


 

   
 

 

  

 

A Focus on Fractions 

The third edition of this book offers a unique approach to making mathematics education 
research on the teaching and learning of fraction concepts readily accessible and understandable 
to pre-service and in-service K-8 mathematics teachers. 

Revealing students’ thought processes with extensive annotated samples of student work and 
vignettes characteristic of classroom teachers’ experience, this book provides teachers a research-
based lens to interpret evidence of student thinking, inform instruction and ultimately improve 
student learning. Based on research gathered in the Ongoing Assessment Project (OGAP), and 
updated throughout, this engaging and easy-to-use resource also features: 

•	 Two new chapters dedicated to understanding the OGAP Fraction Framework and 
Progression—based on research conducted with hundreds of teachers—to gather and 
interpret evidence of student learning along a learning progression, referenced throughout 
the book so readers can apply the concepts to their instruction; 

•	 A close focus on student work, including 180+ annotated pieces of student work, to help 
teachers improve their ability to recognize, assess, and monitor their students’ errors and 
misconceptions, as well as their developing conceptual understanding; 

•	 A discussion of decimal fractions, also new to the third edition; 
•	 In-chapter sections on how Common Core State Standards for Math (CCSSM) are 

supported by math education research; 
•	 End-of-chapter Looking Back questions to allow teachers to analyze student thinking and 

consider instructional strategies for their own students; 
•	 Instructional links to help teachers relate concepts from each chapter to their own 

instructional materials and programs; 
•	 Accompanying online Support Material includes an answer key to Looking Back questions, 

as well as a copy of the OGAP Fraction Framework and Progression. 

A Focus on Fractions is part of the popular A Focus on .  .  . collection, designed to aid the 
professional development of pre-service and in-service mathematics teachers. As with the other 
volumes on addition and subtraction, ratios and proportions, and multiplication and division, 
this updated new edition bridges the gap between what math education researchers know and 
what teachers need to know in order to better understand evidence in student work and make 
effective instructional decisions. 

Marjorie M. Petit has provided leadership in the development and ongoing implementation of the 
Ongoing Assessment Project (OGAP) and is a partner in OGAPMath LLC. 

Robert E. Laird is Co-director of Teaching, Learning, and Research for the Vermont Mathemat-
ics Institute (VMI), USA. Bob is a OGAP National Facilitator and a partner in OGAPMath LLC. 

Caroline B. Ebby is Senior Researcher at the Consortium for Policy Research in Education 
(CPRE) and Adjunct Associate Professor at the Graduate School of Education at the University of 
Pennsylvania, USA. Caroline is a National OGAP Facilitator. 

Edwin L. Marsden was Professor of Mathematics and Former Chair of the Department of Math-
ematics at Norwich University, USA. 
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Preface 

A Focus on Fractions: Bringing Mathematics Education Research to 
the Classroom 

The first edition of A Focus on Fractions: Bringing Research to the Classroom, published in 2010, 
was written to communicate important mathematics education research about how students 
develop an understanding of fraction concepts, common errors students make, and preconcep-
tions or misconceptions that can interfere with students learning new fraction concepts and 
solving problems. The book grew out of the Ongoing Assessment Project (OGAP), a successful 
formative assessment project based on mathematics education research related to the teaching 
and learning of fractions. 

In the 11 years since the publication of the first edition, there have been several developments 
that have influenced this latest revision: 

•	 Knowledge about research-based learning progressions and the importance of using 
them to guide instructional decision-making and instructional materials has continued 
to proliferate in the field of mathematics education. 

•	 In the US, standards and instructional resources have been developed to reflect current 
research on student learning, resulting in a more coherent curricular progression for 
teaching and learning fractions in K-8 schools. 

•	 Readers have asked for more explicit emphasis on the OGAP Fraction Progression, unit 
fraction reasoning, discussion of decimals, and connections between equivalence and 
comparing and ordering fractions. 

Response to the second edition of A Focus on Fractions, published in 2016, continues to be enthu-
siastic. In particular, readers have found the authentic student work samples and the clear link 
between mathematics education research and classroom instruction to be invaluable in support-
ing effective fraction instruction and thoughtful analysis of evidence in student solutions. 

In addition, readers have found that the content of A Focus on Fractions fosters: 

•	 more effective instruction, particularly in the way that new topics are introduced to stu-
dents 

•	 a clearer understanding of the purpose of activities in mathematics programs, thus maxi-
mizing the instructional potential of these instruction materials; and 

•	 a deeper understanding of fraction concepts 

A Focus on Fractions: Bringing Research to the Classroom, Tird Edition 
This third edition of A Focus on Fractions maintains many of the core features of the previous 
editions that have been so well received: a focus on fraction content knowledge, mathematics 
education research, hundreds of samples of student work, a focus on developing understanding, 
questioning to monitor and support student understanding, connections to the Common Core 
State Standards in Mathematics (CCSSM), and examples of ways curricular materials reflect the 
research. 

ix 
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You will notice, however, that the order of the existing chapters has changed and there are some 
additional chapters. The first four chapters now focus on the concepts that are foundational to 
understanding fractions and rational numbers: understanding fractions as numbers, the use of 
visual models, understanding fractions in relation to the whole, and equipartitioning.

The OGAP Fraction Framework and the OGAP Fraction Progression are introduced in Chapter 5, 
which also includes a copy of the progression that can be referenced throughout the rest of the 
book and when applying the ideas in this book to your instruction. Note: The OGAP Fraction 
Progression with additional student work examples can be found online at: www.routledge.
com/9781138816442

Chapter 6 is a new chapter devoted to using the OGAP formative assessment system to inform 
instruction. The chapter includes a framework for thinking about levels of instructional responses 
and selecting specific instructional strategies based on evidence of student thinking. These different 
instructional responses are explored through case studies in subsequent chapters. Some case studies 
appear in the Looking Back sections as opportunities to practice using the progression to analyze 
student work (Chapter 7, 8), and some are integrated into the discussion of the content in the chapter 
(Chapter 9, 11, and 12).

Chapters 7, 8, and 9 now include discussion of the relationships between fractions and decimals, 
both mathematically and in terms of developing conceptual understanding of the equivalence 
between fractions and decimals, comparing and ordering decimals, and extending the base-ten 
number system. These chapters include illustrations of how students use their understanding of 
the foundational concepts explored in Chapters 1 through 4 to develop understanding of decimals 
as well as fractions.

Even though we believe these additions are important and improve the quality of A Focus on 
Fractions, we do not want them to detract from what we believe to be the heart and soul of our 
work: communicating to teachers the mathematics education research related to the teaching and 
learning of fractions, coupled with a sharp focus on student work analysis. A Focus on Fractions: 
Bringing Research to the Classroom, Third Edition remains a book primarily dedicated to under-
standing how students make sense of fraction concepts and how teachers can use mathematics 
education research to improve the learning of fractions for all of students.

Since the publication of the first edition of A Focus on Fractions in 2010, three additional books 
have been published on additive, multiplicative, and proportional reasoning, creating a complete 
series that provides a comprehensive roadmap for developing mathematical reasoning in grades 
K-8. These core content areas build on each other to create mathematical proficiency. Additive 
reasoning lays the foundation for multiplicative reasoning; multiplicative reasoning lays the foun-
dation for fractions; fractional reasoning lays the foundation for proportional reasoning; and all 
of these are important for algebraic reasoning in the secondary school years

http://www.routledge.com/9781138816442
http://www.routledge.com/9781138816442
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Over the last decade, learning progressions, or learning trajectories as they are often called 
in mathematics education research, have had an influence on current mathematics standards, 
instructional models, and curriculum and assessment materials (Daro et al., 2011; Lobato & 
Walters, 2017; Sztajn et al., 2012). The use of learning progressions in professional development 
and classroom instruction has also been found to impact teacher learning, instructional prac-
tice, and student learning (Carpenter et al., 1989; Clements et al., 2011; Clements et al., 2013; 
Edgington, 2012; Supovitz et al., 2021). A recent study of the implementation of the OGAP forma-
tive assessment system in multiplication and fractions in grades 3–5 showed significant impacts 
on teacher knowledge and student performance in a large urban school district (Supovitz et al., 
2018, 2021).

A Book Designed for Classroom Teachers, In-Service Use,  
and Pre-Service Training

Like the first two editions, the third edition of A Focus on Fractions: Bringing Research to the 
Classroom is first and foremost for classroom and pre-service teachers. The case studies used 
throughout the book are based on real issues teachers face as they search for ways to teach frac-
tion skills and concepts to all students. The student work samples, the Instructional Link sections, 
and the Looking Back sections provide teachers with rich opportunities to analyze student think-
ing, to consider instructional strategies for their own students, and to link important concepts 
with their own instructional textbooks and materials. Groups of math teachers from the same 
school, teachers involved in fraction professional development, and grade-level teaching teams 
have told us that working together with ideas presented in Instructional Links and Looking Back 
sections are particularly powerful. Answers to the Looking Back questions can be found at www.
routledge.com/9781138816442.

Instructors working with pre-service teachers will find the numerous samples of student work 
to be valuable in bringing authentic student thinking into pre-service class discussions. In addi-
tion, pre-service teachers will be introduced to important educational research related to fractions, 
and they will be provided with many opportunities to “see” the research in authentic student work, 
discuss research with peers, and consider the important instructional decisions central to effective 
mathematics teaching,

Bridging the Gap between Researchers and Practitioners

We have found that educators are hungry for the mathematics education research described in 
this book regarding how students develop understanding of fraction concepts. Teachers are often 
amazed at how readily the evidence in their students’ work aligns with the findings in the research. 
A Focus on Fractions: Bringing Research to the Classroom, Third Edition, like its predecessors, is 
a bridge between what mathematics education researchers have discovered about the learning 
of fraction concepts and the knowledge teachers need to make effective instructional decisions.

Note: The sections throughout this book focused on the CCSSM are based on CCSSM 
(CCSSO/NGA, 2010) and the CCSSM Progressions (Common Core Standards Writing Team, 
2013a, 2013b).

http://www.routledge.com/9781138816442
http://www.routledge.com/9781138816442
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1 7The sum of and is closest to
12 8 

A. 20 
B. 8 

1C. 
2 

D. 1 

Explain your answer. 

 

1 
Understanding a Fraction 

as a Number 

Big Ideas 

•	 Like whole numbers, fractions are numbers, each with a specific magnitude. 
•	 Fractions are a natural extension of whole numbers. 
•	 Fractions are composed of unit fractions. 
•	 Students often use inappropriate whole number reasoning when solving 

problems involving fractions. 
•	 Instruction matters. Teachers can utilize specific strategies to address inappro-

priate whole number reasoning. 

You may wonder why this book starts with a concept that seems obvious; of course, fractions are 
numbers. However, research has shown that difficulties students have with fractions often stem 
from the fact that they do not always understand fractions as numbers. Students might see 3  as a 4 

63 
8 

3
3 and 4, not a number between 0 and 1. You may have seen students add fractions by simply add-
ing numerators and denominators, for example 4 + =  . Why do you think they would do that? 12 
Teachers may react to these issues by reteaching the definition of numerators and denominators 
or common denominators louder and slower. What is really going on here? Study the problem 
and student work by a fifth-grade student in Figure 1.1. What surprises you about this work? 
What evidence suggests that the student does not understand a fraction as a number? 

Figure 1.1 Student accurately added the fractions then used the magnitude of the denominator or 
numerator in the sum to determine that 23  is closest to 20. 

24 

A teacher would probably be pleased that the student accurately used a common denominator 
to calculate the correct sum but alarmed that the student did not interpret the fraction 23  as 
closest to 1. As you work through this and other chapters in this book you will be introduced 

DOI: 10.4324/9781003185475-1 

24
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to mathematics education research and content focused on how to help students build a strong 
foundational understanding of fractions as numbers as they compare and order fractions, find 
equivalent fractions, and operate with fractions. 

Research has long supported the notion that many students have difficulties learning and 
applying fraction concepts and skills. Even in countries where student achievement in fractions 
is relatively high, such as Japan and China, fractions is considered a difficult topic to both learn 
and teach (NCTM, 2007). There are several reasons for this, many or which will be discussed 
throughout this book, yet a common difficulty for students and teachers is the fact that certain 
truths for whole numbers do not hold for fractions (Fazio & Siegler, 2011). For example, experi-
ence with whole numbers falsely supports the idea that multiplication always “makes larger” and 
division always “makes smaller.” 

Fractions have historically been taught as a way to represent a part of a whole. For example, to 
illustrate 3  students might partition a rectangle into 4 subsections of equal area and shade 3 of 4 
the sections as shown in Figure 1.2. They might even describe this representation as, “3 out of 4.” 
Although an important interpretation, a fraction as a part of a whole does not communicate the 
vital idea that a fraction is a number with a specific magnitude. Siegler et al. (2010) indicated that 
instruction focused solely on part-whole relationships when introducing fractions may “leave 
unclear how fractions are related to whole numbers” (p. 19). A rich understanding of a fraction 
as a number is foundational to the notion that fractions, like whole numbers, can be represented 
on a number line, can be compared, can be added and subtracted, and can be multiplied and 
divided. 

Figure 1.2  The fraction 3  interpreted as a part of a whole and as a number. 
4

Fractions are natural extensions of whole numbers, and like whole numbers they are composed 
of units. The next two sections discuss these concepts. 

Fractions as a Natural Extension of Whole Numbers 

Building a foundation for understanding that fractions are numbers involves understanding that 
fractions have magnitude just as whole numbers have magnitude. While textbooks may contain 
many different definitions of fractions (e.g., part to whole, fractions as quotients), Wu (2010) sug-
gests that using the definition of a fraction as a point on a number line allows one to visualize the 
magnitude of both whole numbers and fractions relative to each other as well as understand that 
fractions are a “natural extension of the whole numbers” (p. 136). Figure 1.3 shows the position 
of 5  relative to the whole numbers 0 to 5, but also shows that 5  is 1  greater than 1. 4 4 4 
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Figure 1.3  The fraction 5  is a point on a number line. 4 

Fractions are Composed of Unit Fractions 

Whole numbers are composed of the units that make up our base-ten number system: ones, tens, 
hundreds, thousands and so on. Five hundred, for example, is made of 500 units of magnitude 1, 
50 units of magnitude 10, and 5 units of magnitude 100. This process of composing the number 
500 through the iteration of a 100 unit is illustrated in the number line model in Figure 1.4. 

Figure 1.4  The number 500 represented on a number line by iteration of the 100 unit. 

This interpretation of the number 500 in Figure 1.4 communicates several important ideas: 

•	 The magnitude of 500 can be represented on a number line using units of 100. 
•	 500 can be interpreted additively as 100 + 100 + 100 + 100 + 100. 
•	 500 can be interpreted multiplicatively as 5 × 100. 
•	 Whether interpreted additively or multiplicatively, 500 can be defined as, “5 one hun-

dreds” or “5 iterations of one hundred.” 

The idea that whole numbers are composed by iterating units is an important concept as it 
allows one to work with numbers flexibly by decomposing a number into its foundational units. 
Many calculations apply this concept (e.g., 420 + 340 = 400 + 300 + 20+ 40 = 760). 

Fractions are composed by iterating unit fractions. Unit fractions, each with a numerator of 1 
1 1 1such as 1

2 , 3 , 10 , are the building blocks of all fractions that allow one to decompose fractions 12 
into their unit parts which, as we will see in the examples throughout this book, can provide stu-
dents valuable strategies for comparing and ordering fractions, finding equivalent fractions, and 
operating with fractions. Figure 1.5 shows how the fraction 5  can be composed by iterating the 4 
unit 1

4  five times. 

Figure 1.5  The fraction 5  can be located on a number line by iterating the 1  unit 5 times. 4 4 
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Just like the number 500, the number 5 :4 

•	 has magnitude that can be represented on a number line, 
•	 can be interpreted additively 1 

4 + + + + , 
1•	 can be interpreted multiplicatively as 5× , and 4 

•	 can be defined as, “Five one-fourths” or “Five iterations of one-fourth.” 

This concept that a fraction is composed of units that can be represented on a number line supports 
the important understanding that a fraction, like all numbers, has magnitude and is composed of 

4 

concepts related to comparing fractions. 

unique to fractions and whole numbers. For example: 

1 
4 

•	 0.05 is created by iterating the unit 0.01 five times. 

1 
4 

•	 5x is created by iterating the unit x five times 

1 
4 

1units. For example, “5 pieces of size ” suggests size just like “5 pieces of size 1000” or “5 pieces of 
magnitude 1.” We will see in subsequent chapters how this interpretation of fractions supports the 

It is interesting to note that the concept of numbers being created by iterating units is not 

•	 5( +1) is created by iterating the unit ( +1) five times. x x 

Finally, the similarities in the ways numbers and expressions are created and defined extend to the
way one speaks about a number in the English language. The first word or syllable spoken is generally
the number of iterations and the second word is the size of the unit. Table 1.1 provides a few examples

Table 1.1 Examples of Units and Iterations in the Way We Commonly Speak About Numbers in the 

1 
4 

English Language 

Number Number Spoken Interpreted Through the Lens of Units 
and Iterations 

1600 “Sixteen hundred” • Sixteen: number of iterations 
• Hundred: size of the unit 

7 
8

“seven-eighths” • Seven: number of iterations 
• Eighths: size of the unit 

0.008 “8 one-thousandths” • Eight: number of iterations 
• One-thousandths: size of the unit 

5 (x + 10) “Five times x plus 10” • Five: number of iterations 
• x plus 10: size of the unit 

Thus, even the language we use to communicate fractions supports the idea that fractions are num-
bers constructed from units, just like whole numbers, decimal fractions, and algebraic expressions. 

Mathematics education researchers support the use of number lines to build an understanding that 
fractions are numbers with specific magnitudes just like whole numbers have magnitude (Behr & 
Post, 1992; Saxe et al., 2007). As a matter of fact, teachers in OGAP studies found that number lines 
facilitated students’ understanding of fractions as numbers, allowing them to order and compare 
fractions and find equivalent fractions (OGAP, 2005, 2007) and move away from whole number rea-
soning. Chapter 9: Number Lines provides an in-depth discussion of the use of number lines. 

Because of the foundational role unit fractions play in the understanding of fractions 
as numbers, it is not surprising that the Common Core State Standards for Mathe-

matics (CCSSM) places considerable emphasis, particularly in grades 3 and 4, on unit fractions 
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and their vital role in understanding fractions. There are a number of standards in these grades 
that emphasize unit fractions. The two standards that follow are specific to the concepts we exam-
ined in this section: 

Grade 3 

Developing understanding of fractions as numbers. 

3 NF.2b Understand a fraction as a number on a number line; represent fractions on a num-
ber line diagram. 

•	 Represent fraction ab  on a number line diagram by marking of a lengths of 1 
b  from 0. 

Recognize that the resulting interval has size ab  and that its endpoint locates the number 
a 
b  on the number line. 

Grade 4 

Build fractions from unit fractions by applying and extending previous understandings 
of operations with whole numbers 

4.NF.3 Understand a fraction ab  with a > 1  as a sum of fractions 1 
b 

4.NF.4a Apply and extend previous understandings of multiplication to multiply a fraction 
by a whole number. 

4.NF.4b Understand a fraction ab  as a multiple of 1 
b . 

The remainder of this chapter focuses on student work samples and discussion that provide 
the basis for understanding the importance of seeing fractions as numbers. The student work 
illustrates some common errors and misconceptions that arise when students have an incom-
plete understanding of fractions as numbers. This chapter also provides a brief introduction 
to instructional strategies that address common errors and misconceptions and that support 
students understanding of fractions as numbers. These instructional strategies will be examined 
in depth throughout the book. 

Inappropriate Whole Number Reasoning 

How do many students understand this number? 

3 
4 

As we examined in the previous pages some students may interpret 3 as “three out of four,” yet 4 
according to research, some students see a fraction as composed of two whole numbers, in this 
case 3 and 4. This interpretation often results in students inappropriately applying whole number 
reasoning to fraction situations instead of reasoning with a fraction as a single quantity (Behr 
et al., 1984; OGAP, 2005; Saxe et al., 1999). We refer to this inappropriate interpretation of a frac-
tion as inappropriate whole number reasoning. 

Inappropriate whole number reasoning often results in students making errors when they: 

•	 locate fractions on a number line 
•	 compare fractions 
•	 identify fractional parts of wholes 
•	 estimate the magnitude of fractions 
•	 operate with fractions 
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There are some candies in a dish. 

2  of the candies are chocolate
5 
3  of the candies are peppermint

10 

Are there more chocolate or peppermint candies in the dish? 

5Circle of the suns.
8 

Many teachers in the 2005 and 2007 OGAP studies were surprised at how readily their students 
applied inappropriate whole number reasoning to many aspects of fractions. In fact, a prelimi-

39nary analysis of a sample of 39 OGAP fourth grade pre-assessments ( ) illustrates this point. 229 
137About 44% ( ) of all incorrect responses analyzed on the 39 OGAP pre-assessments sampled 308 

were attributed to the use of inappropriate whole number reasoning (OGAP, 2005). 
These teachers found that some students focused on just the numerators or on just the denomi-

nators of the fraction when comparing fractions, finding the sums or differences of fractions, or 
finding a fractional part of a whole. Figures 1.6 to 1.9 provide some examples of the ways in which 
inappropriate whole number reasoning is evidenced in student work. 

Figure 1.6 Inappropriate whole number reasoning example: used the magnitude of the denominator 
to locate the fractions on the number line. 

Figure 1.7 Inappropriate whole number reasoning example: used the magnitude of the numerators 
and the denominators to compare the fractions. 

Figure 1.8 Inappropriate whole number reasoning example: circled the number of suns equal to the 
sum of the numerator and denominator (13 suns), not 5  of the suns (10 suns). 8 
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1 7The sum of and is closest to
12 8 

A. 20 
B. 8 

1C. 
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D. 1 

Explain your answer. 

 
 
 
 
 

 
 

 
 
 
 

 
 
 
 

 

 

 
 
 
 

Figure 1.9 Inappropriate whole number reasoning example: added numerators and denominators to 
find the sum. 

The student work from the pre-assessments for the 2005 and 2007 OGAP studies, which 
contained solutions like the examples in Figures 1.6–1.9, provided teachers with compelling 
evidence that many students were not thinking about fractions as quantities, rather seeing 
them as composed of two whole numbers. As you can see, this impacted the ways students 
solved fraction problems. What was not clear was whether the inappropriate whole number 
reasoning was an artifact of previous instruction on fractions or was a result of students incor-
rectly generalizing their understanding of whole numbers to fractions. In either case, teachers 
in the studies had critical information to use as they prepared and implemented their fraction 
instruction. 

To help students understand fractions as numbers, these teachers placed a greater emphasis on 
comparing and ordering fractions and on the use of number lines. These instructional decisions 
are backed by current research-based recommendations supporting the use of the number lines, 
beginning in the early grades, to help students develop an understanding of fractions as numbers 
(CCSSO/NGA, 2010; Siegler et al., 2010). 

Teachers in the OGAP studies also recognized that instruction might have unintentionally 
reinforced inappropriate whole number reasoning. An example of this is providing students with 
opportunities to only solve problems involving finding the fractional part of a whole in which 
the number of objects in a set or the number of parts that make up the whole in an area is equal 
to the denominator of the fraction given (OGAP, 2005). 

What do you notice about the answer to the following three tasks in which the number of items 
in the set is equal to the denominator? 

3•	  of 4 children is 3 children 4 
2•	 of 5 pounds is 2 pounds 5 
3•	 of 8 hours is 3 hours 8 

You undoubtedly recognized that the answer to these types of tasks is equal to the numerator 
of the fraction in the problem. Consistent use of only tasks like these may inadvertently support 
students focusing on one part of a fraction, in this case the numerator. This can unintentionally 
reinforce inappropriate whole number reasoning 

This observation made by teachers points out the importance of students having experience, 
even in the early grades, of physically partitioning sets of objects or areas in which the number of 
objects or parts in the whole is a multiple of the denominator. The Dinosaur problem in Figure 1.10 
is an example of this type of fraction task. To solve tasks structured in this way students need to use 
fractional reasoning to reflect on the relationship between the numerator and the denominator. 
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How many dinosaurs is 1 of a set of six dinosaurs?
3 

Figure 1.10 Young students can physically divide sets of objects into equal groups to find a fractional 
part of a set of objects. Later, they can transition this understanding to paper-and-pencil tasks. 

As we examined earlier in the chapter, instruction that overemphasizes fractions as part– 
whole relationships and using language such as “3 out of 4” can be problematic and inadvertently 
encourage students’ inappropriate whole number reasoning when working with fractions. The 
use of multiple visual models, particularly area models such as the example in Figure 1.11 and 
number lines as shown in Figure 1.12, can help students internalize the concept that the fraction 
2 , for example, is composed of 2 pieces each of size 1  (or 2 one-thirds) rather than 2 out of 3 equal 3 3 
parts. 

Figure 1.11 Two-thirds represented as 2 one-thirds of the area of the rectangle. The entire rectangle 
is composed of 3 one-thirds. 

Figure 1.12 Two-thirds represented as 2 one-thirds on a number line. 

See Chapter 8, Comparing and Ordering, and Chapter 9, Number Lines, for more informa-
tion on using number lines and comparing and ordering fractions. 

Chapter Summary 

Understanding a fraction as a number with a specific magnitude is foundational to students’ 
work with fraction equivalence, comparing and ordering fractions, and operations. Like whole 
numbers, fractions are built from or composed of units. To emphasize the importance of this 
interpretation of a fraction, one of the lead writers of the CCSSM states, “The ultimate underlying 
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principle you want kids to understand is that fractions are numbers. They’re new, but they’re not 
in a different galaxy” (McCallum as cited in Loewus, 2014). 

Understanding the role that unit fractions play in building and describing fractions is cen-
tral to students seeing them as numbers not simply as parts out of a whole. Inappropriate 
whole number reasoning is a common misconception for students and can be inadvertently 
reinforced by instruction that is not first and foremost focused on presenting fractions as 
numbers. 

Although the preponderance of inappropriate whole number reasoning was overwhelm-
ing to teachers in the 2005 and 2007 OGAP pre-assessment, they too realized that it was not 
inevitable. Data from the OGAP study (2005) supported these observations. In the post-assess-

27ments, 18% ( ) of errors were attributed to the use of inappropriate whole number reasoning 152 
137compared to 44% ( ) in the pre-assessment (see Table 1.2). It was obvious their instruction 308 

mattered. 

