mean to Know Your Basic Math Facts?

In the past, mastery of math facts was taught as drill and practice. Students 
were expected to memorize the basic multiplication facts, with teachers using 
a series of timed tests to both monitor students’ progress and provide prac-
tice. This strategy of employing timed tests has been linked to math anxiety 
and to students turning away from mathematics (Boaler, 2015). Instruction 
focused on memorization and the use of drill alone is not the best way to help 

Table 9.1  Multiplication math fact table. The shaded section indicates the facts under-
stood through the commutative property.
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students become flexible thinkers of mathematics (Cook & Dossey, 1982; 
NRC, 2001). However, effective practice as a follow- up to instruction that 
highlights reasoning and strategies can strengthen memory and retrieval for 
many children.

Today it is generally agreed that learning math facts is a developmental 
process with instruction initially focused on building the concept of multipli-
cation, then moving to fluency, or deriving facts through reasoning strategies, 
and ultimately to automaticity, or quick recall of the facts. There is evidence that 
learning math facts using strategies leads to higher accuracy and better transfer 
to unfamiliar math facts (Delazer et al., 2005; Kamii, 1994). It also builds strat-
egies that can be relied upon as students work with larger numbers, as well as 
estimation for multiplication and division.

Building a Foundation on Conceptual Understanding

Throughout this book we have written about the important skills and concepts 
that a student must understand in order to be a strong multiplicative reasoner. 
We have emphasized the importance of focusing initial instruction on building 
an understanding of the many- to- one relationship, unitizing, and using visual 
models to represent multiplication situations. This is equally true for the devel-
opment of fluency and automaticity of math facts. Understanding is the first 
step toward math fact acquisition, but it is not sufficient for assuring automatic-
ity with the multiplication facts. Indeed, researchers indicate that learning basic 
math facts takes time, and focusing on memorization prior to students having 
enough experiences with developing strategies for deriving basic facts can have 
a negative impact on both the students’ conceptual understanding and number 
sense (Van de Walle et al., 2012).

One should not expect students to memorize math facts until they have 
had multiple experiences with multiplication and division, both in and out of 
context and with the use of concrete models. The next section is focused on 
describing and illustrating strategies for deriving math facts that are focused on 
developing fluency.

Using Properties of Operations and Reasoning Strategies to Build Fluency

Properties of operations and visual models can be used to build conceptual under-
standing and fluency with multiplication facts. Instruction should be focused on 
developing understanding by creating a network of relationships that build on 
each other and can then be leveraged towards automaticity (e.g., Baroody, 1999).

The OGAP Multiplication Progression can be used to help develop 
fluency and automaticity with math facts just as it is used to 
develop multidigit multiplication and division understanding 

and fluency. In particular, fluency can be built by drawing on the strategies at the  
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Transitional and Multiplicative levels. Reasoning strategies provide students 
with tools to move from knowing very few multiplication facts by memory to 
deriving facts with relative ease.

Notice that in the Additive level, strategies are reliant on adding or counting 
all. Although this is often where initial instruction related to multiplication will 
begin, these strategies will not provide students with fluency for deriving mul-
tiplication facts. Relying too long on additive strategies can result in challenges 
of efficiency and accuracy for many students as they encounter more complex 
problems, as evidenced in Figure 9.1. The evidence in Milo’s work shows that 
instead of easy access to the math fact 6 × 7 when using the traditional US algo-
rithm he used repeated addition and building up.

Figure 9.1 Milo’s response. Milo uses the traditional US algorithm to find the answer to 
273 × 6 but has to use addition to find 6 × 7.

At the Transitional level you will notice that students use a variety of 
strategies such as skip counting. The use of skip counting begins in many 
kindergarten classrooms, particularly for the factors 2, 5, and 10. Students 
become familiar with the rhythm and order of these series of numbers. This 
knowledge can be built upon to strengthen understanding of math facts for 
multiplication. The link between skip counting and multiplication depends 
on whether or not students have mental images of the accumulating compos-
ite units (2 cookies to a package) with the correct quantity and the correct 
number name, as shown in Figure 9.2. This figure illustrates the connections 
between the mental image of the number of objects (cookies), the skip count-
ing pattern with the accumulating composite units, and the multiplication 
math fact 4 × 2 = 8 

Figure 9.2 An illustration of the skip counting pattern representing 4 × 2 = 8.
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The use of skip counting based on an understanding of accumulating units 
can help students recall the basic multiplication facts for 2’s, 5’s and 10’s with 
relative ease.

Another strategy evident in the Transitional level is the use of area and open 
area models. A student’s ability to sketch area and open area models to make sense 
of multiplication and derive math facts is invaluable. Remember, in the context of 
area, all math facts create a rectangle. That is, the two factors are represented by 
the dimensions of the two sides of a rectangle, and the product is represented 
by the area of the same rectangle. Thus 3 × 6 is represented by a rectangle with side 
lengths or dimensions of 3 and 6, as shown in Figure 9.3. As students are developing 
strategies to make sense of basic multiplication facts, area models are particularly 
useful in helping them create mental images of the factors and products.