Table 1.2 OGAP 2005 Study—Use of Inappropriate Whole Number Reasoning in OGAP Grade 4 Pre- 
and Post-Assessments (OGAP, 2005) 

Percentage Percentage Average number errors attributed 
of students of incorrect to inappropriate whole number 
(n = 39) responses reasoning (only students who 

made error are included) 

Pre-assessment 85% (33/39) 44% (137/308) 4.1 (33 students) 
Post-assessment 18% (7/39) 18% (27/152) 1.8 (7 students) 

Further results from the 2005 and 2007 OGAP studies indicated that teachers utilized specific 
instructional actions to address the inappropriate whole number reasoning students were apply-
ing to their work with fractions. Their instruction intentionally and systematically focused on 
three major strategies: 

•	 seeing fractions as numbers, 
•	 the use of visual models, particularly number lines, 
•	 comparing and ordering fractions. 

Chapter 2 provides a detailed discussion of visual models central to fraction instruction, stu-
dent use of visual models, and why they are an essential part of effective fraction instruction. 
Chapter 8 offers a close look at the foundational concepts related to comparing and ordering 
fractions, and Chapter 9 examines the vital role number lines play in students’ development of 
fraction concepts and skills. 

Looking Back 

1. Figures 1.13 and 1.14 show Michael’s pre- and post-assessment solutions. Review both 
responses, and answer the following questions. 

a. What evidence in Michael’s pre-assessment response suggests that Michael inappro-
priately used whole number reasoning when placing 1  and 1  on the number line? 3 4 

b. What was Michael able to do on the post-assessment that was not shown in his 
response on the pre-assessment? 
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 Figure 1.15 Mark’s response. 

  
 
 

c. Michael’s post-assessment response is diferent from his pre-assessment response. 
What is one instructional focus that might have helped Michael to move from 
inappropriate use of whole number reasoning to treating each fraction as a single 
quantity? 

Figure 1.13 Michael’s pre-assessment response to placing 1  and 1  on a number line from 0 to 1. 3 4 

Figure 1.14 Michael’s post-assessment response to the same question related to placing 1  and 1  on a 3 4 
number line from 0 to 1. 

2. Figures 1.15 and 1.16 include Mark’s and Kim’s responses to a question about the 
magnitude of a fraction. Both responses include visual models generated by the students. 
Consider their responses and answer the following questions. 
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Figure 1.16  Kim’s response. 

 
 

 

 

The sum of 1  and 7  is closest to
12 8 

A. 20 
B. 8 

1C. 
2 

D. 1 

D. 1 

Explain your answer. 

a.  What is the evidence in Mark’s response that leads one to believe that his ability to 
compare 3

5  to a benchmark fraction is developing, but is still fragile and easily desta-
bilized? Explain. 

b.  What is the evidence that Kim is using fractional reasoning? Explain. 

3.  Review Kim’s solution one more time. Kim included carefully drawn and accurate area 
models for 1

2  and  3 
5 . To what extent did Kim’s explanation require these area models? 

4.  Review the evidence in Willy’s response found in Figure 1.17 and answer the questions 
that follow. 

a.  What is the evidence in Willy’s response that he had sound fractional reasoning? 
b.  If Willy had the time to rewrite his response, how might his sentence be rewritten to 

clarify what you think Willy had in mind? 
c.  Do you think that Willy decided that the sum “is just going to be a little less than 1” 

without computing the sum? If he didn’t add the fractions, what reasoning do you 
think Willy used to decide that the sum “is just going to be a little less than 1”? 

Figure 1.17  Willy’s response. 
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5. The idea that numbers are created from units is a major idea in this chapter. For example, 
we saw that 500 can be interpreted as 100+100+100+100+100. By reinterpreting this 
expression we can also see 500 equals: 

•	 100 + 400 or 100 + (100 + 100 + 100 + 100) 
•	 200 + 300 or (100 + 100) + (100 + 100 + 100) 
•	 400 + 100 or (100 + 100 +100 +100) + 100 
•	 100 + 400 or (100 + 100 + 100) + (100 + 100) 

a. Apply this same idea to the fraction 5  by generating addition expressions. 8 
b. What properties are at work in your examples and the ones for 500 in the question? 

How might these diferent additive interpretations for c. 5 
8  be important for students? 

Instructional Link: Your Turn 

We suspect that some of the students in your classroom inappropriately apply whole number 
reasoning while solving problems involving fractions. However, this inappropriate use of whole 
number reasoning can be greatly reduced. If the students experience a coherent instructional pro-
gram that focuses on fractions as single quantities, the students can move away from inappropriate 
use of whole number reasoning. To help you think about your instruction and the mathematics 
materials that you use, complete Table 1.3. 

Table 1.3 Instructional Link—Strategies to Support Development of Reasoning With Fractions as 
Quantities 

Do you (or does your program) Yes/No 

1. Encourage students to use a variety of visual models in all aspects of developing 
fraction understanding? 

2. Provide opportunities for students to locate fractions on number lines with more 
than one unit? (See Chapter 6.) 

3. Provide exercises that compare fractions to benchmarks and to each other? 
(See Chapter 5.) 

4. Provide opportunities for students to make estimates of sums, differences, products, 
and quotients? (See Chapters 9 and 10.) 

5. Have a focus on reasoning with fractions as single quantities when operating with 
fractions, not just a focus on procedures? (See Chapters 9 and 10.) 

6. Provide the opportunity for students, even in the early grades, to find the fractional 
parts of the whole where the number of parts in the whole is a factor or multiple of 
the denominator? 

Based on the responses to these questions, what gaps in your instruction or mathematics pro-
gram did you identify? How might you address these gaps? 
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2 
Developing Understanding of Fractions 

Through Visual Models 

Big Ideas 

•	 Set, area, and number line models represent fractions in different ways and 
present students with unique challenges and understandings. 

•	 Instruction should provide students with rich opportunities to interact with 
visual models that have different perceptual features. 

•	 The use of visual models is a means to the mathematics, not the end. 
•	 Teachers should build instruction on student-generated visual models to 

help students generalize mathematical ideas. 

Most mathematics instructional materials, including commercial textbooks and programs, include 
the use of visual models in lessons and activities. In addition, you also may have noticed the con-
sistent mention of “visual fraction models” in the CCSSM. Many teachers were not exposed to 
the intentional and systematic use of visual models in their own learning of mathematics. For this 
reason and others, it is common for mathematics teachers to have questions about the role of visual 
models in effective mathematics instruction. Common questions include: 

•	 What is the purpose of using visual models in mathematics instruction? 
•	 My math program uses one type of visual model. Is that OK or should I expose my stu-

dents to different visual models? 
•	 Is there one best way to use visual models in instruction? For example, I am uncertain 

when and how my students should use the fraction strips they make at the beginning of 
the fraction unit. 

•	 Why can my students successfully shade 3  of an area model and the next day struggle to 4 
locate 3  on a number line or find 3  of a set of objects? 

4 4 
•	 My sixth-grade students often use visual models to compare fractions. Is that OK or 

should they be able to use more efficient and abstract methods for this? 
•	 My math textbook provides visual models for students to use and interpret but do not ask 

students to create their own visual models. Is this OK? 

This chapter begins to address these questions as well as other issues related to the effective use 
of visual models in fraction instruction. Subsequent chapters will deepen these ideas and discuss 
how the use of visual models can help students develop understanding of specific mathematics 
concepts related to comparing and ordering fractions, finding equivalent fractions, and operating 
with fractions. 

DOI: 10.4324/9781003185475-2 

https://doi.org/10.4324/9781003185475-2
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Mathematical Representations and Visual Models 

Research identifies five types of mathematical representations as illustrated in Figure 2.1: visual, 
physical, symbolic, contextual, and verbal. 

Figure 2.1 Five types of mathematical representations and the important connections among them. 
Source: (Adapted from Leinwand, 2014) 

The intentional use of a variety of mathematical representations is one aspect of effective math-
ematics instruction. Of particular importance to student learning is making connections among 
different representations and noticing how the different representations of a mathematical con-
cept are alike and different (Hattie et al., 2016). For example, as students construct visual models, 
they connect the visual model with the symbolic representation of the fraction they are represent-
ing. In fact, representing mathematical concepts and procedures in multiple ways and focusing 
on the relationships among these representations can help students become better mathematical 
problem solvers and develop deeper understanding of mathematical concepts (Fuson et al., 2005). 

The vignette that follows, as well as the message that “visual models are the means to the math-
ematics, not the end,” sets the stage for understanding the importance of using visual models to 
help students build an understanding of fraction concepts. While addressing some of the teacher 
questions about using visual models, the vignette also illustrates the fine balance needed in using 
visual models to develop understandings without developing an overreliance on their use. 

A Case Study—When Visual Models Are Used Like Calculators 
Mr. Smith is a fourth-grade teacher who has been using the same mathematics program 
for the past fve years. Te program teaches fraction concepts through the use of only one 
visual model: the circle model. As a part of the instruction guided by this program, students 
make circle models representing halves, thirds, fourths, ffhs, sixths, sevenths, through four-
teenths, which are put on display and used in all aspects of the unit. Mr. Smith has always 
been comfortable with using only circle models for fraction instruction. 
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Tis past year, Mr. Smith participated in the Ongoing Assessment Project Study. He no-
ticed that the OGAP questions did not always use the circle model, but instead included a 
variety of area models, number lines, set models, and visual models involving manipulatives 
such as pattern blocks and geoboards. However, because he was familiar with using the circle 
model, he charged ahead. 

Midway through the unit, he gave the students a question that involved comparing 3  and 
77 . Te students asked if they could use their circle models on display to answer the question. 8 

Mr. Smith said they could if they needed to, but he was hoping that they would not feel the 
need to use them. 

Mr. Smith was very disappointed with what happened and was beginning to question the 
decision to only use circle models. With the exception of three students, all the students felt 
that they could not compare the fractions without the use of the visual models on the wall. 
He was hoping that his students would be able to visualize and justify 7  as greater than 3 us-8 7 
ing student-drawn visual models or justifcations based on the benchmark 1

2 . 
He thought that these fractions ofered students a relatively easy comparison. However, 

instead of the visual models helping his students to internalize (generalize) the ideas behind 
the concepts, he realized that his students were using the premade circle models as the only 
way to compare fractions, in the same way that students sometimes inappropriately use cal-
culators as the only way to make calculations. 

It may be that Mr. Smith’s reliance on one type of visual model limited his students’ abili-
ties to make the important conceptual leaps he intended. He was not sure. Mr. Smith realized 
that he needed to learn more about how to use visual models in his instruction and why 
using diferent visual models could help his students internalize and generalize important 
mathematical ideas. 

This vignette paints a picture of a classroom in which only one type of visual model (fraction 
circles) was used and in which students relied on the visual models they made at the beginning of 
the unit as if they were reaching for a calculator to do a simple calculation. It may be possible that 
the students could compare these fractions without the premade visual models, but it was becoming 
clear to Mr. Smith that his students’ use of visual models was not necessarily helping them internalize 
fraction concepts in the ways he intended. 

According to research, Mr. Smith inadvertently made two mistakes in his use of fraction circles 
that may have led to his students not internalizing the concepts he intended to develop: 

1. His students used the fraction circles in a “rote” way, not tied to the mathematical ideas that 
are embodied in the fraction circles (Clements, 1999). This led to their dependence on the 
circles to compare fractions. 

2. He used only one visual model, while research suggests that learning is facilitated when stu-
dents interact with multiple visual models that differ in perceptual features causing students to 
continuously rethink and ultimately generalize the concept (Dienes, cited in Post & Reys, 1979). 

Visual models should be used as a way to understand and generalize mathematical ideas— 
visual models are a means to the mathematics, not the end (Clements, 1999; Post, 1981). 

Physical Representations: Manipulatives 

Physical representations or concrete models, commonly called manipulatives, are tangible objects 
that can be tactilely examined, sorted, counted, and grouped to represent a mathematical situation 
or concept. Physical representations can be everyday objects such as a collection of pennies or a jar 
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of dried beans, or they can be manipulatives designed specifically for use in mathematics instruction 
such as Unifix Cubes, Cuisenaire Rods or Base-10 Blocks. Research suggests that while math manip-
ulatives can be a valuable tool in mathematics instruction, their use alone does not automatically 
lead to student learning (Baroody, cited in Clements, 1999; Fennema, cited in Clements, 1999). It is 
the job of the teacher to help students connect the manipulative to a more generalizable and abstract 
mathematical understanding (Furner & Worrell, 2017). More specifically, it is the shared context 
that is developed around the manipulative that is most important—the ways in which students 
work, talk, and interact with the material towards a mathematical purpose—for “the manipulative 
itself cannot on its own carry the intended meanings and uses” (Ball, 1992, p. 18). 

To maximize the impact of using manipulatives to build concepts, researchers suggest that 
teachers: 

•	 Guard against using manipulatives in a rote manner (as Mr. Smith did with the fraction 
circles), and 

•	 Make clear connections to the mathematical ideas embodied in the manipulative and do 
not “assume that the concepts can automatically be read off the manipulative” (Clements, 
1999, p. 46). 

Visual Models 

Visual models, in particular student constructed visual models, are especially important in both 
the teaching and learning of mathematics because they help students deepen their understanding 
of concepts and procedures, more clearly make sense of problem situations, and support more 
impactful discourse (Stylianou & Silver, 2004). Student-constructed visual models (sketches, 
drawings, or diagrams) allow students to bring their own meaning to their developing math-
ematical understandings and contemplate foundational aspects of mathematical concepts. For 
example, when constructing visual fraction models, students may have to consider aspects such 
as the size of the whole and how to equally partition the model into equal shares. With manipula-
tives, some of these decisions are made for the student. To illustrate this point, examine the visual 
model Jessie constructed to order four fractions in Figure 2.2. 

7 7Figure 2.2 Jessie constructed this visual model to order 7
3 , 5 , , and 12

7  from least to greatest. 6 

Jessie had to consider the size (i.e., length) of each whole represented in this model and equi-
partition the whole into 3rds, 5ths, 6ths, and 12ths. Thus, Jessie’s visual model provides evidence 
of her developing understandings related to comparing and ordering fractions that can help 
inform her teacher’s next instructional steps. 

In general, instruction that includes ongoing opportunities for students to construct visual mod-
els, as well as interact with preconstructed visual models, not only supports student learning, but 
also can provide the teacher invaluable formative information that can inform future instructional 
decisions. You will interact with many examples of student constructed visual models throughout 
this book, where you will be asked to make sense of the student constructed model, identify devel-
oping student understandings based on the model, identify common errors or misconceptions that 
future instruction should address, and identify some possible next instructional steps. 
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There are three general categories of visual models that students interact with, use to solve 
problems, and use to generalize concepts related to fractions: area models, set models, and num-
ber lines. In the sections that follow, each of these types of visual models is examined in detail. 
Understanding the features of these visual models can help teachers better support students’ use 
and construction of visual models. 

Area Models 

Area models that students typically interact with in mathematics programs and other instruc-
tional materials include objects or drawings such as grids, geoboards, folded paper, and pattern 
blocks. These visual models use the context of area or region to communicate a fraction. In the 
area model in Figure 2.3, the shaded region covers 1  of the area of the entire rectangle. Thus, this 2 
is an area interpretation of the fraction 1

2 . 

Figure 2.3   Area model representing the fraction 1
2 
.

It is important to note that the key feature of area models is the area of the parts, not the shape 
of the parts. The parts need to have the equal areas, but do not need to be congruent. This idea is 
illustrated in Figure 2.4. 

Figure 2.4 The fraction 1  represented in equal areas of different shapes. 
4 

Both Parts A and B have the same area even though they look quite different and are different 
shapes. Each represents the fraction 1  because they cover 1  of the large square. Students need 4 4 
rich opportunities to work with area models that are partitioned into different shapes in order to 
develop understanding of this concept. 
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Set Models 

Interpretation of a set model involves considering the fractional part of a set of countable objects. 
Sets students typically interact with in mathematics programs and instruction include collections 
of discrete objects such as buttons, candies, counters, marbles. An egg carton model could also be 
used as a set model since each cup can be counted individually. 

Representing a fraction in a set model is based on the definition of what is in the set, the num-
ber of items in the entire set and the number of items in the parts of a set. Figure 2.5 illustrates 
this feature of set models. 

1Figure 2.5 A set model representing the fraction 1
3  as  of the number of shapes.3 

The visual cue for the fraction 1 in a set model is that the number of objects in the part is one-3 
third of the number of objects in the entire set. Thus, a set model focuses on the count and not 
on other features of the objects in the set, such as color or size. As with the attribute of shape in 
an area model, this feature of a visual set model can be confusing for some students. Figure 2.6 
provides an example of this idea. 

Figure 2.6 Attributes such as size or color are not considerations in a visual set model. 
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One-third of the set of stars is circled despite the varying sizes and colors of the objects in 
the set and in the part. A set model is concerned solely with the number of objects. In this way 

1thinking about fractions as “fair shares” is not accurate because someone receiving the  share 3 
indicated earlier would receive the largest objects in the set. A more accurate description for a set 
model would be that equivalent fractions in a set have an equal count. 

The way the items in the set are organized on the page can impact the difficulty of engaging 
with a set model. The use of physical objects such as counters allows students to move and group 
the items in the set, which may be easier for most students than interacting with a visual set model 
such as the one in  Figure 2.6 . 

Haphazard Arrangement and Arrays 

The visual set model in  Figure 2.6  is an example of a set in which the objects are arranged haphaz-
ardly. This arrangement may make it more difficult for students to partition the objects into three 
equal groups to make thirds. The haphazard nature of the set may make counting more difficult 
as students need a method to make sure they count every object once without double counting. 
This arrangement provides no visual groupings to help one more easily see thirds. We contrast 
this with set models in which the objects are organized into an array. 

Figure 2.7  provides three different ways one can arrange a set of objects in an array. For each 
example, identify the ways in which the arrangement impacts the way in which a student may 
address the task. 

  Figure 2.7   Three examples of sets of objects arranged in an array. 

Example A: Circle 1  of the buttons in the picture. Example B: Circle 3 of the apples in the picture. 
4 5



  

Example C: Circle 2
3

 of the caps in the picture 
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In Example A, the fourths are grouped by the columns. Each column contains one-fourth of 
the buttons in the set. Notice that in Example B the fifths are grouped in the rows. Each row of 3 
apples is one-fifth of the apples in the set. Thus, three of the rows or 9 apples is three-fifths of the 
set. These two arrangements remind us that in an array, each row and each column represent a 
particular fraction of the whole set. Students should have plenty of opportunities identifying the 
fractional values of rows and columns in a variety of arrays. 

Example A introduces us to another potential source of confusion for students. That is, one-
fourth of the buttons is 3 buttons not 4 buttons. A common error in this type of set arrangement 
is for students to see each row as one-fourth because there are 4 buttons in each row. 

Example C provides students a different challenge because the thirds are not represented in a 
row or a column. In this case, each column represents one-sixth of the caps in the set and each row 
represents one-half of the caps in the set. Students need a different strategy than considering the 
number of objects in a row or a column. This example involves partitioning the set into 3 groups 
each with the same number of objects. One possible solution is shown in Figure 2.8. 

Circle 3
2  of the caps in the picture 

Figure 2.8   Sample solution for finding 2
3 
 of a 2 by 6 array of objects. 

Composite Sets 

A composite set is comprised of subgroups or objects that are grouped together. An example of a 
composite set is shown in Figure 2.9. 
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Figure 2.9   Sample composite set. 

One case of soda grouped in six-packs. 

Notice there is more than one unit in this composite set. There is a case of soda, six-packs of 
soda and individual sodas. One could also include half of a case as another unit. This feature 
allows for questions such as: 

•	 Two sodas are what fraction of a six-pack? 
•	 Three sodas are what fraction of a case? 
•	 How many six-packs in half a case of soda? 
•	 Three six-packs are what fraction of a case? 

Visual and physical set models can provide students rich opportunities to develop fraction under-
standing in the context of collections of objects. One can change the perceptual features of a set 
model by varying the ways the objects in the set are arranged. 

Number Lines 

Making sense of a number line model involves reasoning about linear distance and the location 
of a point on a number line, ruler, or other linear measurement tool. Some examples of number 
lines are pictured in Figure 2.10. 

Figure 2.10   Examples of number lines. 

Number lines are different from area and set models for several reasons, starting with the defi-
nition of the whole or the unit. In a set model the whole is the number of objects in the set. In an 
area model, the whole is the area of a given region. So, what is the whole in a number line? 



  

 
 

  
  

 
 

 

  

  

  Figure 2.13 Whole numbers represented in area and set models, and on a number line. 
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Figure 2.11 What is the whole on a number line? 

The whole on a number line is defined by the distance from 0 to 1 as shown in Figure 2.11. This 
concept impacts the meaning of a fraction on a number line. For example, one can think of 3 as

4 
a line beginning at 0 with a length that is 3

4  of the distance from 0 to 1, as shown in Figure 2.12. 
One might determine this length by partitioning the whole into fourths and drawing a line with 
a length equal to “three one-fourths.” Using this concept, the number 11  is defined by a line that 2 
begins at 0 with a length that is 11  times the distance from 0 to 1. 2 

Figure 2.12 Using length to define the numbers 3 
4
 and 11 

2 
 on number line. 

Another feature that makes a number line different than an area or set model is the way it 
represents the whole numbers 1, 2, 3 etc. The whole numbers are continuous on a number line 
but separated or distinct in area or set models. See Figure 2.13. 

This feature of a number line allows numbers greater and less than 1 to be represented more 
clearly than on the other two models Because of this, the relative magnitude of numbers is a cen-
tral visual feature of a number line. For example, one can clearly see that 2 is closer to 1 than it is 
to 4. If we label the halves on this number line, 1 , 11 , 21 , one can see that 21  is halfway between 2 2 2 2 2 
and 3 or that 11

2 is closer to 1 than it is to 4. 
Lastly, of the three visual models discussed in this chapter, the number line is the only one 

whose meaning requires integrating a visual component (the line) with numbers. One can only 



  

 
 
 
 

 

 

  

Shade 3  of the fgure. 8 

Developing Understanding of Fractions • 23 

place a number on a number line or identify the value of a point on a number line if two other 
numbers are provided. The number lines in Figure 2.14 makes this point. 

Figure 2.14 Interpreting a number on a number line requires integrating the line with numbers. 

In number line A, point M could represent any number as no benchmarks are provided. In 
number line B we know that point M is less than 3 but we do not know how much less. The inclu-
sion of two numbers, 2 and 3 in number line C now provides us the needed information to con-
fidently estimate that point M represents 21. As mentioned earlier, notice that identifying a point 2 
or placing a number on a number line requires reasoning about magnitude and how one number 
or point relates to the numbers given on a number line. 

Because of the continuous nature of number lines, the integration of a physical feature (the 
line) with numbers, and other attributes, number lines play a vital role in students’ development 
of fraction concepts and skills. Chapter 9: Number Lines and Fractions provides a closer, more 
detailed examination of number lines and the teaching and learning of fraction concepts. 

Number of Parts in the Whole 

How the number of parts or objects in the whole relates to the magnitude of the denominator 
is another feature that needs to be considered when students solve problems involving visual 
models. Research shows that it is easier for students to find the fractional part of the whole 
when the number of parts in the whole is equal to the magnitude of the denominator, than 
when the number of parts in the whole is a multiple or factor of the magnitude of the denomi-
nator. The most difficult case is when the number of parts in the whole is a multiple of the 
denominator (Bezuk & Bieck, 1993). 

Figures 2.15, 2.16, 2.17, and 2.18 provide examples of the relationship of the number of parts 
in the whole to the denominator. 

Figure 2.15 The number of parts in the whole is equal to the magnitude of the denominator: There are 
eight parts in the whole and the denominator is 8. 
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Shade 3  of the figure. 8 

Teachers found that students had the most difficult time finding the fractional part of a region 
when the number of parts in the whole was a multiple of the denominator, and the number of 
rows and columns were not equal to the denominator. The area model in Figure 2.16 is an exam-
ple of this (OGAP, 2005). Note that the area has been partitioned into 16 equal parts which is a 
multiple of the denominator 8, and the length of each side of the square is 4, which is a factor of 
the denominator 8. 

Figure 2.16 The number of parts in the whole is a multiple of the denominator: There are 16 parts in 
the whole, which is a multiple of the denominator 8. 

Finding 3 of a figure in which the number of parts in the whole is a multiple of the denominator 8 
1(Figure 2.16) requires the understanding that 3 = 3( ). This understanding results in the whole 8 8 

figure being equipartitioned into eight equal parts regardless of the number parts in the whole or 
in each part. Compare the solutions to this problem shown in Figure 2.17 

1Figure 2.17 Dyson used the understanding that 3 = 3( ) by partitioning the whole into eighths and 8 8 
1shading 3( ) of the figure. Kim used the magnitude of the numerator and shaded 3 parts. 8 

To find the fractional part of a whole when the number of parts in the whole is a factor of the 
denominator requires repartitioning the figure. In the case of the problem shown in Figure 2.18, 
this means repartitioning the rectangle into eighths. 



  

 

 
 
 

 

  

 

Shade 3 of the figure. 8 
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Figure 2.18 The number of parts in the whole is a factor of the denominator. The whole is divided into 
two parts, which is a factor of 8. 

For more about partitioning see Chapter 3, What Is the Whole? and Chapter 4, Equipar-
titioning. To explore the concept of the relationship between the number of parts in the 
whole to the magnitude of the denominator, answer questions 1, 2, and 3 in the Looking 

Back section at the end of this chapter. 

Summary: Features of Set, Area, and Number Line Models 

As we have seen, set, area, and number line models represent fractions in different ways, present-
ing students with unique challenges and understandings. We can generalize these differences by 
thinking about how each model represents these features of a fraction: 

1. How the whole is defined. 
2. How “equal parts” are defined. 
3. What the fraction indicates. 

Visual models differ in the challenges they present to students (Hunting, cited in Bezuk & 
Bieck, 1993; OGAP, 2005, 2007; Zawojewski, personal communication, November, 2005). Why 
visual models differ in the challenges they present and why it is important for students to encoun-
ter the three types of visual models are related, in part, to three aspects of visual models for 
fractions. 

Table 2.1 Summarizes how the features of visual area models, sets of objects, and number lines 
differ. 

Table 2.1 Features of the Visual Models 

Visual Model The Whole “Equal parts” 
Are Defined by: 

What the Fraction Indicates 

Area model 

Set model 

Number line 

Determined by the area 
of a defined region 
Determined by the 
number of objects 
the set 
Length of the “unit”: its 
distance from zero 

Equal area 

Equal number 
of objects 

Equal distance 

The area of the identified part in 
relation to the entire area 
The number of objects in the subset 
of objects in relation to the total 
number of objects in the set 
The distance of a given point from 
zero in relation to length of the 
“unit” 
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Visual Models and Student Learning 

The first part of this chapter dealt with examining the three general types of visual models for 
representing fractions and how each visual model type supports a different interpretation of a 
fraction. The next part of the chapter extends these ideas to the role visual models play in effective 
fraction instruction and in student learning. It begins with a brief look at visual fraction models 
and the CCSSM 

The CCSSM and Visual Models 

The Common Core State Standards in Mathematics (CCSSM) highlight the role that 
using visual models plays in developing understanding of fraction concepts and fluency. Students 
are expected to use visual models to help them understand new concepts, to solve problems, and 
to show their understanding of concepts. Later they are expected to use the concepts underlying 
the visual models to generalize concepts, build new mathematical ideas, or understand and apply 
procedures. For example, Standard 4.NF.1 is centered on students’ use of visual models to under-
stand why multiplying the numerator and denominator of a fraction by the same factor results 
in a fraction that is equivalent to the original fraction. However, it is important to note that the 
purpose of the standard is not to use visual models to find equivalent fractions, but to use the 
understanding derived from working with the visual models to recognize and generate equivalent 
fractions. This standard is more fully discussed in Chapter 7, Equivalence. 

Providing Opportunities to Interact with Visual Models That Have Different 
Perceptual Features 

Mathematics programs, textbooks and other instructional materials differ in their use of visual 
models. Some use one type of visual model such as pattern blocks or dot paper. We saw in the 
opening vignette that Mr. Smith’s math program utilized only visual circle models. According to 
research, limiting instruction to one type of visual model can be problematic. The best instruc-
tional approach includes a balance of visual models that differ in perceptual features, causing 
students continuously to rethink the concept (and not to overgeneralize on the strength of one 
model) (Dienes, cited in Post & Reys, 1979). 

When students are interacting with perceptual features of visual models, they are interpreting 
the different aspects or characteristics of the visual models. One way to think about this is to think 
about questions related to the different features of visual models. 

Instructional Considerations Regarding Perceptual Features 
of Visual Models 

•	 What is the whole in the visual model? 
•	 In an area model, what is the shape of the whole? 
•	 In an area model, what is the shape of the part? How does the shape of the part relate to 

the shape of the whole? 
•	 In set models, how are the objects in the set arranged (e.g., arrays, haphazard)? 
•	 In set models, are the sizes of the objects the same or different? 
•	 Is partitioning provided or does the student have to provide the partitioning? 
•	 What is the nature of the partitioning provided if it is provided? 
•	 What do equal parts mean in this visual model? 
•	 What is the relationship between the number of parts in the whole and the magnitude of 

the denominator? 
•	 What would a student have to do to find the fractional part of the whole in question? 
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Once teachers understand the importance of using a variety of visual models with different per-
ceptual features, they report that their instruction changes. For example, teachers in the OGAP 
Exploratory Study (2005) reported: 

•	 using a greater variety of visual models in their instruction 
•	 making explicit links between visual models 
•	 providing more opportunities for students to use visual models to solve problems 
•	 an increase in the use of number lines 

These instructional changes appear to be reflected in student work in the OGAP (2005) Study. 
39Some 30% (128 )  of pre- and post-assessments for students in grade 4 were analyzed for the use of 

visual models to solve problems: 
9•	 In the pre-assessment, only 23% ( ) of the students effectively used one or more visual 39 

models to solve problems. 
31•	 In the post-assessment, 80% ( )  of the students effectively used one or more visual 39 

models to solve problems. 

While it is important to use a variety of visual models, it is also important to recognize that some 
visual models can be used more effectively in some situations than in others. Review the student 
responses in Figures 2.19 and 2.20. In these responses, students use visual models to place 1 and 31 
4  in the correct locations on a number line. Both responses show evidence of effectively using a 
model to solve the problem. 

Figure 2.19 Wesley effectively used two number lines the same size as the original number line to 
locate 1

3 and 1
4  on the number line. 

Figure 2.20 Patty effectively used the linear dimension of visual area models to locate 1 and 1 on the 3 4 
number line. 
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Patty’s response exemplifies a strategy that many students in the OGAP (2005) studies adopted: 
Student-drawn area models can be effective for making comparisons or locating fractions on a 
number line when the linear feature of the visual model is used. However, this was only true when 
the lengths of the wholes were the same, and the visual models were partitioned into equal-sized 
parts. Using number lines and the linear feature of an area model are effective strategies for locat-
ing fractions on a number line. On the other hand, Kim’s use of circles in Figure 2.21 to help locate 
1 3 
2 , , and 2  was not effective, given the problem situation. 5 3 

Figure 2.21 Kim’s response. For this situation, the circles are less effective than the visual area models 
used by Patty or the number lines used by Wesley because circle models do not translate well to the 
linear feature of the number line. 

It is important to make a distinction here: Circle models can be used effectively to compare 
fractions as long as students consider the size of the whole and are accurate in their partitions 
into equal-sized parts. However, evidence in student work has shown that circle models are not as 
effective in accurately locating fractions on a number line as number lines or rectangular models 
(OGAP, 2005). 

Student-Drawn Visual Models May Have Limitations 

Although it is important to use visual models to develop conceptual understandings of fractions, 
some student-drawn visual models may have limitations at the younger grades when a student’s 
fine motor skills are not developed, or when older students are comparing fractions that are close 
in magnitude (Lamon, 1999; OGAP, 2005). In both cases, students may draw incorrect conclu-
sions based not on lack of understanding, but on an inaccurate drawing. 

Karen’s response to the candy problem in Figure 2.22 provides an example of how the use of 
models may be limiting if the fractions are close in magnitude and the student’s fine motor skills 
are undeveloped. 



  

 

  
 

 
 

   
  

  

There are some candies in a dish. 

2  of the candies are chocolate.5 

3  of the candies are peppermint.10 

Are there more chocolate candies or peppermint candies in the dish? 
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3Karen incorrectly concluded that 2
5 and 10  are equal based on her visual models, which were 

not partitioned into equal-sized parts. This partitioning error makes it appear that the fractions 
are equal. 

Figure 2.22 Karen’s response. While the wholes in Karen’s models were the same size, her inaccurate 
partitioning led her to the conclusion that 3  and 2  are equal. 10 5 

Helping Students Understand Errors When Using Visual Models 

One way to help students understand errors when using visual models is to have them compare 
their visual models to a manipulative in which the sizes of the wholes and parts are predefined. 

In Figure 2.23, Leslie used a visual area model to compare 1 and 1
4 . Her visual model would 3 

lead to the correct conclusion that 1 is greater than 1 ; however, her modeling error (wholes not 3 4 
the same size) could lead to the incorrect conclusion that 2  and 3 are equal. 3 4 

Figure 2.23 Leslie’s response. Because the wholes are not the same size, Leslie may conclude that 2 
3 

and 3  are equal. 4 

The inaccuracy of the visual models could be due to a misunderstanding about the importance 
of the wholes being the same size when comparing fractions, or it could be due to the limitations 
of Leslie’s hand-drawn model. In either case, having Leslie compare her visual models to manipu-
latives may help her focus on important features of visual models (e.g., size of the whole) that she 
should consider when comparing fractions. See Figure 2.24. 
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Figure 2.24 Comparing manipulatives with predefined wholes and parts to student work. 

As Leslie compares the two visual models, the teacher should ask her explicit questions that 
focus on features of the visual models that are necessary for the effective use of the visual model 
in making an accurate comparison of the fractions. 

Another way to help students improve their visual models is to compare different student solu-
tions. One can place two solutions side by side as in Figure 2.25, and ask questions designed to 
focus student thinking on the mathematical point being made: 

•	 How are Keisha’s and Leslie’s visual models alike? 
•	 How are they different? 
•	 Using Keisha’s visual model, it appears that 3 

4 >
2 
3 . Using Leslie’s visual model 3  and 2 

4 3 
appear to be equal. What feature of the visual models led to a different conclusion? 

Figure 2.25 Comparing two student solutions. Both students partitioned rectangles into nearly 
equal parts. However, the wholes in Leslie’s model are not the same size, leading to a wrong conclu-
sion that 2 and 4

3 
3  are equivalent. The sizes of the wholes in Keisha’s model are the same, leading to the 

correct conclusion that 3 
4 >

2 
3 . 

Visual Models Are Not the Only Way to Reason with Fractions 

As important as the use of visual models is to students’ learning of fractions, there are other equally 
important concept-based methods for reasoning about fractions. In fact, researchers have found 
that students use five types of reasoning when they successfully compare and order fractions that 
in some way involve reasoning about the relative contributions of the numerator and denominator 
to the magnitude of the fractions. They are: 

1. Using visual models, visual and physical. 
1 12. Using unit fraction reasoning (fractions with numerators of one, e.g., 1

8, 5, ).16 
3. Using extended unit fraction reasoning when comparing and ordering other fractions. 
4. Using a reference point, such as 1

2. 
5. Using equivalence/common denominators (Behr & Post, 1992). 
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Chapter 7, Equivalence, and Chapter 8, Comparing and Ordering, for more on these rea-
soning strategies. 

Jared and Kelyn: Closing Thoughts on Students’ Use of Visual Models 

The goal is not for students to use visual models to calculate answers but to use visual models to 
learn fraction concepts and skills deeply and flexibly. Jared and Kelyn’s experiences with visual 
models provide us with important reminders about the important role visual models play in the 
rich learning we want for all students. We begin with an interview with Jared, a third-grade student. 

Interviewer: I know that mathematicians use visual models, but sometimes kids in school are 
uncomfortable using them. 

Jared: I think it’s pretty comfortable because sometimes if you try to do it in your head its gets 
harder and if you use like blocks or diagrams or anything it will help a lot. Some-
times my favorite thing is like a number line or a T-table or something. That’s what 
I do a lot. 

Interviewer: It’s nice to hear that you are comfortable to draw or get other materials or that 
kind of thing. 

Jared: Yeah, because it helps you do the questions a lot better. 
Interviewer: Well, you can see it, right? It’s not just words on a page. 
Jared: Yeah, because if you do it in your head you can’t do it as good. Sometimes I first use 

blocks. Then I sort of sometimes imagine blocks. So now I sort of do it in my head. 
Interviewer: Wow! 
Jared: So I can imagine blocks and I can do it without real blocks and I can do it in my head 

now. Because I did it with blocks and got it in my head, I can do it pretty easy now. 
Interviewer: Why can you do it in your head now? 
Jared: Because I used blocks a lot in first and second grades, and since I did it a lot it sort of 

got stuck in my head. 
Interviewer: What happens when a problem gets hard? 
Jared: When the problems get like harder and harder, when they are really hard I sometimes 

need to draw or something. 
(OGAP, 2007) 

Models are mental maps mathematicians use as they solve problems or explore relation-
ships. For example, when mathematicians are thinking about a number, they may have a 
number line in mind. They think about where the numbers are in relation to one another 
on this line, and they imagine moving back and forth along the line. 

(Fosnot & Dolk, 2002, p. 73) 

As students are developing their understanding of concepts, they will need to construct visual 
models to solve problems and represent concepts if they are to construct their own mental map. 
Over time, students can build on their experiences with visual models to develop their own men-
tal image of a mathematics concept. Students’ acquisition of a mental model does not mean visual 
models are no longer an important part of learning and understanding mathematic concepts. For 
students, intentional and systematic use of visual models is vital, particularly as they learn new 
concepts or encounter more difficult problems. The interview with Jared makes this point. 

One suspects that Jared’s confidence in solving problems and using either “pictures in his head” 
or physical models are the result of experiences with a variety of visual models over time as he 
developed his understanding of the concepts. This suggests that fraction instruction should pro-
vide experiences in which students are encouraged to look for patterns and relationships, make 
and explore conjectures, and use what they learn from their visual models to generalize concepts. 
Kelyn’s response to a division problem in Figure 2.26 also makes this case. 
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Figure 2.26  Kelyn’s visual model suggests an accurate conceptualization of this division problem. 

The evidence in Kelyn’s solution leads one to believe that she understands that there are 4 one-
1fourths in a whole and 16 one-fourths (written in Kelyn’s response as “ 16( )s ”) in 4 wholes. Her 4 

effective use of a visual model to show the number of 1 s in 4 is important and valuable but not 4 
sufficient. Strong instruction must build on and deepen her current ideas about fraction divi-
sion. Thus, the challenge for instruction is to ask questions or present situations that capitalize on 
her current understandings to lead to a generalization about dividing a whole number by a unit 
fraction. 

Here are some examples of questions that one might ask Kelyn to help her move to a more 
generalized understanding of the division of fractions: 

•	 Your visual model shows that there are 4 one-fourths in every whole. How many fourths 
do you think there are in 5 (or in 6, or in 10, or in 100)? 

•	 How many thirds, fifths, or sixths are in 4 (or in 5, or in 6, or in 100)? 
•	 What patterns do you see? 
•	 Make and test a conjecture about the patterns that you see (giving Kelyn the chance to 

say “I noticed that . . .”). 

Jared’s transition back and forth between mental models and visual models and the potential 
for Kelyn’s teacher to capitalize on her conceptualization of the division of fractions to make a 
generalization about division make an important point: The use of visual models is a means to the 
mathematics, not the end (Clements, 1999; Post, 1981). 

Additionally, researchers indicate that one way to help students build on their use of visual 
models to understand and generalize fraction concepts is through the use of “multiple 
experiences (not the same experience multiple times) using a variety of materials.” 

(Dienes, cited in Post, 1981) 

Using visual models and regular probing and asking students to explain their thinking or dem-
onstrate their visual models should play a key role in instruction as students are solving problems 
and building their understanding of unit fractions, the relative magnitude of fractions (equiva-
lence, comparing and ordering fractions), or fraction operations. 

The use of visual models (both teacher- and student-generated) should permeate instruction, 
not just be an incidental experience for the class, but a way of thinking and learning for students. 
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•	 Students should have opportunities to solve problems in which they interact with visual 
models (e.g., shade 3 of an area model or find 3  on a number line). 8 8 

•	 Students should have opportunities to solve problems by generating their own visual 
models (e.g., Figure 2.26 Kelyn’s division solution). 

•	 Students should have opportunities to use visual models to develop understanding of 
concepts (e.g., use a visual model to show that 3  and 6  are equivalent). 4 8 

•	 Teachers should build instruction on student-generated visual models to help students 
generalize mathematical ideas. Teachers should ask students to explain their visual mod-
els and respond to probing questions that capitalize on understandings in their visual 
models (e.g., Kelyn’s division visual models). 

The use of a variety of visual fraction models permeates the CCSSM. In grades 1 and 
2, students are introduced to the meaning of fractions. By engaging in sharing activi-

ties and problems, students partition circles and rectangles into equal shares. The focus in these 
grades is for students to use words, not formal fraction notation, to describe the equal shares and 
to begin to see that partitioning into more equal shares results in smaller pieces (see Chapter 4, 
Equipartitioning). In grade 3, students use area models and number lines to lay the foundation for 
understanding unit fractions and fractions as quantities that can be compared and written in 
equivalent forms. In grade 4, the use of visual fraction models extends to the use of collections of 
objects (sets). The use of all three visual fraction models continues through elementary and mid-
dle school as students develop their understanding and procedural fluency for equivalence and 
magnitude (including negative fractions) and operations with fractions (Common Core Standards 
Writing Team, 2013a, 2013b). The chapters on equivalence, equipartitioning, comparing and 
ordering fractions, number lines, and operations with fractions provide further discussion on how 
visual models are used in the CCSSM to develop concepts and/or to explain or justify an under-
standing of a concept. 

Chapter Summary 

This chapter presented research related to the use of visual and physical (manipulative) models. 
The research indicates that when used effectively, pre-drawn visual models, manipulatives, and 
student-generated visual models can help students develop a strong conceptual understanding of 
fractions. Furthermore, the research suggests that students should: 

•	 interact with a variety of visual models that differ in perceptual features and in a variety 
of contexts to understand concepts 

•	 make connections between physical and visual models, verbal descriptions, symbolic 
representations, and contexts 

The most important goal for the use of visual models in fraction instruction is to support the 
generalization of concepts and skill. Visual models are a means to a greater end. 

Looking Back 

1. Compare questions in Figures 2.27 and 2.28. Data from the OGAP Exploratory Study (2005) 
showed that students had a more difficult time with the question in Figure 2.27 than with 
the question in Figure 2.28. Provide a possible explanation for why one question is more 
difficult than the other. 
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Figure 2.27  Shade 1
  of this figure. 8

Figure 2.28  Shade 1  of this figure. 8 

2.  Why do you think that it is more difficult for a student to determine the fractional part of 
a whole when the number of parts in the whole is a factor or multiple of the denominator 
rather than when the number of parts in the whole is equal to the denominator? 

3.  You have just completed the first part of your fraction unit with your third-grade students. 
Up to this point, your students have been finding the fractional part of an area as in Figure 
2.29. Students have been very successful with questions like these. Today you are going to 
ask your students to find 3

4  of the objects in a bag. There are four marbles and eight buttons 
in the bag. What aspects of the task may cause problems for your students? Explain. 

4.  Study the visual models in Figures 2.30–2.32. Identify the perceptual features of each that 
may require students to reinterpret their understanding of 3

4  as they move from one visual 
model to another. 
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Figure 2.29  Shade 3  of this square. 4 

Figure 2.30 Shade 3  of the rectangle. 4 

Figure 2.31 Locate 3  on the number line. 4 

Figure 2.32  Circle 3
4  of the marbles. 

Instructional Link: Your Turn 

Use Table 2.2 to help you think about how your instruction or mathematics programs provide 
students the opportunity to use a variety of visual models to solve problems, understand concepts, 
or generalize ideas. 
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Table 2.2 Instructional Link—Using Visual Models 

What visual models are used in your instructional materials for developing fraction concepts? 

1. Area models 
2. Sets of objects 
3. Number lines 
4. Manipulatives 

How are the visual models used in your instructional materials? 
Students are given visual models and asked questions using given visual models. 
 never 
 occasionally 
 throughout 

Students have the opportunity to generate their own visual models to solve problems. 
 never 
 occasionally 
 throughout 

Students have the opportunity to use manipulatives to bring meaning to concepts. 
 never 
 occasionally 
 throughout 

Students have the opportunity to generate and use visual models to help develop concepts and/or 
generalize ideas. 
 never 
 occasionally 
 throughout 

Based on this analysis and your understanding of the importance of using visual models to build 
and understand fraction concepts, how might you adjust your instruction? Describe. 
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3 
What Is the Whole? 

Big Ideas 

•	 A fraction should always be interpreted in relation to the specified or 
understood whole. 

•	 Understanding fractional parts in relation to the whole is a critical foundation 
for other fraction concepts, such as relative magnitude, equivalence, and 
operations. 

Defining the Whole 

“The concept of the whole underlies the concept of a fraction” (Behr & Post, 1992, p. 13). In other 
words, a fraction should always be interpreted in relation to the specified or understood whole. 

For example, the meaning of the fraction 3 can differ depending on the nature of the whole: 4 
3  of a set of marbles (Figure 3.1), or 3  of a brownie (Figure 3.2), or the distance from 0 to 3  on a 
4 4 4 
number line (Figure 3.3). In these cases the whole is specified. 

Figure 3.1 Specified whole. The whole is the set of eight marbles. Three-fourths of the set of eight 
marbles is six marbles. 
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Figure 3.2 Specified whole. The whole is the brownie, and the visual area model shows 3  of the 4
brownie remaining after one part, 1  of the brownie, has been removed. 4 

Figure 3.3  Specified whole. The whole is a defined length on a number line (0–1). Three-fourths rep-
resents the distance from 0 to 3

4  based on the length of the defined unit. 

In other cases, the whole is not specified, as in the problem in Figure 3.4. Understanding frac-
tional parts in relation to the whole is a critical foundation for other fraction concepts, such as 
relative magnitude, equivalence, and operations. 

Figure 3.4 Whole not specified. The number of students (the whole) in Mrs. Smith’s class and in Mr. 
Taylor’s class is not specified. 

Three-fifths of Mrs. Smith’s students ride the bus to school. 

One-half of Mr. Taylor’s students ride the bus to school. 

Explain how it could be possible that Mr. Taylor has more students ride the bus to school even 
though Mrs. Smith has a greater fractional part of her students ride the bus to school? 

The CCSSM and the Size of the Whole 

The CCSSM explicitly states that starting at grade 3 students should “recognize that 
comparisons are valid only when the two fractions refer to the same size whole” (CCSSM Stan-
dard 3.NF.A.3.D). At grades 4 and 5, this understanding is extended to adding and subtracting 
fractions and solving related problems. 

This chapter focuses on students understanding the importance of specifying the whole and 
the related challenges students may encounter as they compare and order fractions, find equiva-
lent fractions, find parts of a whole, and add and subtract fractions. 
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The challenges students may encounter are: 

•	 Some students have difficulty identifying the whole when there is more than one part or 
object in the whole (Payne, 1976). 

•	 Some students use an “out of parts strategy” (Figure 3.8, Dominic), not an “out of equal 
parts strategy” (Figure 3.8, Abdi) when finding the fractional part of a whole (OGAP, 
2005). 

•	 Some students have a difficult time determining the whole when they are given just a part 
of the whole (Behr & Post, 1992), particularly when working with fractions that are not 
unit fractions (Figure 3.23) (OGAP, 2005). 

•	 Some students make comparisons using models in which the wholes do not reflect the 
situation (Figure 3.21) (OGAP, 2005). 

•	 Some students make comparisons using visual models in which the wholes are not equal 
in size (Figure 3.22) (OGAP, 2005). 

Each of these challenges is illustrated with examples of student work in the following sections. 

Identifying the Whole When There Is More Than One Part 

Some students have difficulty identifying the whole when there is more than one part or object in 
the whole (Payne, 1976). This sometimes results in students using an “out of parts strategy,” not an 
“out of equal parts strategy,” when finding the fractional part of a whole (OGAP, 2005). 

Tom’s response (Figure 3.5), although showing one understanding of 1 , may provide evidence 2 
that he is unsure of the whole by interpreting each heart as a whole. Sonia, on the other hand, 
treats the set of hearts as the whole (Figure 3.6). 

Figure 3.5 Tom’s response. Tom circled one-half of each heart. 

Circle 1 
2

 (one-half) of the set of hearts. 

Figure 3.6 Sonia’s response. Sonia correctly circled one-half of the set of hearts. 

Circle 1 
2

 (one-half) of the set of hearts. 

Another way that this issue is evidenced is when students treat an area partitioned into two 
parts as two wholes, as in Karen’s response in Figure 3.7. Although the total area shaded in Karen’s 
response is 1  of the figure, Karen’s use of unnecessary partitions may indicate confusion regarding 8 
the whole. 
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Shade 1  of Figure 3.7.
8 

Shade 5
8

 of the figure. 

Figure 3.7 Karen’s response. Karen partitioned each half-rectangle into eighths and shaded 1  of each 8 
half using a “one out of eight” strategy. 

In Figure 3.8, Dominic shaded five out of eight parts twice, whereas Abdi equipartitioned the 
whole into eight equal parts (8 one-eighths) and then shaded 5 one-eighths. 

Figure 3.8 Dominic shaded five out of eight parts twice. Abdi divided the 16 parts into eight equal 
parts. 

It appears that Abdi is seeing the whole as sixteen parts, while Dominic is seeing two wholes of 
eight parts. Some teachers argue that both answers are correct, and they are right. However, Abdi’s 
strategy is more efficient and generalizable and suggests an understanding of how 5  is built from 8 
the unit fraction, 1

8 . 
Consider each student solving a problem in which they have to find 5

8 of $168. If Dominic used 
the same strategy, he may have to draw a figure or set of objects with 168 parts and then shade/ 
circle five out of eight parts 21 times. Once that is done, Dominic would have to count the parts 
in all the shaded regions. 

On the other hand, if Abdi used his out-of-equal-parts strategy, he would first divide $168 into 
eight equal parts to find that each 1  of $168 is equal to $21.00. Extending his unit fraction knowl-8 

1edge that 5 = 5( ), he would understand that 8
5  of $168 is 5 × $21.00, or $105.00. 

8 8 
One important idea from this student work and the accompanying discussion is that in 

order for students to develop more sophisticated fractional strategies, instruction should focus 
on strategies to help students understand the whole and to use their developing unit fraction 
understanding. 
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One strategy that may help students to see the whole is through the use of a familiar context 
in which it is not sensible to divide each object/part in the whole. This strategy is more likely to 
promote thinking about the whole, not each object/part in the whole. For example: 

•	 How many dinosaurs are in 1  of a set of 18 dinosaurs? 2 
•	 Circle 1  of a set of 20 coins. 

2 

Another strategy that helps to focus students on the whole is suggested by Lamon (1999). She 
suggests that students may have an easier time identifying the whole and subsequently will make 
fewer partitions if they have an opportunity first to visualize the whole from a distance. Some 
teachers project diagrams onto a classroom screen, as shown in Figures 3.9 to 3.14. Students dis-
cuss how they visualized the fractional parts of the whole. 

Because the goal of projecting a set of objects is to help students visualize the whole and iden-
tify different fractional parts of the whole, select a set of objects that lends itself to exploring a 
range of fractional parts. For example, a set of 24 objects allows one to explore halves, thirds, 
fourths, sixths, eighths, twelfths, and twenty-fourths. 

This type of visualization can also help students see equivalent fractions such as 1 = 2 
63  (Figure 3.14). 

Figure 3.9   A set of 24 apples displayed at a distance. 

Figure 3.10 Some students may visualize 1  of the set of apples like this. 
2 

Figure 3.11   Other students may visualize 1  of the set of apples like this. 
2 
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Figure 3.12   A student might visualize thirds like this. 

Figure 3.13 A student might visualize sixths like this. 

 See Chapter 7, Equivalence, for more on how to use models to develop understanding of 
equivalence. 

Figure 3.14 One-third of the set of 24 apples is equivalent to 2  of the set of 24 apples. 6 

Another way to help students focus on the whole is to provide problems such as fractions of a square 
(Figure 3.15), in which students have to reinterpret the parts, which are not the same shape or area. 