Figure 9.3 Ryan’s response. Ryan sketched an area model for finding the product of 3 × 6.

Knowledge and use of the distributive, associative, and commutative proper-
ties is at the Multiplicative level of the progression. Having flexible use of area 
and open area models and an understanding of properties of operations pro-
vides students with the skills and knowledge to derive unknown math facts and 
move toward fluency and automaticity. Figure 9.4 is an example of how students 
can use known facts, open area models, and understanding of properties of 
operations to derive unknown facts. Both examples in Figure 9.4 illustrate the 
use of the “known five facts” along with a flexible understanding of the distribu-
tive property. We can think of a known fact as an anchor fact. Anchor facts can 
be used to derive other facts. In the example on the left in Figure 9.4 the anchor 
fact of 6 × 5 is used to derive the product of 6 × 8.

Figure 9.4 Examples of possible open area models for deriving the math fact 6 × 8 = 48.
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Notice that the drawings of 6 x 8 represent the relative proportionality of 
the dimensions, resulting in partial areas that also represent their relative mag-
nitude, helping students make sense of the math facts they are working with. 
Keeping one dimension stable and distributing across the other dimension 
when using open area models for developing fluency with math facts makes 
this a flexible strategy.

Ultimately the goal is for students to understand the properties and relation-
ships well enough to derive facts without needing to sketch an area model to 
see what is happening. So a student who does not know the product of 6 and 
8 could think, 5 × 8 = 40 and I still need to find 1 × 8 to get the answer to 6 × 
8. This kind of flexible strategy relies on students having multiple experiences 
drawing area models and explicit instruction linking understanding of models 
and properties to deriving unknown math facts. Research indicates that stu-
dent achievement of single- digit math facts improves with practice only after 
students have had many opportunities to build understanding of math facts 
through experiences with fluency strategies (Carnine & Stein, 1981; Cook & 
Dossey, 1982; Rathmell, 1978).

All of the 45 remaining math facts can be derived using a combination 
of the strategies, including using known facts, visualizing area and open 
area models, and an understanding of the distributive and associative 
properties of multiplication. A number of other relationships and strate-
gies can make some facts easier than others to remember. One example 
is doubling.

Students’ knowledge of doubles facts in addition can be used to build the 
idea of multiplication because knowing that multiplying by 2 is the same as add-
ing two of the same number allows students to tie new knowledge, multiplying 
by 2, to previous knowledge, adding the same number (e.g., 6 + 6 = 2 × 6 ). This 
idea is important and allows students to extend their understanding to unknown 
situations of multiplying by 2 (Baroody, 1999). Doubling, or multiplying by 2, 
can also be applied to facts that involve multiplication by 4. For example, 4 × 8 
can be thought of as (2 × 8) doubled, or (2 × 8) + (2 × 8). Generally, doubles are 
easy for children to learn and remember.

Table 9.2 summarizes the strategies and properties that were discussed in 
this chapter to help students build fluency that can lead to automaticity. As 
students have meaningful experiences using these strategies, they become more 
fluent and approach automaticity with their math facts. In addition, using prop-
erties of operations in this way provides multiple interactions and a deeper 
understanding of those properties, which play such a key role in multiplicative 
reasoning for years to come.
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From Fluency to Automaticity

As indicated at the beginning of the chapter, quick recall of basic math facts 
for multiplication is critical for a student’s future success in mathematics. Once 
students understand and can use fluency strategies, as discussed earlier, it 
becomes important for them to practice math facts so they become automatic.

We will discuss two different kinds of fact practice, which we will refer to as 
targeted and general practice. Targeted practice is an opportunity to practice 
those facts identified as not automatic or fluent for a specific student. General 
practice is for ongoing exposure and practice with all multiplication facts. Both 
kinds of practice are important and are discussed in detail next. Practice should 

Table 9.2 Math fact strategies and properties discussed in this chapter.

Strategy Used to Derive Examples

Commutative property Turn- around facts 6 × 7 = 7 × 6

The identity property 
of multiplication

All facts with 1 as a factor 6 × 1 = 6
1 × 6 = 6

Doubling Facts with an even number 
as one of the factors

6 × 2 = 6 + 6
6 × 4 = (6 × 2) × 2

Skip counting Facts in which a skip 
counting pattern of one of 
the factors is known

6 × 5 = 30
5, 10, 15, 20, 25, 30

Area model Any fact by making a sketch 
using an understanding of 
the relationship between the 
dimensions and area of a 
rectangle with the ability to 
see and count all the squares

Open area model Any fact by making a sketch 
based on an understanding 
of the relationship between 
dimensions and area 
of a rectangle and the 
distributive property.