Figure 3.15 Fractions of a square. 
Reprinted with permission from Balanced Assessment Professional Workshop Series. © Mathematics Assessment Resource 
Service (MARS). 
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The large outer square represents one whole unit. It has been partitioned into pieces. Each 
piece is identified with a letter. What fractional part of the whole is each piece? 

Matt’s response (Figure 3.16) illustrates difficulties that students may encounter when they lose 
1sight of the whole as they are solving the problem. Matt correctly wrote the fraction  in part A. 8 

Figure 3.16 Matt’s response to fractions of a square. 
Reprinted with permission from Balanced Assessment Professional Workshop Series. © Mathematics Assessment Resource 
Service (MARS). 

Matt incorrectly wrote the fraction 1 
4  in part I. Part I contains 1 

4  of the area of the square in the 
lower right corner that is comprised of parts H and I, but not 1  of the large square. 4 

How can we understand Matt’s selection of fractions? When Matt was looking at sections A and 
B, he used the large square as the unit. Each of parts A and B contains 1  of the area of that unit 8 
(the large square). When Matt was looking at sections H and I, however, he incorrectly focused on 
only a portion of the whole figure in Figure 3.17. It appears that Matt made the same error when 
he considered sections F and G. 

Figure 3.17 The part of the whole square that Matt considered when determining the fractional parts 
H and I is circled. 
Reprinted with permission from Balanced Assessment Professional Workshop Series. © Mathematics Assessment Resource 
Service (MARS). 

For a closer look at Matt’s response to this problem, and to consider possible next instructional 
steps for Matt, answer question 3 in Looking Back. 

Considering the Size of the Whole When Comparing Fractions 

An important concept necessary for solving problems involving fraction comparisons is to under-
stand how the size of the whole impacts the fractions being considered. Some students make 
comparisons using models that do not reflect the whole in the given context (OGAP, 2005). 
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Three-fifths of Mrs. Smith’s students ride the bus to school. 

One-half of Mr. Taylor’s students ride the bus to school. 

Explain how it could be possible that Mr. Taylor has more students ride the bus to school even 
though Mrs. Smith has a greater fractional part of her students ride the bus to school? 

  

The vignette that follows illustrates the importance of considering the whole (specified or 
understood) when comparing fractions. 

Candy Bar 

Mr. Brown is a third grade teacher. At the start of his fraction unit, he always does the 
following activity. He comes to class with a paper bag flled with candy bars. He then tells his 
students, “I have candy bars in this bag. Who would like 1  of a candy bar and who would 2 
like a whole candy bar?” 

Every year that Mr. Brown has done this activity, almost all the students want a whole
1candy bar. Te few students who don’t like candy ofen ask for 2  of a candy bar. Mr. Brown 

then hands out mini candy bars to the students who want a whole candy bar and 1  of a2 
large candy bar to those who only wanted 1

2 . Naturally, none of the students are happy! 

Mr. Brown’s activity makes clear that the size of the whole is critical when determining a 
fraction of a whole. In this case, the size of 1  of the candy bar is dependent on the size of the 

2
whole candy bar. 

The problem in Figure 3.18 is an example in which the size of the whole (i.e., the number of 
students in each classroom) is not specified, but the context implies that they are not the same. 

Figure 3.18 Students who ride the bus to school. 

The evidence in Toni’s and Samantha’s responses (Figures 3.19 and 3.20) for this problem sug-
gests that they understand that the two wholes being considered (the number of students in Mrs. 
Smith’s class and the number of students in Mr. Taylor’s class) are different sizes. To solve the 
problem, they each specified wholes that would prove their case. 

Figure 3.19 Toni’s response. Toni used a visual set model to show that 3
5 of 20 students (12 students) 

is less than 1  of 26 students (13 students). 
2 
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Figure 3.20 Samantha’s response. Samantha did not construct a visual model, rather she described a 
situation in which Mr. Taylor had more students ride the bus to school. 

Toni’s and Samantha’s solutions both reflected the situation. Contrast their solutions with 
Jayden’s and Bill’s solutions in Figures 3.21 and 3.22. Jayden solved the same problem as Samantha 
and Toni. However, Jayden’s model that includes the same size and same number of parts for each 
class does not accurately reflect the situation. 

Figure 3.21 Jayden’s response. Jayden used visual area models to compare students who ride the bus 
to school in both classrooms. However, the models and number of parts in the whole are equal while 
the context implies that they are not equal. 

Bill’s response (Figure 3.22) to a problem in which the understood wholes are the same is an 
example of a common problem found when students use models to compare fractions. In his 
solution, he uses different-sized wholes when solving a problem in which the wholes should be 
the same size. 

To analyze student work and consider instructional implications relative to the explicit or 
understood whole, complete questions 4 and 5 in Looking Back. 
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(A) This is 1  of a candy bar. Draw the whole candy bar. 
5 

(B) This is 7 
8  of another candy bar. Draw the whole candy bar. 

12
5  of the gym was used for a kickball game. 

1  of the same gym was used for a football game.3 

Which game used more of the gym? 

1Figure 3.22 Bill’s response. Although Bill’s visual models represent 12
5  and 3 , they are different sizes, 
5leading him to incorrectly conclude that 1

3  of the gym is greater than  of the same gym. 
12 

Given the Part, What Is the Whole? 

Some students also have a difficult time determining the whole when they are given just a part of 
the whole (Behr & Post, 1992), particularly when dealing with fractions that are NOT unit frac-
tions (OGAP, 2005). Examples of student work that address this research are shown next. 

Bob’s responses in Figure 3.23 provide an example of a solution in which a student was suc-
cessful finding the whole when given a part with a unit fraction, but not when given a non-unit 
fraction. 

Figure 3.23 Bob’s response. Bob appears to have applied the same strategy to both problems by making 
the number of parts in the whole equal to the magnitude of the denominator. 

Although Bob’s diagram for part A of the problem in Figure 3.23 is “not pretty,” it does show 
the relationship between 1  and the whole. However, it appears that Bob applied the same strategy 5 
to both problems, treating part B as if the problem pictured 1  of a candy bar, not 7

8  of the candy 8 
bar. It is unclear, therefore, if Bob even understands the concept for 1

5 . In each case he may have 
drawn the number of parts so that the total number of parts is equal to the magnitude of the 
denominator. 

Contrast Bob’s response to Beth’s response in Figures 3.24 and 3.25. Beth’s responses provide 
evidence that, in this situation, she is able to find a whole when given a part. 

Unlike Bob’s response to part B of this problem, Beth partitioned (divided) the given part into 
seven equal-sized pieces and then added one more piece (equal to the size of one of the seven 
pieces) to make a whole. 



What Is the Whole? • 47 

 (B) This is 7  of another candy bar. Draw the whole candy bar. 8 

 (A) This is 1  of a candy bar. Draw the whole candy bar. 
5 

  

       

 

 

   
  

  
  

 

 

Figure 3.24 Beth’s response. Beth’s visual model shows the relationship between 1 of the candy bar and 5 
the whole candy bar. 

7Figure 3.25 Beth’s response. Beth successfully found the whole when given a non-unit fraction ( ).8 

To consider the next instructional steps for Bob as he deepens his understanding of identifying 
the whole when given a part, answer question 2 in Looking Back. 

Chapter Summary 

This chapter focused on the importance of the whole in developing fraction concepts. Students 
should solve a range of problems in which they have to carefully consider the meaning of the frac-
tion in terms of the whole. 

Students should encounter problems in which they: 

•	 find fractional parts of wholes with multiple parts 
•	 compare fractions involving different-sized wholes 
•	 compare fractions involving the same size wholes 
•	 find a whole when given a part 

Looking Back 

1. Explain how the lesson learned from the candy bar vignette was applied by the students 
in the following vignette. 

A group of fourth-grade students compared 5
8  and 2

3 . As the students were presenting 
and discussing their solutions, one student said that it didn’t really matter which was 

1bigger because 2 is only  bigger than 5 , and that wasn’t very big. Another student 3 24 8 
immediately piped up and said that it depends upon the size of the whole. If the whole 

1is really big, than could be really big (OGAP, 2005). 24 

2. It was suggested that Bob (Figure 3.23) may have used the same strategy to solve parts 
A and B of the candy bar problem. In both cases, Bob added the number of pieces that 
resulted in a candy bar with the total number of pieces equal to the denominator of 
the fraction given. Although this method resulted in a correct response to part A, the 
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question remains, did Bob use inappropriate whole number reasoning to solve both 
questions? 

What questions might you ask to determine if Bob is using inappropriate whole 
number reasoning and to help Bob deepen his understanding of fnding the whole when 
given a fractional part? 

3. Earlier in the chapter we examined part of Matt’s work on the Fractions of a Square 
problem. Shown in Figure 3.26 is all of Matt’s written work, in which Matt indicated that 
the sum of all the parts is 20 . Matt’s teacher asked him to describe the part of his solution., 80 
where he explained, “Twenty-eightieths. 20 + 80 = 100, that’s the whole!” 

Figure 3.26 Matt’s response. Fractions of a square. 
Reprinted with permission from Balanced Assessment Professional Workshop Series. © Mathematics Assessment Resource 
Service (MARS). 

Te large outer square represents one whole unit. It has been partitioned into pieces. Each 
piece is identifed with a letter. What fractional piece of the whole is each piece? Write that 
fraction on the piece. 

Use the evidence in the student work (Figure 3.26) to answer the following questions. 

a. What understandings of fractional parts of an area model are evidenced in Matt’s 
response? Describe the evidence. 

b. What errors are evidenced in Matt’s response? Describe the evidence. 
c. What potential questions might you ask Matt that would help him focus on identifying 

the whole? 
d. What potential questions might you ask to help Matt rethink his conclusion that 

20 + 80 = 100, and that is the whole? Provide a rationale for each question. 

4. Read Tiara’s and Maggie’s responses to the Candies in a Dish problem in Figures 3.27 
and 3.28. Although both students successfully answered the question, they each used a 
different strategy. Explain how an understanding of the whole is reflected in each of their 
solutions. 

5. Review Jayden’s work in Figure 3.29 and answer the following questions. 

a. Jayden’s solution does not reflect the situation. What is the evidence? 
b. What are some questions that you could ask that may help Jayden rethink her solution? 
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There are some candies in a dish. 

2  of the candies are chocolate.5 

3  of the candies are peppermint.
10 

Are there more chocolate candies or more peppermint candies? 

2 of the candies are chocolate.
5 

3  of the candies are peppermint.
10 

Are there more chocolate candies or more peppermint candies? 

3  of Mrs. Smith’s students ride the bus to school. 
5 

1  of Mr. Taylor’s students ride the bus to school. 
2 

Explain how it could be possible that Mr. Taylor has more students ride the bus to school even though 

Mrs. Smith has a greater fractional part of her students ride the bus to school? 

Figure 3.27 Tiara’s response. 

Figure 3.28 Maggie’s response. 

There are some candies in a dish. 

Figure 3.29 Jayden’s response. 
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Instructional Link: Your Turn 

Use the questions in Table 3.1 to help you think about how your mathematics program provides 
students with opportunities to consider the whole and to develop understandings about the 
impact that the whole has on determining a fractional part of a whole. 

Describe any adjustments you need to make in your unit and lesson plans to ensure that the 
research from this chapter is addressed in your instruction. 

Table 3.1 Instructional Link—Strategies to Support the Development of Solving Problems Involving 
Understanding of the Whole in a Range of Situations 

Do you (or does your program) provide opportunities for students to: Yes/No 

1. Solve problems involving fractional parts of a whole? 
2. Solve problems that involve finding the fractional part of a whole that is 

partitioned into more than one part? 
3. Find the whole when given a part? 
4. Solve problems that involve comparing fractions that relate to the same size 

wholes? 
5. Solve problems that involve comparing fractions that relate to different size 

wholes? 
6. Construct models that reflect the size of the whole in various fraction problems 

and contexts? 



4 
Equipartitioning 

Big Idea 

Equipartitioning is central to understanding and generalizing concepts related to 
fractions, such as: 

•	 fair 	shares 
•	 unit 	fractions 
•	 ordering	 and	 comparing	 fractions 
•	 equivalence 
•	 density	 of	 fractions 
•	 operating	 with	 fractions 

What Is Equipartitioning? 

Equipartitioning is the act of dividing into equal-sized groups or equal-sized parts. “Fractions 
have their roots in equipartitioning” (Confrey et al., 2011). The action of equipartitioning is key 
to using visual models to develop and generalize fraction concepts. Equipartitioning any visual 
model will separate the models into sections that do not overlap each other. When each section 
represents the same fractional part of the whole, the sections will all be the same size. To under-
stand these concepts, we will explore examples using an area model (Figure 4.1), a set of objects 
(Figure 4.2), and a number line (Figure 4.3). 

Figure 4.1  Each of these rectangles is partitioned into sections that do not overlap. Within each 
rectangle, each section has the same area representing 1

  of the whole region. 4

DOI: 10.4324/9781003185475-4 51 
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Figure 4.2 This set of eight dinosaurs has been partitioned (divided) into fourths (four groups of an 
equal count of dinosaurs). Each group of two dinosaurs is 1  of the set of eight dinosaurs. 4 

Figure 4.3  In this number line, the whole is taken to be the section of the number line from 0 to 1. This 
whole has been partitioned into three parts (A, B, and C), each of which is the same length. 

The Importance of Equipartitioning in Developing Fraction Concepts 

Equipartitioning is a “fundamental mechanism for building up fraction concepts” (Lamon, 1999, 
p. 77) and is key to understanding and generalizing concepts related to fractions, such as: 

•	 identifying fair shares 
•	 identifying fractional parts of a region 
•	 identifying fractional parts of sets of objects 
•	 comparing and ordering fractions 
•	 locating fractions on number lines 
•	 understanding the density of rational numbers 
•	 evaluating whether two fractions are equivalent or finding equivalent fractions 
•	 operating with fractions 
•	 measuring 

(Lamon, 1999). 

Some researchers indicate that “early experiences with physically partitioning objects or sets of 
objects may be as important to a child’s development of fraction concepts as counting is to their 
development of whole number concepts” (Behr & Post, 1992, p. 14). The goal, however, accord-
ing to the research, is for students to use early experiences with physically partitioning wholes to 
understand the impact of partitioning as they solve problems and generalize fraction concepts. 
Later, “just imagining the impact of partitioning will suffice and ultimately be desirable” (Behr & 
Post, 1992). 

Students can develop an understanding of the properties of fractions by equipartitioning 
manipulatives or student-created visual models. At a higher level of understanding, students 
are able to recognize how equipartitioning applies in solving a problem even if the model and 
its partition are not explicit in the students’ responses. 
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The CCSSM and Equipartitioning 

Students in grades 1 through 3 use equipartitioning to develop foundational under-
standing of fraction concepts in the CCSSM. 

At grades 1 and 2, students engage in sharing activities and problems that involve partition-
ing rectangles and circles into two, three, and four equal shares. At grade 1, students use the 
words halves, fourths, and thirds and phrases half of, fourth of, and quarter of to describe the 
equal shares. Importantly, students use their observations about the impact of equipartitioning to 
notice that partitioning into more equal shares results in smaller pieces. 

At grade 2, students build on the descriptions of the shares used at grade 1 and describe 
the whole as two-halves, three-thirds, and four-fourths. They recognize that in terms of area, 
equal shares of the same whole do not have to have the same shape but do have to be the 
same size. 

At grade 3, students use unit fractions to name equally partitioned parts that make up a whole. 
Through work with visual area models and number lines, students learn to build fractions from 

a 1unit fractions by “interpreting b  as a copies of b ” (Small, 2014, p. 17). This supports develop-
ment of understanding of fractions as numbers, equivalent fractions, and comparing and order-
ing fractions. 

Equipartitioning of visual models (including sets of objects, area models, and number lines) to 
build understanding of fraction concepts, to solve fraction problems, and to justify solutions are 
explicitly stated in the CCSSM through seventh grade as students work with a range of fraction 
and rational number concepts. 

Given the requirements in the CCSSM for equipartitioning visual models, it is important to 
understand some challenges that arise as students partition visual area models into equal parts. 

Understanding Equal Parts 

Researchers indicate that some students, when using or interpreting an area model to represent a 
fraction, do not consider the sizes (areas) of the different parts that result from the partitioning. 
Instead, the students consider just the number of parts (Bezuk & Bieck, 1993). 

The vignette that follows highlights another misunderstanding students have when they 
partition regions: that partitions must result in pieces that are both the same size and the 
same shape. Students have difficulty recognizing fractional parts as equal in size if the pieces 
are not congruent (same size and shape) (Bezuk & Bieck, 1993). 

Is 1  of the Square Shaded? 4 

When Mrs. Armstrong started a unit on fractions with her third-grade students, she introduced 
the frst lesson with the problem shown in Figure 4.4. She learned from the OGAP (2005) study 
that only 30% of third-grade students (n = 127) correctly responded to this problem. She knew 
her students well because she taught them in second grade the previous year. With that second-
grade class, she had paid careful attention to her lessons on fractions, giving her students many 
experiences in which they partitioned regions into equal-sized parts. She was confdent that 
her students would be more successful than the students in the OGAP study. 

Only 7 of her 19 students answered the question correctly. She was shocked. Many of her 
students shared a misinterpretation of the fractional part of an area model even afer she had 
devoted signifcant instructional time to reinforcing the concept of equal-sized parts when 
the students were in second grade. 
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Correct responses to her problem looked much like Maria’s, shown in Figure 4.5. Tese re-
sponses pleased Mrs. Armstrong and were what she had expected from all her students. It was 
a surprise to her that the majority of her students’ solutions were incorrect. William’s response, 
shown in Figure 4.6, was typical of these. He and many others considered only the number of 
parts and not the size of the parts. 

Figure 4.4  Problem: Is 1  of the square shaded? 4 

Figure 4.5 Maria’s response. Maria appropriately considered the size of the pieces. 

Figure 4.6  William’s response. William inappropriately considered only the number of pieces. 
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Mrs. Armstrong decided to probe a little deeper so that she could understand what her 
students were thinking. She asked William about his answer. William took four marbles out 
of his desk to help him explain his thinking. He said that even though the marbles were not 
the same size, one of these marbles was 1 of his set of four marbles, and the shaded portion 4 
of the square is also one piece out of four pieces, so it is 1  of the square (see Figure 4.7). 4 

Figure 4.7 William used these four marbles to explain his thinking. William thought that finding 1 

of an area is the same as finding 1  of this set of marbles. 4 

Mrs. Armstrong was encouraged that her question to William had prompted a clear ex-
planation of his thinking. His response suggested that some of her students incorrectly used a 
feature of the fractional part of a set of objects with an area model. 

Tis interaction with William raised Mrs. Armstrong’s curiosity about Maria’s understand-
ing. Te two area visual models that Maria included in her response clearly showed 1  of the 4 
squares had been shaded. Moreover, the squares were ft into a statement that is correct: “If the 
square was like (either of the partitioned and shaded squares), 1  of the square would be shaded.” 4 
Tat statement is clearly written. 

But now Mrs. Armstrong looked back at Maria’s previous statement that “It can’t be 1  of the 4 
square unless all of the parts are equal.” It appeared to Mrs. Armstrong that Maria might believe 
that the partitions had to result in parts of the same size and the same shape (that is, all of the 
parts needed to be congruent) in order to contain a part representing the fraction 1

4 . 
Mrs. Armstrong then asked Maria if both of the squares shown in Figure 4.8 had 1  of the 4 

square shaded. 
Even though 1  of each of the fgures is shaded, Maria said, “No, 1  is not shaded because 4 4 

square 1 is not divided into four equal parts, and square 2 is divided into two unequal parts, 
not four parts.” Mrs. Armstrong was surprised to fnd that Maria did not believe that 1  of4 
each of the regions was shaded. 

Figure 4.8  Is  1  of each square shaded? 4 
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However, Maria’s and William’s levels of understanding helped her to refect on her in-
struction. While Mrs. Armstrong emphasized the importance of partitioning regions into 
equal-sized parts last year, the students had never experienced questions such as those in 
Figure 4.4 and 4.8. 

She realized that last year the only visual models that students saw or drew were ones in 
which all the pieces were the same size and the same shape. Tis year she decided to be more 
intentional about providing her students with experiences that challenge their understand-
ings of the meaning of equal-sized parts. 

This vignette raises some important issues as students are introduced to and begin to use equi-
partitioning to solve problems involving finding the fractional part of a whole. Like William, 
students may be inappropriately applying their understanding of partitioning sets to partitioning 
an area model. For example, Mrs. Armstrong realized that William appears to understand that the 
objects in a set did not have to be the same size (different-sized marbles) but had to have the same 
number of marbles in each group (see Figure 4.9). 

Figure 4.9 One-fourth of the marbles is circled, even though the marbles are not the same size. 

Mrs. Armstrong realized that some students, like Maria, may be taking a literal application of 
equal-sized parts to mean that the parts always need to be the same size and the same shape. As 
teachers reinforce the concept of equal-sized parts, they need to deepen students’ understanding 
by providing examples and counterexamples as well as developing other instructional strategies. 
There are many strategies for teachers to choose from that reinforce the idea that fractional parts 
in an area model need to be the same area, but not the same shape, and that help students move 
away from thinking about a fractional part of an area in the same way they think about fractional 
parts of sets of objects. One such activity asks students to come up with as many different ways 
as they can to show 1  of a geoboard or 1  of a square, as shown in Figure 4.10. 2 2 

An important aspect of this activity is having students share their solutions as well as probing 
their understanding with questions such as the following: 

•	 What fractional part of each shape is shaded? (Don’t assume that all students see these as 
representing 1  of each shape.) 2 

•	 What did you notice about the shading on all your sketches? (For example, the shading 
covers the same area, but is not necessarily the same shape.) 

•	 How did you decide what to shade? (For example, counting the total number of boxes and 
shading a number equal to half of the boxes.) 

The examples cited here directly relate to solving problems on finding the fractional part of 
a region (e.g., shade 1  of a square). This concept is important as students experience real-world 2 
situations that often involve finding the fractional part of an irregular area. For example, 20 acres 
divided equally among four people means that all four people get five acres. It does not necessarily 
mean that the shape of each five-acre parcel is the same (see Figure 4.11). 
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 Figure 4.10 Even though the shading is not the same shape, 1  of each of these figures is shaded. 2 

Figure 4.11  Each person gets 1
  of the 20 acres (or 5 acres). Even though the pieces are not the same 4

shape, they have the same area. 

Using Equipartitioning and the Impact of Equipartitioning in Solving Fraction 
Problems and Developing Understanding of Fraction Concepts 

In the previous section we focused on an important concept about area visual models: two parts 
can represent the same fraction even though the parts have different shapes. What matters is that 
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the two parts must have the same size (area). In this section we will focus on the use of equipar-
titioning to: 

•	 find fair shares 
•	 compare and order fractions 
•	 develop understanding of equivalent fractions 
•	 develop an understanding of the density of rational numbers 
•	 operate with fractions 

To effectively use visual models to solve problems involving these mathematical topics, it becomes 
important to partition regions into the same size and shape. As you read through the student responses 
on the pages that follow, think about the following questions. 

1. What attention are students paying to equipartitioning regions, lines, or sets of objects 
into parts that have equal sizes? 

2. How are students using their understanding of equipartitioning into equal-sized parts to 
solve the problems? 

3. How are students using their understanding of the impact of equipartitioning to solve the 
problems? 

Equipartitioning and Fair Shares 

Students in the early grades use equipartitioning to divide objects into fair shares, as in Katie’s 
response in Figure 4.12. When first determining fair shares, most students need to physically par-
tition the region, as in Katie’s response. Over time and with enough experience, it is sufficient and 
desirable for students to visualize the impact of the equipartitioning. This can be seen in Thomas’s 
response in Figure 4.13. 

Figure 4.12 Katie’s response. Katie physically partitioned the pizzas into (approximately) equal-sized 
parts. Katie did not, however, respond with a fraction to indicate how much pizza each child got. 

Four children share 2 pizzas equally. 

What fraction of a pizza does each child get? 

Figure 4.13 Thomas’s response. Thomas used an understanding of the impact of partitioning by 
explaining how you can cut each pizza in half without having to draw each pizza. Using this strategy, 
he was able to determine that each student gets 1  of a pizza. 2 

Four children share two pizzas equally. 

What fraction of a pizza does each child get? 
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1 of the students in Joe’s class walk to school. 
3 
1  of the students in Joe’s class ride the bus. 2 

Do more students walk to school or ride the bus? 

To explore the concept of developing students’ abilities to use equipartitioning to solve prob-
lems involving fair shares, answer question 2 in Looking Back. 

Equipartitioning to Compare Fractions 

Students also use equipartitioning strategies to compare the magnitude of fractions. In Tom’s 
response in Figure 4.14, he used a set of 12 objects to represent the class. Using two copies of this 
set of circles, he partitioned one copy into thirds, and he partitioned the other copy into halves. 
His two sets of objects show 1 of the set containing four children and 3 

1 
2  of the set containing six 

children. His answer is that 1  (of the class) is bigger, and his explanation is based on counting the 2 
pieces in his partitions and saying that “6 is bigger than 4.” 

Figure 4.14 Tom’s response. Tom understood that the number of students in the class was the same. 
He chose a set of 12 objects to represent the students in the class. He then physically partitioned the 12 
objects into halves and thirds. 

Later, students will use their understanding of the impact of equipartitioning on the size of the equal 
parts in the whole to compare and order fractions, as Mike did in his response in Figure 4.15. 

Figure 4.15 Mike’s response. Mike used his knowledge of the impact of partitioning. 

Linda hiked one-fourth of the way up Mount Mansfield. 

Jen hiked one-third of the way up Mount Mansfield. 

Who hiked farther? 
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See Chapter 8, Comparing and Ordering, for a more in-depth discussion on comparing 
fractions. 

Equipartitioning and Equivalent Fractions 

The use of equipartitioning is at the foundation of using visual models to understand the proce-
dure for determining equivalent fractions. See Chapter 7, Equivalence, for more information on 
this topic. 