Distributive property 
and anchor facts

Any fact by using a known 
or anchor fact and the 
distributive property

6 × 9 = (5 × 9) + (1 × 9)
5 × 9 is the anchor fact

Inverse relationship 
between multiplication 
and division

Division facts 54 ÷ 6 = ?
6 × ? = 54
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occur daily while students are trying to develop fluency and automaticity with 
math facts. Alternating between targeted and general fact practice on a daily 
basis provides a variety of practice and promotes student engagement. The time 
needed for mastery of facts can vary greatly from student to student.

Practicing for Automaticity

It is important to remember that practice or drill for automaticity is only effec-
tive as a follow- up to the fluency work done through a focus on strategies and 
reasoning. Because the work done on fluency strategies builds on relationships 
between the math facts, it goes without saying that practicing for quick recall 
should give opportunity for students to practice a mixed set of facts.

Targeted Fact Practice

Targeted practice can be thought of as strategic practice because it is focused on 
building fluency with the specific facts a student does not know. The first task 
of setting up targeted fact practice is to identify the math facts students know 
and do not know. Strategies for gathering this information about the students in 
your classroom might include using responses from group discussions, paper- 
and- pencil activities, and individual interviews. This information is essential 
for the teacher because future instruction should be guided by students’ prior 
knowledge of specific math facts. Discussed next find two targeted strategies: 
math fact interviews and flash cards.

Math Fact Interviews: One way to gather information is to interview a stu-
dent using a set of flashcards with no replications. For example, the teacher 
would remove the 4 × 6 card and leave the 6 × 4 card in the set. Have a student 
sit across from you and show them each card, sorting them into three piles 
as they give an answer: 1) knows automatically (within 3 seconds), 2) fluent 
(derives within 3 to 5 seconds), and 3) does not know. For those facts students 
know automatically or within 3 seconds without calculating, put them in the 
“knows automatically” pile. For those facts they have a strategy that allows them 
to derive the fact with relative ease and efficiency (within 3 to 5 seconds), place 
them in the “fluent” pile, and for those facts that do not go in either of these 
piles put them in a third pile we will call “does not know.” The cards in the “does 
not know” pile will be those facts most difficult for the student to learn because 
they do not have an efficient strategy to derive the fact.

Once all the cards are in piles use a chart like the one in Figure 9.5 to indicate 
the student’s knowledge of the multiplication facts. In Figure 9.5 the teacher 
crossed out the facts Sofia knew automatically, circled the facts she had a fluent 
strategy for, and left the facts blank Sofia did not know. As you can see, Sofia 
has a fluent strategy for 12 facts. The goal will be for her to practice those facts 
to move them from her fluent pile to her automatic pile. The teacher will help 
Sofia develop strategies for each fact she does not presently know so they can 
be moved into the fluent pile for practice.
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Figure 9.6 Sofia’s sample flash card for 6 × 6. Sofia can construct a visual “clue” to help 
derive the math fact. On the back side of the flash card would be the product.

When students have free time in class they can practice with their set of 
personalized flash cards. At a designated period two to three times a week they 
should practice with a partner with the goal of moving towards automaticity. 
Although students may have a number of facts they need to practice, limiting 
the set of cards to no more than 10 will focus attention on a smaller, more man-
ageable set of facts. The others can be attended to at a later time. The facts they 
practice should be a combination of those facts from the student’s “fluent” pile 
and their “do not know” pile in order to vary the difficulty of the set.

Figure 9.5 Math fact information for Sofia.

Flash Cards: A familiar strategy is the use of flashcards to help with targeted 
fact practice. When students are trying to move from fluent to automatic, they 
can write the fact on one side and the product on the other side. For those facts 
that are in the “do not know” pile students can create visual model clues on 
the flashcards as one way to bridge from not knowing a fact at all to getting a 
clue and not just turning the card over to get the answer. They can fall back on 
known facts and an understanding of area models and properties of operations 
to decide what the best strategy or clue is for them to derive unknown facts. 
Figure 9.6 is an illustration of what the front of a flash card might look like if the 
student is trying to develop a strategy for deriving the fact 6 × 6.
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General Fact Practice

General fact practice should be part of the regular experience for students as 
they acquire basic math facts. The purpose of general fact practice is to give 
students repeated exposure and practice with all math facts in a variety of 
situations. Math games are one way to encourage and vary practice of multi-
plication facts. A simple search for multiplication math games on the Internet 
will result in a long list of resources to choose from. A number of books have 
also been published containing a wide variety of games and activities for fact 
practice. Many math curriculum materials contain games for practicing math 
facts and incorporate the games into lessons for regular repeated practice. In 
addition, there are many apps for practicing math facts and free interactive 
games that can be accessed online. One website that has a number of good 
interactive games is NCTM Illuminations (https://illuminations.nctm.org). 
This site is managed and maintained by the National Council of Teachers of 
Mathematics.