Equipartitioning and Density of Rational Numbers 

Students have a difficult time understanding the density of rational numbers. That is, between any 
two rational numbers there are an infinite number of rational numbers (Orton et al., 1995). Expe-
rience with equipartitioning and repartitioning can help students visualize the concept of density. 
Review Chris’s response in Figure 4.16. You will notice that Chris used number lines to identify 

2 2two fractions ( and ) that are located between 1  and 3 
3 
4 . In part B, Chris outlined a strategy for 3 4 

finding other fractions between 1 and 3
4 . His response indicates that you can find more fractions 3 

between 1
3 and 3

4  “if you partition it more.” 
Chris’s response displays a comfort with equipartitioning and with equipartitioning as a way to 

find fractions between two given fractions. 

See Chapter 10, The Density of Fractions, for a more in-depth discussion on developing 
student understanding of the density of fractions. 

Figure 4.16 Chris’s response. Chris physically partitioned two number lines in order to identify two 
3fractions between 1

3  and 4 , and he showed his understanding of partitioning in B by indicating that “if 
you partition it more” you can find more fractions. 

A) Name two fractions that are between 1  and 3
4 .3 

B) Do you think that there are other fractions besides the two that you named between 1  and 33 ? Explain why or why not. 4 

Equipartitioning and Operating with Fractions 

Max (Figure 4.17) used equipartitioning strategies to explain his solution when subtracting 2  from 5 
4 . Kasey (Figure 4.18), on the other hand, was visualizing the relative magnitude of 1  and 1  when 
5 12 8 
estimating their sum. 
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4 2− is closest to:
5 5 

1 7The sum of +  is closest to:
12 8 

Figure 4.17 Max’s response. Max physically partitioned a number line from 0 to 1. While one does not 
know for sure, Max may have used the number line to subtract the two fractions or to determine that 
the difference 2 , was closest to 0. 5 

Figure 4.18  Kasey’s response. Kasey used number sense that may have resulted from an understanding 
of the impact of partitioning. 

See Chapter 11, Addition and Subtraction of Fractions, and Chapter 12, Multiplication 
and Division of Fractions, for more in-depth discussions on developing student under-
standing of operating with fractions. 

Stages of Partitioning 

Because physically equipartitioning visual models is a foundational activity for students as they 
develop an understanding of fractions and generalize ideas, understanding how students develop 
partitioning skills is important. This section focuses on the stages in which students develop 
their equipartitioning skills. Understanding these stages helps to provide guidance about the pos-
sible difficulties that students might have when using partitioning to solve problems involving 
fractions with different denominators. The following vignette provides a context for why under-
standing the stages of partitioning is important for teachers. 

Mrs. Murray, a fourth-grade teacher, gave her students a pre-assessment prior to beginning a 
unit on fractions. She hoped to gain an insight into her students’ understanding of foundational 
fraction concepts. She planned to use this information to inform the design and implementation 
of her upcoming fraction unit. 



62 • Equipartitioning   

 

 

 
 
 
 
 

  4
1She analyzed her students’ responses to a question that asked them to place 1  and  on3 

a 0 to 1 number line. In general, Mrs. Murray found that her students were more successful 
in locating and justifying the location of 1  on the number line and less successful locating 1

3 .4 
Mrs. Murray was surprised by this and wondered why her students would display a diferent 
level of understanding when placing these two fractions on the number line. 

Mrs. Murray’s findings are not surprising and are related to the development of equipartitioning 
strategies. Researchers suggest that students progress through stages of equipartitioning that include: 

(a) sharing 
(b) algorithmic halving 
(c) evenness 
(d) oddness and 
(e) composition 

(Pothier & Sawada, 1983) 

These stages are described more fully in the following sections. 

Sharing 

Most students first explore equipartitioning through sharing activities. According to research, 
students who successfully use a sharing strategy are able to partition a whole into two equal parts 
(Pothier & Sawada, 1983). Rhonda’s work (Figure 4.19) exemplifies this sharing strategy. 

Algorithmic Halving 

Students usually move easily from sharing to algorithmic halving, which is the process of continu-
ing the halving process to obtain fourths, eighths, sixteenths, and so on (Pothier & Sawada, 1983). 
Fraction strips are used in Figure 4.20 as examples of the impact of algorithmic halving. Each 
fractional piece, starting with the whole strip, is halved to create the next smaller piece. 

Figure 4.19 Rhonda’s response. Rhonda partitioned each pizza into two halves using a sharing strategy. 

Four children are sharing two pizzas equally. 

What fraction of a pizza does each child get? 

Partitioning visual models into equal parts that are powers of two (i.e., fractions with denomi-
nators of 2, 4, 8, 16, 32, etc.) is easier than equipartitioning that involves odd numbers or even 
numbers that have odd number factors (Pothier & Sawada, 1983). This research suggests that 
students should be introduced to equipartitioning with fractions whose denominators are powers 

1 1 1 1of two , ,  , ,etc.( 2 4 8 16 ) . 
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Figure 4.20 Fractions strips partitioned using algorithmic halving. First the strip is partitioned into 
two halves. Then each half is partitioned into halves, making fourths. Then each fourth is halved, 
making eighths. 

Evenness and Oddness 

Moving from equipartitioning that involves even numbers that are powers of two to other num-
bers offers students a number of challenges. Studies have shown that students have a more 
difficult time partitioning a whole into equal parts that are odd numbers (3, 5, 7, etc.) (Fig-
ure 4.21) and even numbers with odd number factors (6 = 2 × 3, 10 = 2 × 5, 12 = 2 × 2 × 3, 
etc.) than partitioning using algorithmic halving strategies (Pothier & Sawada, 1983). 

Figure 4.21 Oddness stage—partitioning into an odd number of equal parts involves thinking about 
the relative size of each part in relation to the whole. 

Partitioning into even numbers with odd number factors (6, 10, 12, etc.) might involve a two-
step process: first halving, and then partitioning into an odd number of parts (Figure 4.22). We 
use 6 = 2 × 3 to illustrate this point. One way students partition wholes into even numbers with 
odd number factors, such as 6, is to halve the whole first and then partition each half into thirds. 
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Other students partition first into thirds and then halve each third. Still others will estimate and 
partition directly into sixths. 

Figure 4.22 Evenness stage—to partition into sixths one may first partition the whole in half then 
partition each half into thirds. 

Composition 

As students become flexible with the equipartitioning concepts previously described, and as 
students’ multiplicative reasoning develops, they often use multiplicative strategies to partition 
wholes into equal-sized parts. 

Kyle and Joseph each partitioned the regions in Figure 4.23 into twelfths. Joseph’s model shows 
evidence of a multiplicative strategy to represent five-twelfths of the region. 

To explore the concept of stages of equipartitioning, answer question 2 in Looking Back. 

Figure 4.23 Kyle’s and Joseph’s responses. Joseph’s strategy shows evidence of using a multiplicative 
strategy by partitioning the figure into six rows of two columns. 

Instruction and Stages of Equipartitioning 

Some teachers have asked if they should explicitly teach each strategy (e.g., “today we are going to 
do algorithmic halving”). Our answer is no. Rather than providing steps to teach equipartitioning, 
the stages suggest that teachers make intentional choices about which fractions they use to teach, 
reinforce, and strengthen concepts that can be built on understanding the impact of equipartitioning. 
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To do this, a teacher should provide students with experiences in which they equipartition a 
variety of visual models (regions, sets of objects, and number lines). Students should have experi-
ences equipartitioning the visual models into a variety of fractional parts, starting first with even 
numbers that are powers of two (halves, fourths, eighths, sixteenths, etc.). To strengthen their 
equipartitioning skills, a teacher should have students share their strategies so that all students are 
exposed to a variety of ways of thinking. Over time and as they are ready, students will develop 
other strategies. 

More importantly, students should start developing several generalizations from their experi-
ence with equipartitioning that will help them find fractional parts of the whole, compare and 
order fractions, develop concepts related to equivalence, and operate with fractions. 

Visualizing and Generalizing the Impact of Equipartitioning 

Teachers often ask, “How can I get my students to generalize concepts or use an understanding of 
the impact of equipartitioning?” One answer is to build from visual models that students use to solve 
problems. Another answer is to create an environment in which students are encouraged to look for 
patterns and relationships, ask questions, and make conjectures as Tom did in Figure 4.24. 

Figure 4.24 Tom’s response. Tom drew these visual area models to show 1  and 1
8 .4 

Tom made the following observation: “I noticed that the larger the denominator, the smaller 
the part that I shaded so the smaller the fraction.” He went on, “I wonder if it always works that if 
I make the denominator larger, I will get a smaller fraction?” 

Building on this observation, Tom made the following conjecture: When making a drawing to 
show a fractional part of a whole, the larger the denominator, the smaller the piece that will be shaded. 

His teacher capitalized on his observation by engaging the class in testing Tom’s conjecture. 
The class generated a list of the kinds of examples that can be used to test Tom’s conjecture (e.g., 
unit fractions, fractions with the same numerator but different denominators, fractions with the 
same denominators but different numerators) and then tested it with the different examples. After 
considerable exploration, they made more observations that led to modifying the conjecture. 

Modified conjecture: When making a drawing to show a fractional part of a whole, the larger 
the denominator, the smaller the piece that is shaded and the smaller the fraction if the magnitude 
of the numerators is the same. 

The teacher strengthened this understanding by providing the students with problems that 
involved comparing and ordering fractions. Read Mike’s response in Figure 4.25. This type of 
response exemplifies responses after students start moving from depending on constructing a 
visual model when solving a problem to visualizing the impact of equipartitioning. 



66 • Equipartitioning   

  
    

  

 

 

Linda hiked 1  of the way up Mt. Mansfield.4 

Jen hiked 1 of the way up Mt. Mansfield.3 

Who hiked farther? 

Figure 4.25 Mike’s response. Mike used his knowledge of the impact of partitioning. 

Ultimately, students should internalize their understanding of the impact of equipartitioning 
visual models and use unit fraction and benchmark reasoning to compare fractions as is evi-
denced in Ted’s response in Figure 4.26. Ted extended his unit fraction reasoning to determine 

7 1that  is  away from 1. He then determined the distance each of the other given fractions are 6 6 
from one and compared his findings to 1

6 . 

Figure 4.26 Ted’s response. Ted’s response shows evidence of having internalized the impact of equi-
partitioning. 

Which fraction is closest to 1? Show your work or thinking. 

See Chapter 7, Equivalence; Chapter 8, Comparing and Ordering; Chapter 10, The Den-
sity of Fractions; Chapter 11, Addition and Subtraction of Fractions; and Chapter 12, 
Multiplication and Division of Fractions, for additional opportunities to see how equi-

partitioning is applied across fraction concepts. 

Chapter Summary 

This chapter focused on how equipartitioning visual models helps students develop skills and 
understandings and how students use these understandings to generalize fraction concepts. Equi-
partitioning visual models is a means to understanding the mathematics. In the end, we want 
students to solve problems and generalize concepts based on what they have internalized through 
equipartitioning experiences. 
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Looking Back 

1. Study Mandy’s and Mark’s responses in Figures 4.27 and 4.28 and then answer questions 
1a, 1b, and 1c that follow. 

Figure 4.27 Mandy’s response. Mandy’s strategy for placing 1  and 1  on a number line from 0 to 1. 3 4 

Figure 4.28  Mark’s strategy for locating 2 , 8 , and 8 e n3   on th umber line. 12 3

1a. What strategy does Mandy use to place  on the number line? Does she use the 4 
same strategy to place 1  on the number line? Explain, using evidence from Mandy’s 

3 
response. 

2 8b. What strategy does Mark use to place 3 , , and 8  on the number line? Explain, 12 3 
using evidence from Mark’s work. 

c. Because this is the only evidence that you have about each student’s level of equiparti-
tioning, what else might you want to know to determine the next instructional steps? 

2. John (Figure 4.29) and Kim (Figure 4.30) answered different problems that involve divid-
ing into “fair shares.” Study their responses, and then answer the following questions. 

Figure 4.29 John’s response. 

Twelve students are sharing four pizzas equally. 
How much will each student get? 
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There are some candies in a dish.

 of the candies are chocolate. 
3  of the candies are peppermint.10 

Are there more chocolate or more peppermint candies? 

2 
5 

Figure 4.30 Kim’s response. 

Six students equally share three pieces of construction paper. 

How much construction paper does each child get? 

a. John and Kim both used equipartitioning in their solutions. How are their strategies 
different? Explain. 

b. What activity or questions might help Kim partition each piece of paper into halves 
instead of sixths and to recognize that each student receives 1  of a piece of construction 2 
paper? 

3. Tom and Tiara were both asked questions about the ordering of fractions. Both of them 
chose to use set visual models in their responses. They each selected a specific number of 
objects in their sets, even though the numbers were not specified by the problem. Read 
Tom’s response (in Figure 4.14) and Tiara’s response (from Chapter 3, shown again in Figure 
4.31), and answer the following questions. 

Figure 4.31 Tiara’s response. 

a. Do the numbers that each selected lead to correct solutions to the problems? Explain. 
b. Are there other numbers that Tom and Tiara could have chosen? Explain. 
c. Te solutions written by Tom and Tiara point out a unique feature of the set model as 

someone attempts to equipartition the set into parts that are all the same size. What 
is that unique feature? Describe. 

Instructional Link: Your Turn 

Use the guiding questions in Table 4.1 to help you think about how your mathematics pro-
grams provide students with opportunities to experience equipartitioning and to use their 
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understanding of the impact of equipartitioning to generalize concepts and develop understand-
ings of concepts. 

Table 4.1 Instructional Link—Strategies to Support the Use of Partitioning to Develop and Generalize 
Concepts 

Do you (or does your program): Yes/No 

1. Provide opportunities for students to physically partition a variety of regions, sets of 
objects, and number lines? 

2. Pay attention to the stages of partitioning? For example, do students solve problems 
involving halving strategies before partitioning into an odd number? 

3. Encourage students to use their understanding of the impact of partitioning to solve 
problems? 

4. Use partitioning to help develop ideas or generalize concepts? 

Describe any adjustments that you need to make to your instruction to ensure that students 
have opportunities to use equipartitioning to develop an understanding of concepts, as well as to 
generalize concepts. 



http://taylorandfrancis.com
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Place the following fractions in order from the smallest to the largest. Show your work. 

1 
8 

1 
2 

1 
4 

1 
3 

5 
Understanding the OGAP Fraction 

Framework and Progression 

Big Ideas 

•	 The OGAP Fraction Progression is a learning progression based on mathemat-
ics education research and is designed as a tool for teachers to gather evidence 
of student thinking to inform instruction and monitor student learning. 

•	 Accumulating evidence by researchers indicates that knowledge and use of 
learning progressions positively impacts both teachers’ knowledge and instruc-
tion and students’ motivation and achievement. 

The first four chapters of this book focused on important underlying concepts regarding fractions 
(i.e., fractions as numbers, using visual models, understanding fractions in relation to the whole, 
and equipartitioning). The focus of this chapter shifts to the use of the OGAP Fraction Frame-
work and Progression for formative assessment and instructional decision-making. It starts with 
a vignette in which a group of third-grade teachers are meeting to analyze some student work. 

A group of third-grade teachers have all completed some exercises with their students on 
using area models to represent unit fractions. They wondered the degree to which their 
students would use this knowledge to order a set of unit fractions. The teachers decided 
they would all administer the same formative assessment question (Figure 5.1) and discuss 
the student work at their next PLC. Why do you think this is a good formative assessment 
question given their goal? 

Figure 5.1 Formative assessment question. 

When the teachers gathered, they were very excited about the work their students com-
pleted. They decided to sort the work into two piles—“got it” and “did not get it.” That is, 
correct and incorrect answers. They noticed that students were using a range of differ-
ent strategies, and students were making many different types of errors, but they did not 
come away with any insight into how to help students who “weren’t getting it” other than to 
provide small group instruction or reteaching. They also weren’t sure what to do with the 
students who could solve the problem correctly. Without a systematic way to analyze the 

DOI: 10.4324/9781003185475-5 

https://doi.org/10.4324/9781003185475-5


  

 
 

 

 
 
 

 
 
 
 
 

 

72 • Understanding the OGAP Fraction Framework 

evidence across the set of student work, the teachers had little information that could be 
used to inform their instruction. 

The OGAP Fraction Framework and Progression, developed from mathematics education research 
on how students learn fraction concepts, was created expressly to help teachers systematically 
analyze and understand the evidence in student work (both written and classroom discussions), 
inform instructional decisions, provide actionable feedback to students, and help design and 
select tasks. This chapter provides an overview of both the framework and the progression. As 
you progress through each of the chapters that follow you will engage in case studies designed to 
illustrate how teachers can systematically analyze student work based on the mathematics educa-
tion research and apply this knowledge to instruction. 

There are two major elements in the framework which are discussed in this chapter: 

1. Fraction Problem Structures 
2. The OGAP Fraction Progression, which shows evidence of student work along a con-

tinuum of student understanding 

The two parts of the framework are interrelated. That is, the structure of a problem impacts 
the nature of the evidence of student understanding that is elicited by that problem. This chapter 
draws on sample problems and student responses to explore both the structures of fraction prob-
lems and the OGAP Fraction Progression, including underlying issues and errors. 

To access the full OGAP Fraction Framework go to www.routledge.com/9781138816442 

The OGAP Fraction Progression 

The OGAP Fraction Progression is designed to help teachers gather descriptive evidence of thinking 
related to students’ developing understanding of fraction concepts and skills, as well as to identify 
the underlying common errors, preconceptions or misconceptions that may interfere with students 
learning new concepts or solving related problems. The OGAP Fraction Progression is based on 
mathematics education research on how students learn fraction concepts organized along a con-
tinuum of development, from using non-fractional reasoning and strategies to effectively applying 
fraction knowledge and skills at an application level. Importantly, there is accumulating evidence 
that knowledge and instructional use of learning progressions, together with the mathematics 
education research that underpins progressions, positively affects instructional decision-making, 
student motivation, and achievement in mathematics (Carpenter et al., 1989; Clarke, 2004; Clarke 
et al., 2001; Clements et al., 2011; Fennema et al., 1996; Supovitz et al., 2018, 2021; Wilson, 2009). 

Study the OGAP Fraction Progression that follows. What do you notice about the progression? 

When you reviewed the OGAP Fraction Progression, you probably noticed that there are levels 
that reflect different kinds of evidence that might be found in student work, ranging from Non-
Fractional to Application as students learn new fraction concepts and solve related problems. You 
probably noticed examples of evidence found at each level. These levels are at a grain size that is 
usable by teachers to gather actionable evidence across students’ development of fraction concepts 
and skills. This important idea will be explored in case studies in each of the subsequent chapters. 

Also notice the double-arrow on the left side of the progression. This arrow communicates 
an important idea about learning progressions: as students are introduced to new concepts or 
interact with different problem structures for the same concept, their solutions may move up and 
down the progression levels. That is, movement on a progression is not always linear. The graphic 
in Figure 5.2 illustrates this important point. 

However, by middle school, students’ fraction fluency and understanding should be stabilized 
at the Application level so that they can fully engage in middle-school mathematics without inter-
ference from weak fraction understanding and fluency. 

http://www.routledge.com/9781138816442
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Figure 5.2 Hypothesized movement on the progression as concepts are introduced and developed 
across grades. 

Levels on the OGAP Fraction Progression 

Looking more closely at the levels on the progression, one notices five levels: Application, Frac-
tional Strategies, Transitional Strategies, Early Fractional, and Non-Fractional. Naturally, all the 
evidence that can be exemplified at each level cannot be included on the progression. Thus, the 
examples have been selected to provide a sample of common solution strategies. You will find 
more examples of student solutions and their relationships to the progression as you read through 
Chapters 6 through 12. 

To become familiar with the problems and solutions used as examples on the progression, the 
authors suggest you solve each of the following problems found on the OGAP Fraction Progres-
sion. As you solve the problems anticipate how students might solve the problems or errors they 
might make. 

7 7 7 7a. Which fraction is closest to 1? , , ,  )  Show your work. ( 3 5 6 12 
b. Bob ran 4 times this week. Each run was 3 1  miles long. How far did Bob run this week? 4 

Show your work. 
7c. The sum of 1 +  is closest to: a) 20; b) 8; c) 1 ; d) 1 Show your work. 12 8 2 

d. The distance from Billy’s house to work is 2 1  miles. His car broke down 3  of a mile from 5 5 
work. How far is Billy from his house? Show your work. 

As you read about the different levels on the progression in the pages that follow, study the 
examples from the images that are provided of each level being discussed. After you have made 
sense of these examples for yourself, read the explanation of how the examples represent evidence 
at that level. 

Application 

The ultimate goal is for students to be able to apply their understanding of fraction concepts and 
strategies. Study the Application level of the progression shown in Figure 5.3. What do you notice 
about the topics and concepts that are listed in this level? 

Figure 5.3  Application level of the progression. 



  

 
 

 
 
 
 

 

 Paul’s dog eats 20 pounds of food in 30 days. How long will it take Paul’s 
dog to eat a 45-pound bag of dog food? Show your work. 

Understanding the OGAP Fraction Framework • 75 

You probably noticed that there are a wide variety of topics in middle school where students 
must apply their understanding of rational number concepts and procedures. Moreover, these 
topics appear across all mathematical domains (number and operations, measurement, alge-
bra, ratio and proportion, geometry, data analysis, and probability). This explains, in part, why 
middle school teachers, as well as high school teachers, often express frustration with the lack of 
students’ fluency with fraction concepts. In fact, “algebra teachers ranked poor understanding of 
fractions as one of the two most important weaknesses in students’ preparation for their course” 
(Siegler et al., 2010, p. 6). 

Tania’s response in Figure 5.4 illustrates the effective application of fraction understanding and 
fluency when solving a problem involving proportions. 

Figure 5.4 Tania’s response shows evidence of applying fraction knowledge in a proportion problem 
at the Application level on the progression. 

Notice that Tania was able to use her understanding of fraction multiplication to solve the 
proportion correctly. 

Fractional Strategies 

Study the text and examples at the Fractional level on the progression in Figure 5.5. What do you 
notice about the difference between the Fractional Strategy level and the Application level? 

You probably noticed that at the Fractional Strategy level, students understand fractions as 
quantities at an abstract level and use reasoning and efficient strategies when solving contextual 
and non-contextual problems. At the Application level, they can use these abstract strategies to 
solve problems in a range of mathematical domains. 

Figure 5.5  The Fractional level of the progression. 
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Consider the two solutions shown on the progression for this level. The solution on the left, 
in which a student used unit fraction and benchmark reasoning to determine which fraction 
is closest to 1, is an example of using reasoning about relative magnitude without a reliance on 
constructing a visual model. The problem could be solved using common denominators, but 
that would involve a lot of calculation and is not the most efficient method. The problem can 
be much more efficiently solved using reasoning based on unit fraction understanding (e.g., 7 

6 
is 1  more than 1; 7  is 2  > 1; 1  > 1 ; therefore, 7  is closer to 1), or benchmark reasoning (e.g., 7  is 6 5 5 5 6 6 12
5  < 1). The other solution shown at this level illustrates the use of the distributive property to 12 

multiply a mixed number by a whole number. 

3  3  1243  4 3   4    12   12  3  15 
4  4  4 

Notice the list of additional strategies on the left side of this level of the progression that are evi-
dence of fractional strategies. 

Transitional Strategies 

Now study the examples at the Transitional Strategy level in Figure 5.6. What do you notice about 
the differences between solutions at the Transitional level and the Fractional level? 

Figure 5.6  Transitional Strategy level of the progression 

Visual models were effectively used in the two examples on the left side of Figure 5.6. Both 
solutions show evidence of using equipartitioning to show understanding of the relative magni-
tude of each of the fractions when solving the problems. As discussed in Chapter 2, using visual 
models supports the development of conceptual understanding and fluency of fractions. You can 
imagine a class discussion using these solutions that help the students develop the kind of unit 
fraction reasoning evidenced in the Fractional level example about determining which fraction is 
closest to 1. The Transitional Strategy level, therefore, is an important move toward fluency. 

The examples on the right side of the Transitional Strategy level are evidence of using a frac-
tional strategy, but the reasoning or strategy is not efficient. In the solution to the problem “Bob 
ran 4 times this week. Each run was 3 3  miles long. How far did Bob run this week?” in Figure 5.6 4 
there is evidence that repeated addition of fractions was used to multiply, whereas the solution to 
the same problem at the Fractional Strategy level utilizes a multiplicative strategy. 

In the problem involving subtraction of 3  to determine Billy’s drive to work, the solution has 5 
evidence of repeated subtraction of 1

5 . While this shows a good understanding that can be built 
on ( 5

11 
55

13 
5 = + + ), the strategy is not efficient. 



  

 Figure 5.7 Early Fractional level of the progression. 
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While both repeated addition and repeated subtraction strategies work to solve these problems 
and show an understanding of the operation, they are not efficient. However, as with strategies 
that use visual models, these strategies can provide an opportunity to transition students to the 
use of more efficient strategies. In subsequent chapters, case studies provide examples on how to 
use solutions such as these to help move students toward fluency. 

Early Fractional Strategies 

Study the examples at the Early Fractional level in Figure 5.7. What do you notice about the differ-
ence between solutions at the Early Fractional level and the Transitional Strategy level? 

There is evidence at this level of an attempt to use a fractional or transitional strategy, but the 
solution contains a major flaw or conceptual error. For example, there may be evidence of parti-
tioning visual models, but not equipartitioning, or the student may not have considered the size 
of the whole when using visual models to compare fractions. In other situations, there may be a 
conceptual error in part of the problem. Study the solution to the Billy’s car problem on the right. 
The student understood subtraction could be used to find the missing distance between Billy’s 

51
location and his house, but the solution contains a major error (which may be either conceptional 
or procedural) in regrouping 2 5 as 15 . 

Non-Fractional Strategies 

Study Figure 5.8. What do you notice about the solutions at this level? 

Figure 5.8 Non-fractional level of the progression 

At this level, there is evidence of any of the following: rules being applied without understand-
ing, inappropriate use of whole number reasoning, or the application of the incorrect operation 
given the problem context. The example on the left of the progression at this level is an example 
of applying a rule without understanding, specifically, improper fractions being “big headed” 
leaving 7  closest to 1 because it is “not big headed.” 

12 
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The problem on the right side of the progression at the Non-Fractional level is probably familiar 
from Chapter 1, which introduced a major conceptual error of inappropriately applying whole 
number reasoning when solving fraction problems. Unlike the solution to the same problem at 
the Transitional level, this solution does not show evidence of understanding that the sum, 23

24 , is 
closest to 1. The fact that the student thought it was closest to 20 shows a lack of understanding of 
fractions as numbers, even though the procedure of finding common denominators and adding 
the fractions was correctly applied. 

Important Ideas about the OGAP Fraction Progression 

There are three important ideas about the OGAP Fraction Progression (and other OGAP progres-
sions) that should always be kept in mind. 

Movement Along the Progression Is Not Linear 

The OGAP Fraction Progression provides a guide to students’ development as they progress 
toward fraction fluency and understanding over time. Understanding the evidence in student 
solutions (both written and verbal) and understanding where that evidence falls on the progres-
sion provides important instructional guidance. The arrow on the right side of the progression 
(shown in Figure 5.9) provides guidance on fundamental fraction concepts that can be focused 
on to help student strategies progress from Early and Non-Fractional levels to the Transitional 
level, as well as from the Transitional level to the Fractional Strategy level. For example, when 
students first learn a fraction concept or there is evidence of Early Fractional or Non-Fractional 
strategies or reasoning, instruction should be grounded in using visual models, equipartitioning, 
and unit fraction understanding. Then understandings derived from visual models (e.g., unit 
fraction reasoning when comparing fractions) and application of equivalence and properties of 
operations can help move student solutions from the Transitional Strategy level to the Fractional 
Strategy level. In addition, as you will read in Chapters 11 and 12, strategic use of problem con-
texts can play a key role in helping students make sense of operations with fractions and develop 
procedural fluency. 

Figure 5.9 Instructional strategies used to move students from one level to the next on the progression. 

Using these concepts to help students progress should not be a matter of direct instruction 
on how to make models, on equipartitioning, or on unit fractions. Rather, it is through the 
interaction of these ideas with targeted instructional strategies (e.g., connecting mathematical 
ideas, classroom discourse, and purposeful questioning) that students engage in making sense of 
these concepts and relationships. Chapter 6 provides a framework for using the OGAP Fraction 
Progression to inform instruction. Chapters 7–12 contain case studies that provide some samples 
of how targeted instructional strategies along with the evidence collected in student work can be 
purposely used to help students make sense of concepts and to build fluency. 

Collection of Underlying Issues and Errors Is Important 

At the bottom of the progression there is a list of potential underlying issues or errors that may 
interfere with students learning of new concepts and/or solving problems. This information, cou-
pled with the location of a strategy used along the progression, provides teachers with actionable 
evidence to inform instruction and support students’ continual learning. 



  

 
 

 
 

 

Understanding the OGAP Fraction Framework • 79 

The OGAP Fraction Progression Is Not Evaluative 

You’ll notice that there are no numbers associated with the levels on the progression. The OGAP 
learning progressions are designed to help teachers gather descriptive evidence about student 
learning to inform instruction and student learning, not to assign a number or grade. This 
descriptive evidence includes both the level of the students’ strategy on the progression and any 
underlying issues or errors evidenced in the student work. 

More information on how to use the OGAP Fraction Progression as an instructional tool is 
provided in Chapter 6 and in the case studies in Chapters 7 to 12. 

Problem Structures and Engineering Problems 

The first part of this chapter focused on using research on the teaching and learning of fraction 
concepts to inform instruction and student learning. However, another important part of this 
research is related to how the structures of fraction problems interact with students’ strategies 
and learning of new concepts and how those structures can be used to engineer and strategically 
select problems for students based on the evidence in their work. The arrow on the left side of the 
progression indicates that movement on the progression is not always linear, and this in part has 
to do with the impact of problem structures on student solutions. 

Figure 5.10 shows the fraction problem structures on the OGAP Fraction Framework. Some of 
these structures are probably more familiar to you than others. 

This page of the framework displays the structures of fraction problems that should be con-
sidered when selecting or designing questions for instruction or assessment purposes. Some 
of these structures, as you probably found, are straightforward and familiar, such as the topics 
being addressed (e.g., comparing fractions, operating with fractions) and the types of frac-
tions in a problem (e.g., unit fractions, mixed numbers, negative fractions). Others may be less 
familiar, like the levels of partitioning discussed in Chapter 4 or classes of fractions discussed 
in Chapter 8. 

Understanding the structures in problems that students solve is important because structures 
can influence student thinking and solution strategies. Looking at the example problems and 
student responses on the progression can provide you a sense of the potential for problems to 
elicit a range of strategies as well as a range of misunderstandings based on different structures. 
OGAP formative assessment questions are engineered to elicit developing understandings, com-
mon errors, and misconceptions by careful design. For example, in the question “Which fraction 

7 7 7 7is closest to 1? ( , , ,  )” the numerators are the same. This question can be solved using com-3 5 6 12 

mon denominators but is designed to elicit unit fraction understanding, as shown by the student 
solution in the Fractional Level on the progression (Figure 5.5). The question can also elicit the 
use of visual models, inappropriate whole number reasoning, and other conceptual errors (as 
shown in examples on the other levels on the progression). As you progress through subsequent 
chapters, study the sample problems in each chapter to consider how the structure of the problem 
influences student solutions. 

Chapter Summary 

This chapter focused on the OGAP Fraction Framework and Progression. 

•	 The OGAP Fraction Progression is an example of a learning progression founded on 
mathematics education research, and it is written at a grain size that is usable across a 
range of fraction concepts and by teachers and students in a classroom. 

•	 The OGAP Fraction Progression was specifically designed to inform instruction and 
monitor student learning from a formative assessment perspective. 
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Figure 5.10  Structures of fraction problems. 
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•	 Fraction Problem Structures are important to consider when deciding what evidence to 
collect and to make sure that students are exposed to a wide range of structures when 
learning about fractions. 

Looking Back 

1. The following addition estimation problem, which was discussed earlier in the book, was 
designed to elicit evidence of student understanding of unit fractions and of the magni-
tude of fractions. 

1 7The sum of +  is closest to: 12 8 

a. 20 
b. 8 

1c. 
2 

d. 1 

Show your work. 

Solve the problem and then analyze the evidence in each of the solutions that follow. 
Based on the evidence: 

a) Where on the OGAP Fraction Progression is each solution? What is the evidence? 
b) Are there any underlying issues or errors? 
c) Is the answer correct? 
d) For each piece of student work shown, identify understandings that can be built upon 

and a strategy you would use to help the student build understanding toward the next 
level on the progression. 

Figure 5.11  Noah’s response. 

Figure 5.12  Jayden’s response. 



  

 

1 7The sum of +  is closest to:12 8 

1 7The sum of +  is closest to:12 8 
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Figure 5.13  Emma’s response. 

Figure 5.14 Ethan’s response. 
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2. Briefly explain the instructional importance of each of the following features of the 
OGAP Fraction Progression. 

a. Movement along the progression is not linear. 
b. Te progression provides instructional guidance. 
c. Te progression is not evaluative. 
d. Collection of underlying evidence is important. 

3. Study the questions in a–c used throughout this chapter. For each question review the 
responses to the question found on the OGAP Fraction Progression and other examples 
in the chapter and identify structures that may have influenced student solutions. 

a. Bob ran 4 times this week. Each run was 3 1  miles long. How far did Bob run this 4 
week? Show your work.

7b. Te sum of 1 +  is closest to: a) 20; b) 8; c) 1 ; d) 1. Show your work. 12 8 2 
c. Te distance from Billy’s house to work is 2 1  miles. His car broke down 3 of a mile from 5 5 

work. How far is Billy from his house? Show your work. 

Table 5.1 Instructional Link: Your Turn 

1. To what degree does your math program or instructions focus on regularly gathering formative 
information about student learning to inform instruction? 

2. To what degree does your math program or instruction vary problem structures. 
3. Based on this analysis, identify specific ways you can enhance your math instruction by utilizing 

ideas in this chapter. 
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6 
Using the OGAP Fraction  

Progression to Inform Instruction  
and Support Student Learning 

•	 The	 OGAP	 formative	 assessment	 system 	 is 	cyclical,	 intentional,	 and	 system-
atic. 

•	 The	 analysis	 of	 student 	work	 should	 focus 	on	 strategies	 student	 use	 when	 solv-
ing problems, errors they make, and correctness of solutions. 

•	 There	 are	 a	 range	 of	 instructional	 responses	 to	 evidence	 in	 student	 work. 

Chapter 5 focused on understanding the OGAP Fraction Framework and Progression. This chap-
ter introduces you to ways to use the OGAP Framework and Progression to systematically analyze 
and record the evidence in student work and make instructional decisions. The ideas in this chap-
ter are dependent on understanding the concepts in Chapter 5; thus, it is strongly recommended 
that you read Chapter 5 prior to reading this chapter. 

Assessment experts propose that formative assessment involves the relentless attention to evi-
dence in student thinking (Popham, 2012) and that the evidence must be “elicited, interpreted, 
and used by teachers and learners” (Wiliam, 2011, p. 43). These ideas are at the heart of the OGAP 
formative assessment system introduced in this chapter. 

The OGAP formative assessment process involves gathering evidence of student thinking 
throughout the teaching/learning process, including at the beginning of a lesson, during a lesson 
as students are working and discussing, and at the end of a lesson. This evidence is then analyzed 
using the OGAP Fraction Progression to inform instructional decisions. 

The strategies for informed instructional decision-making introduced in this chapter were 
developed and refined through interactions with thousands of teachers and their students over 
the last two decades. Instructional decisions can be informed by knowledge of specific math-
ematics content, such as fractions, knowledge of the mathematics education research reflected in 
the  OGAP Fraction Progression, and knowledge of instructional strategies that elicit evidence of 
students’ developing understanding. 

Let’s return to the example from Chapter 5, where third-grade teachers were considering the 
degree to which their students applied their understanding of unit fractions in area models to 
order unit fractions. Over the summer, the teachers attended an OGAP training and were intro-
duced to the OGAP Fraction Progression. The next year, when they gave the same problem (Figure 
6.1) to their students, they approached it from a formative assessment perspective utilizing ideas 
and strategies they learned in the OGAP fraction training. 

DOI: 10.4324/9781003185475-6 85 

https://doi.org/10.4324/9781003185475-6


86 • Fraction Progression: Inform and Support   

    
       

 

 
 
 
 
 

  

 

 

 
 

Place the following fractions in order from the smallest to the largest. Show your work. 

1 
8 

1 
2 

1 
4 

1 
3 

Figure 6.1 Formative question. 

Instead of categorizing the student work by correct and incorrect solutions as they did previ-
ously, the teachers now sorted the student solutions based on the levels of the strategies described 
on the OGAP Fraction Progression and used this analysis to inform their planning and instruc-
tion. This process is referred to throughout the book as the OGAP Sort. 

The OGAP Sort involves analyzing the student solutions for three different types of informa-
tion: (see Figure 6.2). 

These are: 

1. Detailed strategy and its level on the progression (e.g., Fractional Strategy using the dis-
tributive property) 

2. Underlying issues or errors in the solution 
3. The accuracy of the solution. 

When looking at student work, it is common to focus primarily on the correctness of the answer 
or accuracy of the solution. Although accuracy is important, by itself it can be an incomplete 
assessment of student understanding and provides little guidance for next instructional steps. 
For this reason, the OGAP Sort begins with first understanding each solution in relation to the 
levels on the OGAP Fraction Progression. Next, teachers identify any underlying issues or errors 

Figure 6.2 Sorting student work into Fractional, Transitional, Early Fractional, and Non-Fractional 
solutions. 

that may interfere with students understanding a concept or solving the problem. It is only after 
making sense of these two aspects of a student solution does the teacher consider its accuracy. In 
this way, teachers can gain a deeper understanding of student thinking while collecting usable 
evidence to inform the next instructional steps. 

After analyzing the solutions based on the levels of the OGAP Fraction Progression, the teachers 
recorded the information on an OGAP Evidence Collection Sheet. In the example shown in Fig-
ure 6.3, one of the teachers, Ms. Smith, returned to the student work, made notes about the strate-
gies used to order the fractions, and noted any underlying issues or errors. Ms. Smith also circled 
the incorrect solutions. This recording sheet parallels the OGAP Fraction Progression and provided 
Ms. Smith with a picture of the evidence in the student solutions in relation to the progression, 
how it is related to errors that may be interfering with learning, and the accuracy of the answer. 
Together, these pieces of information help inform instruction for the whole class, for small groups, 
and for individual students. 
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Remember that the question the teachers were considering was the degree to which their students 
applied their understanding of unit fractions in area models to order unit fractions. 

By using the OGAP Sort, the analysis can move beyond whether students were or were not 
successful in ordering these unit fractions, to look for information and patterns in the work that 
informs instructional decisions. Addressing the three questions that follow can help structure 
discussion and reflection on this valuable information. 

1. What developing understandings can be built upon? 
2. What issues or concerns are evidenced in student work? 
3. What are the potential next instructional steps for the whole class, for small groups, and 

for individuals? 

Based on the information in the OGAP Evidence Collection Sheet in Figure 6.3 and the teacher’s 
goals, how would you answer each of these questions? 

Figure 6.3  Completed OGAP Fraction Evidence Collection Sheet. 

Here is a sample of how Ms. Smith responded to these questions based on the information 
recorded on the OGAP Evidence Collection Sheet (Figure 6.3). 

1. What developing understandings can be built upon? 

Clare and Logan used unit fraction reasoning to order unit fractions. Seven of the stu-
dents successfully used area models to order the unit fractions. Nine of the students 
attempted to use area models. 

2. What issues or concerns are evidenced in student work? 

Partitioning and size of whole errors and some evidence of inappropriate whole number 
reasoning. 

3. What are the potential next instructional steps for the whole class, for small groups, and 
for individuals? 

While there are lots of possibilities for next steps, I think I am going to use some student 
work and lead a classroom discussion that helps all students move to a new understanding. 
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Notice the level of actionable information in these responses and how valuable these findings can 
be for the third-grade teachers as they determine ways to better support their students’ under-
standing of ordering unit fractions. 

It is worth repeating that the goal of OGAP Fraction Sort is helping all students move to more 
sophisticated strategies and mathematics, not just focusing on the incorrect solutions. 

Instructional Response to Evidence 

In working with teachers in OGAP trainings, facilitators find that many teachers’ first instruc-
tional response to the evidence is to put students into small groups. Although this is one 
potentially helpful instructional move, it is vital that teachers understand the range of potential 
instructional responses to evidence collected through the OGAP Sort. To do this, OGAP facilita-
tors have found it helpful to consider three levels of decision-making. Study Figure 6.4. Notice 
that the first level is to think about the evidence to be considered (the mathematics, the level of 
performance on the progression, and guidance from the right arrow on the OGAP Fraction Pro-
gression), then decide on the level of response, and finally, if action is taken select an appropriate 
instructional response. 

Figure 6.4  Instructional response to evidence (Petit et al., 2020, p. 93). 

Given the information on the OGAP Fraction Evidence Collection Sheet in Figure 6.3, Ms. Smith’s 
analysis of the evidence and the ideas outlined in Figure 6.4, she decided to take immediate action 
by facilitating a classroom discussion using student solutions as modeled in the following. 

Study the three student solutions shown in Figure 6.5. Why do you think she chose these three 
solutions to guide the class discussion? 
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Place the following fractions in order from the smallest to the largest. Show your work. 

Logan’s Response 

1 
8 

1 
2 

1 
4 

1 
3 

Grace’s Response 

Jada’s Response 

Figure 6.5 Three formative assessment question responses. 

Ms. Smith chose these solutions to help students use their understanding of partitioning an 
area model to develop a more abstract understanding of the impact of partitioning. She used the 
following questions and a “think, pair, share” strategy to engage students in discussion. 

a. What do you notice about Grace’s solution? 
b. How is Grace’s solution the same or different from your own solution? 
c. A student said that 1  is the smallest because 2 is smaller than 3, 4, or 8. Is this reasoning 2 

correct? How does Grace’s response show this? 
d. Look at Jada’s response. Do you agree or disagree with Jada? How could Jada revise her 

model to get a more accurate answer? 
e. Now show Logan’s solution. How is Logan’s solution the same or different from Grace’s 

solution? 
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Put the following fractions in order from the smallest to the largest. Show your work. 

1 
5 

1 
8 

1 
2 

1 
6 

After looking at these solutions, the teacher decided to pose some additional questions to focus 
more intentionally on unit fraction reasoning: 

a. Name a unit fraction smaller than 1 . How do you know it is smaller than 1 ?8 8 
b. Name a unit fraction that is greater than 1  and smaller than 1 . How do you know? 

6 2 

At the end of the discussion Ms. Smith gave the following exit question (Figure 6.6) to gather 
information about the students’ developing understandings based on the classroom discussion. 

Figure 6.6 Ms. Smith’s exit question. 

This description of Ms. Smith’s instructional response to evidence collected through the OGAP 
Sort illustrates the cyclical nature of the formative assessment process. After you have reviewed 
the work and made instructional decisions, you should again consider the structures in the prob-
lems students will solve during the next lesson and in the next formative assessment question. 

Once more, analysis of student responses from the next formative assessment 
question from one lesson can inform your planning for the next lesson. 

Each subsequent chapter of this book includes a case study indicated by this 
icon. Case studies focus on analyzing evidence using the OGAP Sort and mak-
ing instructional decisions. Some chapters have the case study embedded in 

the chapter and others are found in the Looking Back section of the chapter. Each case study 
is an example of one way to respond to the evidence in student work, but there are many ways 
teachers can respond to the same evidence. As you read through the case studies, consider 
other instructional approaches that could be used that respond to the evidence. 

Table 6.1 provides sample rationales for selecting specific instructional strategies. Notice that 
the table is divided into two sections: the level of response and potential rationale for the response. 
As you work through the case studies in other chapters you may want to reference this table. 

Table 6.1 Instructional Response Rationales (Petit et al., 2020, pp. 105–106) 

Level of Response Potential Rationale 

No immediate action 
necessary 
Incorporate findings 
into subsequent 
lessons 

Take immediate 
action 

The class is ready for the next mathematics concept. 

The instructional materials support further development of the 
concepts that students are struggling with or there is a common error 
that students are making that can be incorporated into subsequent 
lessons (e.g., students are not labeling answers). 
Additional instruction is necessary before proceeding with new 
concepts (see the following). 

(Continued) 
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 Table 6.1 (Continued) 

Instructional Strategy Potential Rationale 

Take Immediate Action 
Plan Instruction and Implement for Full Class or Subset of the Students 
*Strategies that can take up to 10–15 minutes of instructional time 

Instructional Strategy Rationale 
Collect additional For a variety of reasons, you need to collect additional evidence of 
evidence student understanding to understand students’ thinking or strategies. 
Provide actionable Regardless of which instructional strategy is used, students should be 
feedback provided with feedback. It can be whole class feedback or individual 

feedback. Students should be provided time to address the feedback. 
Implement a mini- There is an instructional issue or a specific concept that merits full 
lesson* group discussion. 
Facilitate a discussion Select and sequence student solutions to focus on a specific aspect 
using student of a problem, mathematics content, errors students are making, or 
solutions* to extend thinking to a new concept or a higher level on the OGAP 

Progression. 
Facilitate a discussion Can be used in a variety of situations (e.g., to gather more evidence at 
using a warm-up the beginning of a lesson; to bridge one concept to a new concept). 
problem* 
Engage students in There are a variety of ways to engage students in understanding word 
making sense of word problems. 
problems* 
Reteach to all Few students have progressed based on the evidence; the instructional 

materials did not further student understanding nor help them develop 
strategies. This does not mean repeating the same lesson. Rather 
it means focusing on the same goal using a different instructional 
approach and different instructional materials. 

Chapter Summary 

•	 The OGAP formative assessment system is an intentional and systematic approach to 
gathering evidence and making instructional decisions. 

•	 The OGAP Sort is a strategy to gather evidence of student understanding and fluency in 
relationship to the OGAP Fraction Progression. 

•	 There are a range of instructional responses to evidence in student work. 

Looking Back 

1. Use the OGAP Fraction Progression to analyze student work from students in your own 
classroom. First, design or select a fraction question based on the mathematical goal 
of your lesson. Administer the question at the end of your lesson. Finally, analyze your 
students’ responses using the OGAP Sort and record the information on the OGAP 
Evidence Collection Sheet in Figure 6.7. 
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Item #  Content Fractional Transitional Early Fractional Non-Fractional 

General Errors/Issues
Rule based, not understanding __________________________
Size of whole error ___________________________________
Partitioning Errors ___________________________________
Misinterprets models _________________________________
Calculation error ____________________________________
Property/relationship error ____________________________ 

Inappropriate whole Number reasoning ____________________
Unit missing or incorrect ________________________________
Remainder error ______________________________________
Concept error ________________________________________
Incorrect operation ___________________________________
Equation error _______________________________________ 

Figure 6.7 OGAP Evidence Collection Sheet. 
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Use the evidence to address the following questions. 

a. Where on the OGAP Fraction Progression is each student’s response? What is the 
evidence? 

b. What underlying issues or errors do you notice that may interfere with each student 
learning new concepts or solving related problems? 

c. Based on the evidence in the work, what does it appear that each student under-
stands, upon which future instruction can built? 

d. Based on the evidence, what else do you want to know about the student’s 
understanding? 

e. What might be efective next instructional steps for each of these students? 

Instructional Link: Your Turn 

Use the questions that follow to analyze the ways your math instruction and program supports 
the use of a formative assessment. 

1. To what degree does your math instruction or program focus on intentionally and sys-
tematically gathering formative assessment information to inform your instruction? 

2. In what ways does your math program or instruction use instructional strategies like 
those found in Figure 6.4 to respond to evidence? 

3. Based on this analysis, identify specific ways you can enhance your math instruction by 
utilizing ideas from this chapter. 
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There are some candies in a dish. 

2 of the candies are chocolate.5 
3  of the candies are peppermint.

10 
Are there more chocolate candies or more peppermint candies? 

7 
Equivalence 

Big Ideas 

•	 Saying that two fractions are equivalent is saying that the two fractions are dif-
ferent names (symbols) for the same number. 

•	 There are an infinite number of different names for a given fraction. 
•	 Understanding equivalence and having an efficient procedure to find equiv-

alent fractions is critical as students encounter problems involving com-
paring, ordering, and operating with fractions. 

•	 Decimals are a way of expressing fractional amounts in our base-ten number 
system with a denominator that is a power of 10. 

•	 Understanding decimal fractions involves understanding the base-ten num-
ber system, fractions as numbers, and fraction equivalence. 

Understanding equivalence of fractions is crucial to a student’s ability to compare and order 
fractions and add and subtract fractions. However, researchers say that “students who do not 
understand what a fraction means will have a hard time finding another fraction equivalent to it” 
(Bezuk & Bieck, 1993, p. 129). In addition, some students “have a continuing interference from 
their knowledge of whole numbers” (Post et al., 1986, p. 4). 

Samir, Tania, and Corey (Figures 7.1, 7.2, and 7.3) show a range of understanding about equiv-
alence. Samir is experiencing “interference” from whole number reasoning, Tania uses a model to 
effectively compare the two fractions, and Corey finds equivalent fractions. 

Tania’s solution includes an effective use of area models representing 3  and 1
4 . Her solution 8 

presents evidence that she is ready to engage in discussions about equivalent fractions and their 

Figure 7.1 Samir’s response. Samir incorrectly compared the magnitude of the denominators and 
numerators, not the magnitude of the fractions. 

DOI: 10.4324/9781003185475-7 

https://doi.org/10.4324/9781003185475-7


  

 

  
  

  

  

There are some candies in a dish. 

3  of the candies are chocolate.
8 
1  of the candies are peppermint.
4 

Are there more chocolate candies or more peppermint candies? 

There are some candies in a dish. 

2  of the candies are chocolate.
5 
3  of the candies are peppermint.

10 

Are there more chocolate candies or more peppermint candies? 

96 • Equivalence 

Figure 7.2 Tania’s response. Tania used a model to compare 3  and 1
4 .8 

1Figure 7.3 
1 

 Corey’s response. Corey used an understanding of equivalent fractions ( 2 = 4 and 3 = 2

5 10 10 52 3 
) 

to compare the fractions  and 5 10 . 

5 

use in solving problems. Corey used an understanding he has developed about equivalent frac-
tions to decide whether the dish contains more chocolate or more peppermint candies. 

This chapter focuses on the concept of equivalence and on how students develop an under-
standing of fraction equivalence. 

Understanding the Concept 

Two concepts are central to the equivalence of fractions: 

1. Saying that two fractions are equivalent is saying that the two fractions are both names 
(symbols) for the same number. 

2. The number of different names for a given fraction is infinite. For example, the fraction 1 

1 2 3 4can be expressed by the names (symbols) = = = = , . . ., and so on. 
8642 10 

One way to understand these concepts is to think about the concept in terms of a number 
line. Because all equivalent fractions have the same value, they are located at the same point on a 
number line. The number line in Figure 7.4 is partitioned into 16ths and can be used to illustrate 

2 
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that = = 12 . If one continued to partition the number line into 32nds, 64ths, 128ths, and so on, 16 
one could picture an infinite number of possible names for 3 , all stacked on top of the 12 . That is, 4 16 
if one partitions the number line an infinite number of times, there will be an infinite number of 
equivalent fractions for that point. 

6Figure 7.4 A number line partitioned into 16ths, illustrating that 3
4 , , and 12  are all located at the same 8 16 

6point on the number line. Thus, 3
4 , , and 12  are different names for the same number. 8 16 

84 

Mathew was asked to identify two fractions that are located between 1  and 3 . He responded by 3 4 
listing 2 and 4 . The two fractions Mathew identified are in fact equivalent fractions representing 3 6 
the same number. When asked whether there are any other fractions between 1

3  and 3
4 , Mathew 

responded, “Yes, you can just keep transforming 2” (Figure 7.5). While he did not show evidence 3 
of understanding the density of rational numbers (the focus of Chapter 10), he did provide evi-
dence of understanding that there is an infinite set of fractions equivalent to 2

3 . 

Figure 7.5 Mathew’s response. Mathew’s response shows an ability to find an infinite number of equiv-
alent fractions equal to 2

3 . 

A Framework for the Development of Equivalence Concepts 

“Conceptual understanding of equivalent fractions involves more than remembering a fact or 
applying a procedure” (Wong & Evans, 2007, p. 826); that is, understanding equivalence, as well 
as procedures for finding equivalent fractions, is important for the development of other con-
cepts and should be built in a way that brings meaning to both. Researchers suggest developing 
the connections between the concept and procedure through interaction with visual models and 
manipulatives. Using visual models and manipulatives helps to reveal patterns and relationships 
built on an awareness of the connections between the size and number of equal parts in a whole 
(Behr & Post, 1992; Behr et al., 1984; Payne, 1976; Wong & Evans, 2007). 