Helping at Home

Practicing math facts is an important way we can involve parents and caregivers 
in their child’s learning. But short of drilling math facts using either flash cards 
or worksheets, parents are often unsure how to support their child in learning 
their math facts. The more clarity we can provide about which facts their child 
needs to practice, the more likely it is they will see the job as doable. One way a 
teacher can accomplish this is to send home a chart like the one in Figure 9.5. 
Sharing with parents this level of detail about their child’s math fact knowledge 
can be very beneficial as it provides a finite set of facts for them to focus on. 
It also acknowledges that their child knows some facts already and is a much 
clearer message than making a general statement to a parent that their child 
“needs to practice their math facts.” The point here is not to assign drill and 
practice for homework, but rather to make some practical suggestions for par-
ents to keep the focus on learning the facts using strategies that decrease undue 
stress and anxiety.

Parents can supplement the games and targeted practice students are experi-
encing at school with a kind of effortless fact practice at home. You can suggest 
that parents post facts their child needs to become automatic with around the 
house in places the student sees often. For example 8 × 7 = 56 can be written on 
a sheet of paper in large print and posted on the ceiling above their bed. Every 
time the child goes to bed they can look up and see both the fact and the answer. 
Posting the complete equation helps them to remember the math fact.

As you have seen, development of fluency and automaticity with math facts 
takes a multifaceted approach that incorporates development of fluency using 
strategies that develop understanding and then the implementation of targeted 
and general practice to achieve the goal of automaticity.

https://illuminations.nctm.org
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Chapter Summary

• Understanding is the first step in automaticity with math facts, but it 
doesn’t necessarily lead to knowing the facts. Understanding should 
be followed up with explicit instruction focused on building strategies 
based on properties of operations and number relationships and then 
practice for automatic recall.

• Learning basic math facts takes time; focusing on memorization prior 
to having enough experiences with developing strategies for deriving 
basic facts can have a negative impact on both the students’ conceptual 
understanding and number sense.

• It is important to remember that practice or drill for automaticity is 
only effective as a follow- up to the fluency work done through a focus 
on strategies and reasoning.

• Helping students derive unknown facts using known facts, area and 
open area models, and an understanding of properties of operations 
can enhance students’ acquisition of math facts.

• There are two kinds of fact practice: targeted and general. Both are 
important in accomplishing the goal of automaticity with basic facts.

Looking Back

1. The Commutative Property and Number Combinations in Multipli-
cation: A working understanding of the commutative property reduces 
the number of individual combinations a student has to learn.

(a) Explain why this is so.

(b) In what ways is 5 × 4 and 4 × 5 the “same” in:
• An area model?
• An equal groups model?

(c) In what mathematical situations can one apply the commutative 
property? In what cases is the commutative property not applicable?

2. Skip Counting and Number Combinations:

(a) Which number combinations might be first learned through skip 
counting?

(b) How is skip counting different from knowing a multiplication “fact”? 
What does this suggest for instruction that supports building num-
ber combinations on skip counting?

(c) How is skip counting by 4’s related to skip counting by 2’s? What 
other numbers besides 4 and 2 have this same relationship? How 
might one use these relationships to support students’ learning num-
ber relationships?
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3. Strategies for Learning Specific Number Combinations: Learning the 
7’s number combinations can be difficult for some students. Using ideas 
from this chapter identify strategies that one can use to assist learning the 
combinations for the 7’s.

7 × 1 7 × 6
7 × 2 7 × 7
7 × 3 7 × 8
7 × 4 7 × 9
7 × 5 7 × 10

4. The Relationship Between Multiplication and Division: A solution to 
a division problem that is based on the relationship between multiplica-
tion and division is considered a Multiplicative Strategy. This relationship 
between multiplication and division can also help students learn the mul-
tiplication and division combinations together, rather than as separate 
and unconnected facts. List some ways students can connect the multi-
plication and division combinations for the expression 9 × 6.

Instructional Link

Use the following questions to analyze how your instruction and math program 
help students learn the basic multiplication number combinations. Consider 
the math program materials for previous grades if your grade- level materials 
do not specifically address basic multiplication number combinations.

• Is the instruction students receive related to number combinations pri-
marily based on memorization or on strategies?

• Are there sufficient opportunities for students to develop strate-
gies based on the commutative property, doubling, the relationship 
between multiplication and division, skip counting, and the relation-
ship between multiplication and other operations?

• Does your program provide tools or suggestions for determining 
which number combinations students know and do not know?

• List ways you might include ideas from this chapter to address any 
shortcomings in your math program or in your instruction.
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