For example, Michelle (Figure 7.6) is ready for questions that capitalize on her visual models 
to help build (deepen) her understanding of equivalence. In Michelle’s visual model, it is easy to 
see the relationship between the size and number of parts in the whole. Michelle may be ready to 

2 1describe =  by saying that “fifths are twice as large as tenths” or “there are two-tenths in every 10 5 
fifth.” 

3 6 
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There are some candies in a dish. 

2 of the candies are chocolate.
5 
3  of the candies are peppermint.

10 

Are there more chocolate candies or more peppermint candies? 

Figure 7.6 Michelle’s response. 

Questions for Michelle, such as “How many 10ths are equal to 2 ?” and “How many fifths are 5 
equal to 8 ?” will help her to see the relationships between tenths and fifths. These questions are 10 

n 8like standard questions in some drill exercises, perhaps in the form 2 =  or = n  but are built 5 10 10 5 
on Michelle’s developing understanding of equivalence in her models. 

Taking this one step further, imagine that Michelle partitioned each 10th in half, resulting in her 
peppermint model being partitioned into 20ths (Figure 7.7). Michelle could then consider how 

8many 20ths are equal to 2 . The model in Figure 7.7 shows that 2 = .5 5 20 
2 4 8Michelle can begin to build a set of equivalent fractions = = ). This can be followed by ( 5 10 20 

4additional partitioning to identify other fractions equivalent to 2  (and 5
3 , , and 5 ). In this way, 5 5 5 

Michelle can look for patterns in her models that eventually lead to an efficient procedure for 
finding equivalent fractions based on understandings that grew out of her models. According to 
Van de Walle (2004), the “goal is to help students see that by multiplying (or dividing) the top and 
bottom numbers by the same number, they will always get an equivalent fraction” (p. 260). 

Figure 7.7  Michelle’s peppermint model partitioned into 20ths. 

The importance of building this understanding through patterns and relationships in models 
and not just teaching the procedure directly cannot be overemphasized. Teachers have told us that 
because students are multiplying (or dividing) when they apply a procedure, they have a difficult 
time believing that equivalent fractions represent the same number (OGAP, 2007). 

Additionally, some teachers indicated that they never understood the relationship among mul-
tiples, factors, partitioning of models, and equivalence that underpins finding common denomi-
nators and simplifying fractions. In their own words, they were applying an algorithm without 
understanding (OGAP, 2007). 

Given these findings, it is no surprise that the CCSSM focuses strongly on using visual area mod-
els, fraction strips, and number lines to develop understanding of equivalence at grades 3 and 4. 
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The CCSSM and Equivalence 

At grade 3, students use number lines to observe that many fractions can be located 
at the same point on a number line (see Figure 7.4). They learn that fractions at the same loca-
tion on a number line are equal (equivalent) to each other. They also use visual area models 
and fraction strips to understand equivalent fractions. They begin to understand that fractions 
are equivalent if they are the same size or at the same location on a number line, and they are 

).expected to recognize simple equivalent fractions (e g. .  
At grade 4, developing understanding and applying the concept of equivalence to compare 

fractions using visual models is a major focus. Students are expected to use visual area models 
´ and number lines to develop an understanding of why a  is equivalent to n a , observing that even b n b´ 

though the number and size of the parts in a whole are different, the fractions are equivalent. Later, 
fourth grade students use this understanding to compare fractions with different denominators 
using common denominators, common numerators, or by comparing fractions to a benchmark. 

At grade 5, students are expected to use the understanding of equivalence to add and subtract 
fractions (including mixed numbers) with different denominators, applying their understanding 

´ that a  is equivalent to n a  without relying on visual models or number lines (Common Core b n b´ 
Standards Writing Team, 2013a). 

From Visual Models to Efficient Procedures 
12Evan’s visual area model in Figure 7.8 shows that 3 = . Using visual models like Evan’s and using 4 16 

number lines are important ways for students to start visualizing and understanding that frac-
tions are equivalent if they represent the same area or are at the same location on a number line. 

Figure 7.8  Evan’s response showing that 3  is equivalent to 12 
4 16 . 

However, a transition from relying on visual models to using an efficient procedure for finding 
equivalent fractions requires students to understand the multiplicative relationships in their visual 

12models. Figure 7.9 illustrates how Evan’s visual model can be used to help understand why 3 = ,4 16´ and this can be used to begin to help him understand why a is equivalent to n a  .b n b´ 
Using visual models in this way helps students see the multiplicative relationships that underpin 

the procedure for finding equivalent fractions. To internalize and generalize this understanding, 
students need to interact with a variety of visual models and examine the multiplicative relation-

´ ships to truly understand why a is equivalent to n a  .b n b´ n a´ 
Another way to understand why ab is equivalent to n b  is using the identity property for mul-´ 

tiplication: A number does not change its value when multiplied or divided by 1 (e.g., 4 × 1 = 4; 
4 ÷ 1 = 4). In Evan’s visual model, we noticed that both the numerator and the denominator were 

2=12 
63;=1 

42, 
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Figure 7.9 Understanding the multiplicative relationships that form the foundation for why ab  is equiva-
´ lent to n a  .n b´ 

multiplied by 4. Multiplying both the numerator and denominator by 4 is the same as multiplying 
by 1 because 4  = 1.4

3 4  (or 1) does not change the value of 3 
4Therefore, multiplying ; it just changes the name to × 44 

. You will notice in Figure 7.4 that 3 
16 4  and 12

16  are at the same location on the number line. Follow-
ing the same line of thinking, dividing by 1 does not change the value of 12 , and one can find an 16 

÷ 4 3equivalent fraction by dividing both the numerator and the denominator by 4. That is, 12 = .16 ÷ 4 4 

12 
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Over time, and with enough examples, students should see this multiplicative pattern consis-
tent with all equivalent fractions that leads to the strategy of multiplying (or dividing) both the 
numerator and the denominator by the same number. 

To help students believe that equivalent fractions are different names for the same number, point 
out the visual cues for equivalence in the various visual models. In area models and fraction strips, 
equivalent fractions are represented by the same region, as in Evan’s and Michelle’s responses. On 
number lines, equivalent fractions are located at the same place (Figure 7.4), and, as you will see in 
the discussion related to sets of objects in Figures 7.10 to 7.12, equivalent fractions result in the same 
count of the objects in the fractional parts. 

Figures 7.10 to 7.12 illustrate 421 = =  using a set of 32 apples partitioned into fourths (Fig-84 16 
ure 7.10), eighths (Figure 7.11), and sixteenths (Figure 7.12). Notice that the number of parts 
changes, not the number of apples that are circled; that is, 1  of 32 apples is 8 apples, 2  of 32 apples 4 8 

4is 8 apples; and  of 32 apples is 8 apples, because 16 
1 = 2 

84 = 4 
16 . This is another way, in addition to 

Figure 7.10 Circled here are 1  of the 32 apples. One-fourth of 32 apples is 8 apples. 4 

Figure 7.11  One column contains 1
8  of the apples. Circled here are 2( )1 = 2

8 8  of the apples. Two-eighths 
of 32 apples is 8 apples. 

Figure 7.12  One part contains 1 
16  of the apples. Circled here are 4( )1 = 4

16 16  of the apples. Four-six-
teenths of 32 apples is 8 apples. 
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Kim said that 3  is equivalent to 6  and to 12 . Is Kim correct?
4 8 16 

  

  
   

 

 

 

 
 

 

 

number lines and area models, to show that the value of equivalent fractions is the same and to 
illustrate again the mathematics essential to an understanding of equivalent fractions and the 
importance of equipartitioning (discussed in Chapter 4). 

Researchers have found that instruction that helps students to move flexibly between represen-
tations (spoken and written words [two-fifths], pictorial representations, manipulatives, contexts, 
and symbols) and within representations (e.g., 63 = 84 ) will help students move toward equivalence 
reasoning that becomes free of the need to model (Post et al., 1985). 

To illustrate what it means to move flexibly between representations, let’s return to Michelle’s 
3 3model comparing 2  and  (Figure 7.6). If Michelle is to add 2 +  (using symbols), she would 5 10 5 10 

4 
5 10

need to apply her understanding derived from the model that 2 = . This would allow her to add 
four-tenths + three-tenths = seven-tenths (represented in words). Four-tenths + three-tenths = 
seven-tenths is adding up units in the same way that 3 hours + 2 hours = 5 hours (Gross & Gross, 
1999). Converting both fractions to tenths allows Michelle to add fractions represented by the 
same-sized pieces in her model, just like adding hours to hours. In this way, intentional connec-
tions are made between the words, models, and symbols that bring meaning to each. 

Because of the expectation at grade 5 in the CCSSM that students use equivalent fractions 
(common denominators) to add and subtract fractions, students need a firm understanding of 
equivalence, as well as an efficient procedure to find equivalent fractions. Students who continue 
to rely solely on models to solve problems will be at a disadvantage (Figure 7.13). 

Figure 7.13 Kyle’s response. Kyle’s response shows the limitation of visual modeling as a strategy for 
determining equivalence. In this case, partitioning accurately to sixteenths is a limiting factor. 

Kyle’s response (Figure 7.13) shows the potential limitation of a visual model based solution. 
Although all three fractions are equivalent, Kyle’s inability to accurately partition 16ths (under-
standably so) led him to incorrectly conclude that 12  is not equivalent to 3

4 .16 
Conversely, Kieren (as cited in Huinker, 2002, pp.  73–74) found that premature experience 

with formal procedures may lead to symbolic knowledge that is not based on understanding or 
connected to the real world. This may impede students’ number and operation sense. Recall the 
student solutions from Chapter 1 (Figure 1.7) that used inappropriate whole number reasoning to 
add numerators or denominators rather than considering fractions as quantities. Thus, the effec-
tive use of visual models is essential but not sufficient. Instruction should focus on using visual 
models to help students develop generalizable and efficient strategies. 

The OGAP Fraction Progression and Equivalence 

Fractional Strategies related to equivalence include the use of common denomina-
tors when ordering and comparing fractions, adding and subtracting fractions with 
unlike denominators, and when using the common denominator strategy for division. 



  

  

 

 

  

 

 

Kim said that 3  is equivalent to 6  and to 12 . Is Kim correct? 
4 8 16 

Equivalence • 103 

Corey’s response in Figure 7.3 is an example of a fractional strategy. His solution suggests an 
understanding of the relationship between fifths and tenths. 

Transitional Strategies for equivalence are evidenced by use of visual models when comparing 
or ordering fractions or when demonstrating that two fractions are equivalent. Daniel’s solution 
in Figure 7.14 is an example of effectively using a model to determine whether two fractions are 
equivalent. 

Another example of a transitional strategy is Adam’s response, shown in Figure 9.15 in Chapter 
89, Number Lines and Fractions. Adam used a number line to show that  and 2  are equivalent 12 3 

and are thus located at the same point on the number line. 

Figure 7.14 Daniel’s solution contains evidence of effectively using a visual model to determine 
whether 3  is equivalent to 6

8 .4 

Student understanding of equivalence is dependent upon the concepts developed at the 
Transitional Strategies level through students’ use of number lines and other visual models. This 
work helps students understand that equivalent fractions are different names for the same value, 
located at the same location on a number line, and represent the same area in an area model. As 
student understanding of equivalence deepens, they can use what they learned from working with 
visual models to identify equivalent fractions and develop fluency with strategies at the fractional 
level. 

Early Transitional strategies are characterized by use of a visual model in which there is an 
error, often related to the size of the wholes or with partitioning. Kyle’s response in Figure 7.13 
is an example of this. His model accurately shows the relationship between fourths and eighths; 
however, partitioning errors led Kyle to state that 12 is “way more than 3 .”16 4 

Equivalence has a dual role on the progression. It is an important component at the Fractional 
Strategies level: Students find equivalent fractions, use equivalence to solve problems, and use effi-
cient algorithms based on equivalent fractions. In addition, as shown in the vertical arrow on the 
right side of the OGAP Fraction Progression, understanding of equivalence is an essential concept 
for moving students from Transitional to Fractional Strategies. 

See Chapter 11, Addition and Subtraction of Fractions, for more information on devel-
oping student procedural and conceptual knowledge of addition and subtraction of 
fractions. 

Fraction-Decimal Equivalence 

Fractions can also be expressed as decimal fractions. Decimals are a way to write fractional 
amounts in our base-ten number system, with the whole number units to the left of the deci-

35mal point and the fractional amounts to the right of the decimal point (3.8 = 3 8 ; .62 35 is 62 ).10 100 
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In the base-ten number system, the number of digits to the right of the decimal point indicates 
the power of ten (10, 100, 1000, etc.) in the denominator of an equivalent fraction (e.g., 0.8 = 
8 85 85 85 85; 0.85 = == ; .0 085 == == ).10 10 ×10 100 10 ×10 ×10 1000 

Conceptual understanding of decimal fractions is built upon an understanding of equipar-
titioning and equivalence along with the base-ten number system. Visual models, such as the 
10 × 10 grids shown in Figure 7.15, are an important way to connect these concepts. The larger 
10 × 10 square has been equipartitioned into 10 rows or columns and then again into 100 smaller 

1 1squares. If the 10 × 10 grid is equal to 1, then each row or column is  of 1 and each square is 10 100 
5 50of 1. The shaded portion in Figure 7.15 can be seen as 1 , ,  0 5. ,  , and 0 5. 0.2 10 100 

5Figure 7.15 A 10 × 10 grid can be used to show the equivalence of 1 , 0.5, 50 
100 

,  and 0.50. 2 
, 
10 

Experience naming these visual models with equivalent forms of both fractions and decimals 
is important because some students do not believe that a single value can have different symbolic 
representations (Hiebert & Wearne, 1986). In addition, many students do not believe that num-
bers such as 0.5 and 0.50 can be equivalent because they overgeneralize the fact that appending 
a zero to a whole number increases it by a factor of ten (Hiebert & Wearne, 1986; Karp et al., 
2014). This concept of equivalence becomes important when zeros need to be appended in order 
to add or subtract decimals with different number of digits to the right of the decimal point (e.g., 
0.3 – 0.156 = 0.300 – 0.156). 

There are several additional models (shown in Figure 7.16) that can help students make sense 
of decimal numbers by drawing on fractional understanding. Number lines, discussed in Chapter 
9, are an important visual model to help students make sense equipartitioning whole numbers 
into tenths. 

To understand tenths and hundredths, students can also build on their understanding of 
money (1 dollar is equivalent to 10 dimes or 100 pennies, so 1 dime is 1/10 of a dollar and 1 penny 
is 1/100 of a dollar). A meter stick can be used to help students understand thousandths (1 meter 
= 100 centimeters = 1000 millimeters). In all these models, the repeated partitioning of units into 
ten equal parts is shown to help students make sense of the equivalence between fractions and 
decimals and the relative magnitude of decimal amounts. 



Equivalence • 105   

     
 

 

Figure 7.16  Models for decimals. 

CCSSM and Decimals 

In the CCSSM, students are introduced to decimal notation in grade 4, when they are expected 
to express fractions with denominators of 10 and 100 as decimals, and to express fractions with 

40denominators of 10 as equivalent fractions with denominators of 100 (e.g., 4 = ) and use this 10 100 
52 40 52 92to add fractions with different denominators ( 4 + = + = ). This understanding of 10 100 100 100 100 

equivalent fractions sets the foundation for adding and subtracting with decimals (0.4 + 0.52 = 
0.40 + 0.52 = 0.92). 

In grade 5 students use fraction notation for decimals to the thousandths and use their under-
30standing of equivalence to convert metric units (30 centimeters =  meter = 0.30 meter = 0.3100 

meters). Fraction decimal equivalence provides the foundation for performing operations and 
understanding the system of rational numbers in grades 6–8 (including the equivalence between 
fractions, decimals, and percents). See A Focus on Ratio and Proportion: Bringing Mathematics 
Education Research to the Classroom (Petit et al., 2020) for more on developing students’ under-
standing of percent. 

Chapter Summary 

This chapter focused on the concept of equivalence and research related to developing an under-
standing of equivalence. Examples and discussions focused on: 

•	 The meaning of equivalence 
•	 Using models to develop conceptual understanding of equivalence 
•	 The importance of transitioning students by the end of fifth grade to efficient and gener-

alized strategies for finding equivalent fractions, comparing fractions, ordering fractions, 
and adding and subtracting fractions. 



  

 

  

 

 
 

 

 

 

1Tina ate 2
3

 of her candy and gave 4  of her candy to her sister. She saved the rest of her candy. What is 

the fractional part of the candy that Tina saved? 
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Looking Back 

1. What is the evidence in Emma’s response in Figure 7.17 that demonstrates an under-
standing of equivalence in this situation? 

Figure 7.17 Emma’s response. 

Name one fraction that can be added to 1  to get a sum of 7 .
2 8 

2. Use models to address the following: 

a. Illustrate that 42 
3 , 6 , and 8 

12  are equivalent using area models, set models, and number 
lines. 

b. Name one more fraction that is equivalent to 2 . Adapt one of your models in part a 3 
to show that the fraction is equivalent to 2

3 . 

3. Review Kenny’s response (Figure 7.18) and then answer the questions that follow. 

Figure 7.18 Kenny’s response. 

a. What is the evidence in Kenny’s response that demonstrates an understanding of 
equivalence in this situation? 

b. How might a student select a model to use in solving this problem? Show how the 
model you select can help build an understanding of equivalence. 

4. Chris accurately calculated the distance in the problem in Figure 7.19. 

a. What is the evidence in Chris’s response that he understands equivalence? 
b. What concerns do you have about his solution? 



  

 

 

  

  
 

Billy drove 2 1 miles from his home to work. His car broke down 14  miles from work. How far was he3 5 
from home? 
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Figure 7.19 Chris’s response. 

5. Name the portion of each square in Figure 7.20 that is shaded, using two fractions and 
two decimals. 

Figure 7.20  Identify the shaded portion of the 10 × 10 grids. 

6. Case Study: Building understanding of equivalence by facilitating a discussion using 
student solutions. 

Ms. Smith, a fourth grade teacher, has been working with her class on frac-
tion equivalence. To date her instruction has focused on the meaning of 
equivalence and using context to help students identify fractions equivalent 
to 1  and 1

2 .4 
Ms. Smith’s goals for today’s lesson were for students to use fraction 

visual models to: 

•	 Develop understanding that equivalent fractions are different names for the same 
value/quantity. 

•	 Lay the foundation for understanding the multiplicative relationship between 
equivalent fractions. 

To accomplish these goals, her lesson included opportunities for students to work with 
equivalent fractions (e.g., 1  = 2 ). Students were asked to draw visual models to represent the 3 6 
different pairs of equivalent fractions and describe patterns and relationships they noticed 
(See Figures 7.8 and 7.9 for examples). 
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.  

Ralph correctly drew this picture to represent 3 
4

 of the rectangle. 

Kim said that 3 is equivalent to 6 . Is Kim correct? Use Figure 7.21, one of your own, or an explana-4 8
tion to explain why Kim is correct or incorrect.  

6b) Analyze Evidence in Student Responses using the  OGAP Sort. S tudy the four 
sample  solutions to the exit question found in  Figure 7.22 . What does each solution

  Figure 7.22  Four sample student responses to Ms. Smith’s exit question. 

Smith administered the following exit question at the end of the lesson. Together with what 
she observed as the students were working in small groups during the lesson, the evidence 
from the exit question will inform her plan for tomorrow’s lesson. 

6a)  Study and solve the exit question.  Consider the different solutions you would 
expect to see from students. 

Figure 7.21  Ms. Smith’s exit question. 

To gather evidence of her students’ understandings related to the two lesson goals, Ms. 
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suggest about the student’s understanding that equivalent fractions are different 
names for the same number and the multiplicative relationships that exist between 
equivalent fractions? 

6c) Record your analysis of each solution in Table 7.1. 

•	 What level on the progression best represents each solution? 
•	 List any errors and/or underlying issues evidenced in each student response. 

Table 7.1 Record sheet for progression levels for student solutions in Figure 7.22 

Fractional Transitional Early Fractional Non-Fractional 

Underlying Issues? 

6d) Use the evidence you recorded in Table 7.1 to answer the questions: 

1. What is evidence of developing understanding that future instruction can build 
upon? 

2. What are some errors or misconceptions that future instruction needs to 
address? 

3. Identify potential next instructional steps? 

Ms. Smith’s response to the evidence she collected in the OGAP Sort 

Ms. Smith decided to use student solutions from the exit question to begin the next day’s 
lesson. She wanted to continue working on the goals of the lesson, that equivalent fractions 
are different names for the same value and to understand the multiplicative relationships 
that exist between equivalent fractions. Ms. Smith plans to project a pair of carefully chosen 
student solutions that will form the basis for a targeted class discussion. She decided to begin 
the discussion with solutions D and G. 

Analyze Ms. Smith’s lesson plans by answering the questions: 

6e) Why might Ms. Smith have chosen Solutions D and G as the basis for a class 
discussion focused on the concept that equivalent fractions are different names 
for the same value? 

Figure 7.23 Solutions D and G. 
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6f) Write two or more questions Ms. Smith could ask about Solutions D and G that 
focus on the idea that equivalent fractions are different names for the same value. 
How might these questions engage all students including those whose responses 
to the exit question were early or non-fractional. 

Next Ms. Smith focused a class discussion on Solutions A and D in Figure 7.24. She wanted 
to use this pair of fractions to focus student thinking on the multiplicative relationships that 
exist between equivalent fractions. 

6g) Why might this pair of student solutions be a good choice for this purpose? 

Figure 7.24 Solutions D and A. 

6h) Using solutions D and A write two or more questions to ask students that would 
help them see the multiplicative relationship between these equivalent fractions. 

Instructional Link—Your Turn 

Use the prompts in Table 7.2 to help you think about how your instruction and mathematics pro-
gram provide students with the opportunity to develop understandings of equivalence. 

Table 7.2 Instructional Link—Strategies to Support Development of Concepts Related to Equiva-
lence 

Do you or does your program: Yes/No 

1. Use visual models to build understanding of equivalence? 
2. Use visual models to build understanding of decimals and fraction-decimal 

equivalence? 
3. Transition from visual models to a generalized understanding of equivalence for 

comparing and ordering fractions and decimals? 
4. Transition from visual models to a generalized understanding of equivalence for 

adding and subtracting fractions? 

Identify any gaps between your instruction (including what your program offers) and what 
should be addressed based on the research from this chapter. 
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8 
Comparing and Ordering 

Big Idea 

•	 Students should develop a range of strategies for comparing and ordering 
fractions. 

•	 Students often misapply whole number and/or fractional reasoning when 
comparing and ordering decimals. 

•	 Comparing and ordering decimals should be built upon an understanding 
of fractions as numbers, visual models, and relative magnitude. 

This chapter focuses on comparing and ordering positive fractions and decimal fractions: frac-
tions written with a numerator and a denominator that are both positive. Ultimately, however, 
students should also be able to: 

•	 Compare a positive fraction with a negative fraction (any positive fraction is greater than 
any negative fraction) 

3 1•	 Compare and order negative fractions and decimals (e g. .,− < − )3 .4 

See Chapter 9, Number Lines, for more discussion of comparing and ordering negative 
fractions using number lines. 

Note that many of the examples in this chapter involve making comparisons that are not in a 
1 2 3 1context, e.g.,which fractionisclosest to1: ,  , ,  ). Unless otherwise stated, it is assumed that ( 2 3 4 5 

the fractions being compared are associated with the same-sized whole. See Chapter 3, What Is 
the Whole?, for more about fractions and their associated wholes. 

Comparing two fractions involves determining the relative magnitude of the two fractions; that 
is, are they equal to each other, or is one fraction less than or greater than the other? (See Figure 8.1.) 

Figure 8.1  Examples of comparisons of fraction pairs. 

Ordering fractions involves putting a set of fractions in order from the least to the greatest or 
the greatest to the least. (See Figure 8.2.) 

DOI: 10.4324/9781003185475-8 
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3 32. 10 4 
7 53. 8 6 
9 34. 16 8 

 
 
 

 

 

 
   

   

 

Figure 8.2 An example of fractions ordered from least to greatest. 

“Fraction order and equivalence ideas are fundamentally important concepts. They form the 
framework for understanding fractions and decimals as quantities that can be operated on in 
meaningful ways” (Post et al., 1993, p. 15). 

Rewriting fractions as equivalent fractions with common denominators is one way to compare and 
order fractions. Students sometimes learn to perform this procedure, however, without considering the 
meaning or relative magnitude of the fractions they are comparing (See Figure 1.1 in Chapter 1). In 
addition to using common denominators, students should develop a variety of reasoning strategies 
to compare and order fractions. 

Study the fraction pairs in Figure 8.3. Explain which fraction is larger by using reasoning rather 
than rules or procedures. 

Figure 8.3 Which fraction is larger? Use reasoning rather than rules or procedures to justify. 

To determine which fraction is greater, you may have thought about the size of the parts 
or pieces, real life contexts like cooking or measuring, unit fractions, equivalent fractions or 
decimals, or common benchmark fractions (more fully explained later in the chapter). These 
reasoning strategies are based on understanding of the meaning of fractions and are impor-
tant for understanding fraction magnitude and order. 

Classes of Fractions 

The relationship between the numerators and denominators of the fractions being compared or 
ordered may have impacted the strategy you chose to use. In fact, there are three different classes 
of fraction relationships, and these relationships impact the types of reasoning that students use 
as they compare and order fractions: 

3 5 3 5•	 Fractions with different numerators, but same denominators e g. .  for and ( , 6 6 , 6 < )6 
3 3 3 3•	 Fractions with the same numerators, but different denominators (e g  for and. ., , < )8 5 8 5 
3 5 3 5•	 Fractions with different numerators and different denominators e g. ., for and , <( 8 6 8 6 ). 

(Behr et al., 1984) 

One can find examples of each of these classes of fractions in Figure 8.3. Number 1 involves 
comparing fractions with the same denominators. Number 2 has fractions with the same 
numerators but different denominators. Numbers 3 and 4 involve comparing fractions with 
different numerators and denominators. As you read this section on the development of stu-
dents’ reasoning strategies as they compare and order fractions, think about the role these 
numerator-denominator relationships have on student strategies. 
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Developing a Range of Reasoning Strategies When Comparing and Ordering 
Fractions 

Researchers have found that students use five types of reasoning when they successfully compare 
and order fractions. 

1. Reasoning with unit fractions (e.g., 1 
4 <

1 
3  because fourths are less than thirds) 

7 
8 >

4 
5  because 1

8  [the dis-2. Extension of unit fraction reasoning to non-unit fractions (e.g., 
tance 7  is away from a whole] is smaller than 1  [the distance 4  is away from a whole]) 8 5 5 

3. Reasoning based on equipartitioning visual models (OGAP, 2005) 
4. Reasoning by using a common benchmark or reference fraction, such as 1 

2 
5.	 Reasoning involving equivalence. (Behr & Post, 1992) 

Reasoning with Unit Fractions 

Many students learn to compare fractions with common denominators, such as 5  and 1  in num-6 6 
ber 1 of Figure 8.3, by following a rule. That is, when the denominators are the same number, the 
fraction with the larger numerator is the larger fraction. While this rule works when the denomi-
nators are the same, it is not built on a unit fraction understanding of fractions that is important 
for understanding the meaning of a fraction. An alternative approach to comparing these frac-
tions, developed through early experiences with equipartitioning (see Chapter 4), involves using 

+ + + + >  or 5 1 1( )6 > ( )6 
1 
6 

1 
6 

1 
6 

1 
6 

1 
6 

Why is this distinction important? One reason is that the comparing numerator rule may rein-
force inappropriate whole number reasoning by focusing simply on the numerator, not on the 
fraction as a quantity. Additionally, some researchers indicate that “a child’s understanding of 
the ordering of two fractions needs to be based on an understanding of the ordering of unit frac-
tions” (Behr & Post, 1992, p. 21). 

Recall from Chapter 1 that a unit fraction is defined as a fraction with numerator of 1 and 
1 1 1 1 1 1with a denominator that is any positive whole number (e g. ., ,  , ,  ,..., ,... ,...). Unit fraction 1 2 3 4 50 128 

reasoning involves using an understanding of the relative size of unit fractions to solve problems. 
An important aspect of unit fractions is the fact that every fraction a  is composed of a copies of 
1 5 1e g. ., is 5 copies of b ( 6 6 ). 

b 

Students gain an understanding of the relative magnitude of unit fractions when they inter-
act with manipulatives and draw visual models to solve problems that involve comparing unit 
fractions. 

Figure 8.4 shows the response from a student who equipartitioned rectangles to compare the 
1 1fractions 10 , , and 1 . Teachers can capitalize on student-generated visual models like these by 5 3 

asking about the relationships in visual models that can lead to an understanding of the size of the 
parts in a whole based on the magnitude of unit fractions (e.g., “What do you notice about the size 
of the pieces in relationship to the size of the denominator in each of your diagrams?”) 

1Figure 8.4 Visual area models partitioned into tenths, fifths, and thirds with 10
1 , , and 1 of each shaded. 5 3 

unit fraction understanding: 1 .6 
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1 1When comparing 1
2 , 3 , , and 1 (Figure 8.5), Kayla used unit fraction reasoning. She described 4 5 

the relative sizes of the unit fractions and then related that information to the magnitudes of the 
fractions by saying that “fifths are smaller parts than fourths, thirds, or halves.” Her comment that 
“there is also only one part” probably refers to the fact that each of the rectangles has one part 
shaded, that is, the fractions are unit fractions. 

Figure 8.5 Kayla’s response. Kayla used unit fraction reasoning when comparing 1 
2
, 1 1 

3 , , and 1 
4 5

. 

Extension of Unit Fraction Reasoning to Non-Unit Fractions 

Extending unit fraction reasoning means using what is known about unit fractions to compare 
and order fractions with: 

•	 The same numerator but different denominators. For example, 1 
7 <

1 
5 , therefore 2 

7  must 
be less than 2

5 . 
•	 Different numerators and different denominators, where the difference between the 

numerator and the denominator in each fraction is the same. For instance, the fractions 
5 3 2 and  are  and 5

2 , respectively, away from the whole. Five-sevenths is two-sev-
( )

7 5 7 
5 21− =7enths less than one whole  and three-fifths is two-fifths less than one whole 7 

3 21− =( 5 5 ) . Because 2 
7 <

2 
5 

2  is “taking away” less than subtracting 2 
7 5, subtracting . The 

less one subtracts from 1, the closer to 1 the difference will be, thus 5 
7 >

3 .5 

One can also compare and order fractions with the same numerators but different denomina-
tors, for example 3  and 3 , by extending unit fraction reasoning. Using the representations of 3 

8 5 8
3 
5and  in Figure 8.6, one can see that eighths are smaller than fifths (given the same-sized whole). 

3311
Because the number of eighths (three) and fifths (three) are the same (the number of parts shaded 
in each of the area visual models in Figure 8.6), and , it follows that < < .8 5 8 5 
Mike’s solution (Figure 8.7) contains evidence of extended unit fraction reasoning. He describes 

the impact of the magnitude of the denominator on the size of the pieces. He then uses the size 
1 1 3 3of  and  to compare 3  and . Finally, he concludes that  is smaller than 3  “because they 7 5 7 5 7 5 

have the same numerators.” 

Figure 8.6 The number of equal parts shaded is the same, but the size of each of the parts is not. 
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Mary is comparing the fractions 2 and 4
3 . Mary thinks that both fractions are equal because they are3 

both one part away from 1. Do you agree with Mary? Explain your thinking. 

  
 

Figure 8.9  Visual area model comparing 6  to  5
7 .8 

Figure 8.7 Mike’s example of extending unit fraction understanding to non-unit fractions. 

Linda hiked 3  of the way up Mt. Mansfield. Jenn hiked 3 of the way up Mt. Mansfield. Who hiked farther?7 5 

When comparing 3  to 2 , Sam (Figure 8.8) extends his unit fraction reasoning. He compares 4 3 
fractions with different numerators and different denominators where the difference between 
the numerators and the denominators is the same. His explanation that “both are one part from 

3 1a whole” can be rewritten as 1− =  and 1− = . He continues his explanation that “thirds are 4 4 
12 

bigger pieces than fourths,” that is, since thirds are bigger pieces than fourths and each fraction is 
3 

3 

one part from the whole, Sam concludes that “ 

3

 is closer to 1 than 2
34 .” 

Figure 8.8 Sam’s response. Sam’s response shows evidence of using extended unit fraction reasoning 
by first recognizing that each fraction is one fractional part from a whole and then using the relative 
distance each fraction is from 1. 

The same reasoning can be used when comparing fractions in which both fractions are two 
or more parts away from the whole. Using the area visual models in Figure 8.9 comparing 6  to 7

5 ,8 
one can see that eighths are smaller pieces than sevenths. Since 1 

8 <
1 
7 , then 2 

8 <
2 
7 . Therefore, 6

8  is 
closer to 1 than 7

5 . 
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Comparing to Benchmarks 

Another reasoning strategy that students can use to compare and order fractions is to use refer-
1ence points or benchmarks. Reference points such as 0, , and 1 can be useful benchmarks for 2 

students to consider as they order and compare fractions. To compare a fractional amount to a 
benchmark, students integrate their understanding of equivalence, unit fractions, and the under-
lying relationships between the numerator and the denominator. For example, in Tyler’s response 
(Figure 8.10) there is evidence of using equivalence when converting improper fractions into 
mixed numbers and again when 7  is referred to as “ 2  away from 1.” In addition, there is evidence 6 12 

7of understanding the contribution of the numerator and denominator by recognizing that 12 or 
1 17( ) is not 5 away from one, but rather “ 5 or 5  away from 1.” 12 ( )12 12 

Figure 8.10 Tyler’s response shows evidence of applying understanding of equivalence, unit fractions, 
and the underlying relationships between the numerator and the denominator. 

Which fraction is closest to 1? Show your work. 

As students become flexible in using benchmarks and combining their understanding of equiv-
alence and unit fractions, they will be able to compare and order unfamiliar fractions such as 13 

241 1and 24 , noticing that 13  is  greater than 1  and 24  is less than 1  by50 24 24 2 50 2 50 . 

Equivalence: Common Denominators 

Although Tyler could have relied on unit fraction reasoning without the use of equivalence to 
solve the problem in Figure 8.10, there are some fraction combinations that are difficult to com-
pare using reasoning strategies alone. In addition, some fraction comparisons lend themselves to 
using common denominators for easy comparisons. For example, question 4 in Figure 8.3 can 

3 9 1easily be solved using either benchmark reasoning ( 9 >  because is  greater than 1  while 16 8 16 16 2 
3 1 1 3 9 6is less than ) or equivalence ( 9 > because > ).8 8 2 16 8 16 16 

Behr and Post (1992) found that “ultimately the problem of ordering two general fractions (dif-
ferent numerators and denominators) rests on considerable knowledge of fraction equivalence” 
(p. 23). 

See Chapter 7, Equivalence, for more discussion on developing understanding of 
equivalence. 
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Trevor ordered the following numbers from smallest to largest. Is Trevor correct? Why or why not? 

Trevor’s Order 
0.8 9% 0.55 

 
 

Comparing Decimals 

Using reasoning strategies to compare decimals involves reasoning about their relative magnitude 
and considering the place value of each digit. Many of the errors students make when comparing 
and ordering decimals come from overgeneralization from whole numbers: 

•	 Some students compare the digits to the right of the decimal point as if they are whole 
numbers (e.g., 0.23 is greater than 0.8, because 23 is greater than 8; or 15.6 is smaller than 
15.45 because 6 is smaller than 45) (Sackur-Grisvard & Léonard, 1985). 

•	 Some students select the number with more digits as the larger number (e.g., 0.257 is 
greater than 0.6) (Desmet et al., 2010; Hiebert & Wearne, 1986; Karp et al., 2014). 

•	 Some students believe that annexing a zero makes the number larger (e.g., 0.560 is greater 
than 0.56) (Hiebert & Wearne, 1986) 

Figure 8.11 shows an example of overgeneralizing from whole numbers to compare decimals. To 
order the given numbers, Connor appears to have thought about the quantities as whole numbers 
(8, 9, and 55). 

Figure 8.11 Connor uses whole number reasoning to compare decimals and percents. 

In all these cases, the overgeneralization can be addressed by using visual models to make 
sense of decimal place value and relative magnitude. For example, Figure 8.12 shows how the area 
model can be used to help students compare decimals by reasoning about their size. The square 
on the left has been partitioned into 10 equal parts, so if the large square represents 1, the shaded 

2region represents  or 0.2 of 1. The square on the right has been partitioned into 100 equal parts, 10 
9so the shaded region represents  or 0.09. By comparing the shaded regions, one can see that 100 

0.2 is larger than 0.09, because hundredths are smaller than tenths. 

Figure 8.12  The area model can be used to show relative magnitude of decimal fractions. 
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1 11Which fraction is closest to 1? 2
1, 6, 13, or 7

9 

Students are often taught a procedure for comparing decimals where they add zeros to the 
shorter quantity so that the numbers have the same number of digits (e.g., changing 0.2 to 0.20 
to compare it to 0.09 by comparing 20 and 9). While this leads them to the correct answer, it can 
reinforce the misconception that the amount to the right of the decimal point can be treated like 
a whole number (Resnick et al., 1989). In contrast, anchoring students’ understanding in visual 
models supports reasoning about relative magnitude. 

At grade 3, students coordinate unit fraction understanding with work on number 
lines and other visual models as they compare and order fractions and recognize that 

equivalent fractions name the same quantity and are found at the same location on a number 
line. In addition, students at grade 3 recognize fractions that are equivalent to whole numbers 

5 4(e g. ., = 1; = 4).5 1 
At grade 4, students extend this to comparing fractions with unlike denominators by creating 

common denominators or numerators and by comparing fractions to a benchmark. They justify 
their solutions with reasoning strategies and visual models. They also compare two decimals to 
hundredths by reasoning about their size and using visual models to justify conclusions. 
At grade 5, students apply their understanding of comparisons and equivalence to operations 

with fractions. They also compare two decimals to thousandths based on the meanings of the 
digits in each place. 

Flexibility Over Time 

With experience using visual models to help generalize ideas, students will move beyond 
hand-drawn visual models to use mental models as they generalize ideas to flexibly compare and 
order fractions and decimals. For example, Nicholas used a range of reasoning strategies in the 

1 1 11 7solution shown in Figure 8.13. He first compared each fraction ( , ,  , )  to the benchmark 1. 2 6 13 9 
7He then eliminated 1  and 1  as being farther from 1 than 13

11  or . Finally, he used his extended unit 2 6 9 
fraction reasoning to compare 11  to 7 : “thirteenths are smaller than ninths so 11 is closest to 1.” 13 9 13 

Figure 8.13 Nicholas’s response. Nicholas used the benchmark 1 and extended unit fraction reasoning 
to identify 11  as the largest fraction in the set. 13 

In Figure 8.14, Shaniqua determined the correct order of the numbers by using her under-
standing of equivalence and place value to express each amount as a fraction out of 100. Terrence 
shows understanding of relative magnitude, place value, and benchmarks, reasoning that 0.55 is 
close to one-half and 0.8 is close to 1. There is, however, a misconception about percent (that 9% 
is like 9 ones rather than 9 hundredths). 
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Trevor ordered the following numbers from smallest to largest. Is Trevor correct? Why or why not? 

Trevor’s Order 
0.8 9% 0.55 

Shaniqua’s Response 

Terrence’s Response 

Figure 8.14 Shaniqua’s and Terrence’s Responses. 

Teachers Need Flexibility, Too 

The evidence in the 2005 OGAP Study indicated that the major strategy that students in grades 3 
through 5 used on the post-assessment to compare and order fractions involved the use of visual 
models. While the use of visual models to compare and order fractions appeared to result in a 
decrease in the use of whole number reasoning as compared to the pre-assessment, researchers 
saw few examples of students using unit fraction reasoning, extended unit fraction reasoning, 
equivalence ideas, or benchmarks (OGAP, 2005). Researchers suspected that the students’ focus 
on visual models over other reasoning strategies was directly related to instruction, perhaps 
because teachers themselves may not have fully understood a range of strategies to solve fraction 
comparison problems. To test the conjecture and measure the impact of the professional devel-
opment focused on ordering and comparing fractions, teachers involved in the OGAP Fraction 
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 Figure 8.15 OGAP teacher pre-assessment question. 

7 11 1Which fraction is closest to 1? 
2
1 , 9, 

13
, 

6 
Solve this problem using three different strategies. 

This problem was specifically designed to provide opportunities to be solved using any of the five 
strategies described in this chapter, with the use of a common denominator or visual models as 
the least efficient ways to solve this problem. Yet, two-thirds of the teacher pre-assessments sampled 
(n = 67) showed evidence of using only a visual model or common denominators as exemplified in 
the teacher response in Figure 8.16. 

As a result of these findings, the OGAP professional development for teachers began to empha-
size the use of a range of strategies described in this chapter. 

To analyze the teacher post-assessment responses associated with the pre-assessment response 
in Figure 8.16, go to question 6 in Looking Back. 

  

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 

 

Scale-Up (2007) solved the problem found in Figure 8.15 as a part of the teacher pre-/post-assess-
ment in that study. 

The OGAP Fraction Progression and Comparing and Ordering Fractions 

Fractional Strategies for comparing and ordering fractions show evidence of students 
internalizing the use of benchmarks, unit fraction and extended unit fraction reason-
ing, and equivalence without having to draw visual models. At this level, students show 

flexibility across a range of problems and over time show evidence of selecting strategies based on 
the fractions being compared and the context for the comparison. Sam’s response in Figure 8.8 is 
an example of a fractional strategy. Sam used extended unit fraction reasoning to determine that 
3 
4 >

2 
3 . 

Figure 8.16 Sample OGAP teacher pre-assessment, in which common denominators and a general 
description about the use of fractions bars were the only solutions used to identify the fraction closest 
to 1. 

Transitional Strategies show evidence of effectively using visual models and number lines to 
compare and order fractions. The solution in Figure 8.9 is an example of a transitional strategy. 
The two visual models used to compare 6  to 5  utilize the same size whole and are equipartitioned. 8 7 
The models clearly show that 6 

8 >
5 .7 
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Sam and Don each have a garden. The gardens are the same size. 5  of Don’s garden is planted with corn. 6
3 
6  of Sam’s garden is planted with corn. Who has more corn in his garden? 

 

 

 

 

 
 

Early Fractional Strategies are often characterized by attempts at using visual models to com-
pare and order fractions where the wholes are either not equipartitioned or are not the same size. 
Kim’s solution in Figure 2.21 in Chapter 2 is an example of an early fractional strategy. Kim used 

2circles to compare 1
2 , , and 3 . Her visual models were not accurate enough to determine that 3 5 

2 
3 

3 . Due to a difference in the size of the wholes and perhaps to inaccurate partitioning, Kim 
erroneously concluded that 32 
> 5 

= .53 
Non-Fractional Strategies for comparing and ordering fractions are often evidenced by inap-

propriate whole number reasoning and by the application of rules without understanding. 
Figure 1.5 in Chapter 1, Understanding a Fraction as a Number, exemplifies a nonfractional 
strategy that utilizes inappropriate whole number reasoning. 

Chapter Summary 

This chapter focused on developing a range of strategies to order and compare different classes 
of fractions: 

•	 reasoning with unit fractions (e.g., 1 
4 <

1 
3  because fourths are smaller than thirds) 

7 
8 >

4 
5  because 1 

8  away •	 extension of unit fraction reasoning to non-unit fractions (e.g., 
from a whole is smaller than 1  away from a whole) 5 

•	 reasoning based on visual models 
•	 reasoning through the use of benchmark fractions such as 1 

2 
•	 reasoning involving equivalence 

Looking Back 

1.	 Review Ted’s response in Figure 8.17. While we cannot be sure, it is possible that Ted relied 
on a rule to compare 5  to 3 . What are two reasoning strategies that Ted could have used to 6 6 
decide who planted more corn in their garden? Describe each. 

Figure 8.17 Ted’s response. 

2. Review the fraction pairs in Figure 8.3 and answer the following questions. 

a. Which fraction pairs or sets of fractions provide the opportunity to use benchmarks 
to compare the fractions? Explain your choices. 

b. Which fraction pairs or sets of fractions provide the opportunity to use unit fraction 
reasoning to compare the fractions? Explain your choices. 

3. Read through Mark’s response to the problem in Figure 8.18. 

a. Why did Mark’s reasoning result in a correct solution to the problem? 
b. Under what conditions would Mark’s reasoning not work? Explain your answer with 

examples. 
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Linda hiked 1  of the way up Mt. Mansfield. Jenn hiked 1 of the way up Mt. Mansfield. Who hiked far-4 3 
ther? Explain your answer using words and diagrams. 

  
   

 

	 	 	 	 	 	 	 	 	 	 	 	 	 	

c. Provide a couple of examples of pairs of fractions you might ask Mark to compare to 
determine whether he can extend his unit fraction understanding to comparing other 
fractions. Provide a rationale for each of the fraction pairs. 

Figure 8.18 Mark’s response. 

4. Read through Tom’s response to the problem in Figure 8.19 and answer the following 
questions. 

Figure 8.19  Tom’s response. 

Which fraction is closest to 1? 

a. What misunderstanding led Tom to conclude that both 3  and 2  are closest to 1? 4 3 
b. What additional questions might help Tom to understand why 3 and 2  are not the 4 3 

same distance from 1 even though they are both “1 away” from a whole? 

5.	 Read through Kim’s and Bob’s responses to the same problem in Figures 8.20 and 8.21. 
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Susan ate 11  cupcakes and Billy ate 9  cupcakes.
2 8 

Who ate more? 

Use words or diagrams to explain your answer. 

Susan ate 11  cupcakes and Billy ate
2 

9 
8

cupcakes. Who ate more? 

Use words or diagrams to explain your answer. 

Figure 8.20 Kim’s response. 

Figure 8.21  Bob’s response. 

a. How did Kim and Bob use their knowledge of comparing proper fractions when they 
compared a mixed number to an improper fraction? Explain. 

b.	 Identify some mixed numbers/improper fractions that can be compared using bench-
mark reasoning to halves. Explain your choices. 

c.	 Identify some mixed numbers/improper fractions that can be compared using unit 
fraction understanding. Explain your choices. 

6. Figure 8.22 is the post-assessment response associated with the pre-assessment response 
shown in Figure 8.16. Identify the strategies used in Figure 8.22. Identify where each 
of the strategies is found on the OGAP Fraction Progression. Explain each of your choices. 

7.	 Order these decimals from greatest to least, using reasoning or visual models to defend 
your answer. 

23.4 21.493 23.034 23.12 

What are some errors that you anticipate students might make when ordering these 
decimals? 
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Which fraction is closest to 1? 2, 9 , 13, 6? 

Solve this problem using three different strategies. 

Figure 8.22  Teacher post-assessment response. 
7 11 11

8. Case Study—Facilitate a discussion using student solutions: Developing 
Unit Fraction Reasoning 

Part I: Ms. Smith’s Lesson Background 

Goal: To use visual models to develop understanding of unit fractions and benchmark 
reasoning when comparing fractions. 

To accomplish the goal Ms. Smith asked students to compare a variety of familiar fractions 
1 
3 

3 
4(e.g., Which is greater?  ?) by creating visual models. She then had students compare or 

3411
unit fractions and fractions in which unit fraction reasoning could be used (e.g., Which 
is closest to 0? ? ?) using visual models. After solving these and other similar or or3 4 5 4 
problems students were asked to make observations about their visual models (both num-
ber lines and area models). By the end of the lesson Ms. Smith noticed that many students 
appeared to be moving away from relying on visual models to using benchmark and unit 
fraction reasoning when comparing fractions. 

Part II: Exit question 

At the end of the lesson Ms. Smith administered these exit questions. She planned to 
use the evidence in the student work to help plan her lesson for the next day. 

Q1: Which fraction is closest to 1? 5 
6 or 7 

8 
5Q2: Which fraction is closest to 1? 3 or2 4 12 



 or Q2: Which fraction is closest to ? 3 or 51 
2 124 
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8a) Solve Q1 and Q2 by thinking about different solutions you would expect to see from 
students. 

8b) Q1 was like the comparisons students made during the class, but with different 
fractions. However, the students did not make comparisons to the benchmark 1

2 . 
Why do you think Ms. Smith chose to give her students both questions? 

Part III: Analyze evidence 

Ms. Smith quickly reviewed the student responses using the OGAP Sort for Q1 and found 
all but one student used unit fraction reasoning in their solution. Study the four solutions 
to Q2 in Figure 8.23. All but Amanda’s solution is typical of the responses of the whole class 
to Q2. 

8c) Where on the OGAP Fraction Progression is the evidence in these solutions? Record 
the level, strategy, and any underlying issues in Table 8.1. 

Figure 8.23 Arnold’s, Amanda’s, Carl’s, and Keisha’s solutions to Q2. 

8d) Planning Questions: 

i) What evidence of developing understandings can be built upon?
 ii) What are some errors or issues that need to be addressed? 
iii) What are potential next instructional steps? 
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Table 8.1 Evidence Collection Table 

Fractional Transitional Early Fractional Non-Fractional 

Underlying Issues? 

Part IV: Planning Based on Evidence 

The fact that most students fell back on using visual models to solve Q2 didn’t surprise 
Ms. Smith. She decided to use student solutions from Q2 to help move students to use unit 
fraction reasoning without having to draw visual models. 

8e) Choose two solutions that can be used to help students move from visual models to 
using unit fraction reasoning. 

8f) Why did you choose the solutions that you did? 

8g) Explain how you would engage students in a discussion using the solutions you chose 
to help them see how unit fraction reasoning is represented in the visual models. (e.g., 
What questions will you ask?) 

Instructional Link: Your Turn 

Use the guiding questions in Table 8.2 to help you think about your instruction and your math 
program. How do they support students as they are learning to compare and order fractions? 

Table 8.2 Instructional Link—Strategies to Support Development of Concepts Related to Comparing 
and Ordering Fractions 

Do you (or does your program): Yes/No 

1. Provide opportunities for your students to compare fractions with different numerator 
and denominator combinations? 

2. Use models to compare and order fractions and decimals? 
3. Use models to develop and generalize reasoning strategies for comparing and ordering 

fractions and decimals? 
4. Encourage your students to use a variety of reasoning strategies when comparing or 

ordering fractions and decimals? 
5. Encourage and build on foundational skills to develop conceptual understanding and 

procedural fluency? 

Based on this analysis, identify gaps in your instruction or mathematics program. How might 
you address these gaps? 
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9 
Number Lines and Fractions 

Big Ideas 

Number lines can be used to help students build an understanding of: 

•	 the relative magnitude of fractions 
•	 unit fractions 
•	 equivalence 
•	 operations with fractions 
•	 the density of rational numbers 

Researchers suggest that number lines can be used to help build an understanding of the mag-
nitude of fractions as well as concepts of equivalence and the density of rational numbers (Behr & 
Post, 1992; Saxe et al., 2007). Teachers in the OGAP studies found this as well. In particular, teach-
ers found that using number lines helped students think about a fraction as a number, allowing 
them to order, compare, and find equivalent fractions, and to move away from using whole 
number reasoning as they worked with fractions (OGAP, 2005, 2007). 

The CCSSM and Number Lines 

The CCSSM emphasizes the use of the number line to build understanding of a frac-
tion as a number, unit fractions, equivalent fractions, and operations with fractions and other 
rational numbers (Common Core Standards Writing Team, 2013a, 2013b). 

At grade 3, the number line is used to develop understanding of a fraction as a quantity, to 
provide a foundation for understanding equivalent fractions, and to solidify work with unit frac-
tions. To ensure that the number line is used to develop understanding of a fraction as quantity, 
number lines should extend beyond one unit (e.g., 0–3). Extending beyond one unit helps ensure 
that students are locating fractions on a number line relative to the defined unit rather than find-
ing the fractional part of the whole number line (Common Core Standards Writing Team, 2013a). 
In addition, it allows for representing fractions greater than one. OGAP studies have shown that 
students who encounter only number lines from 0 to 1 often only consider the length of the line, 
not the length of the unit when the number line involves more than one unit (see Figure 9.6 later 
in the chapter). 

At grade 4, the number line is used to understand equivalence and the relationship between 
unit fractions and addition and subtraction of fractions. See Chapter 11, Addition and Subtrac-
tion of Fractions, for more discussion of this. 

DOI: 10.4324/9781003185475-9 

https://doi.org/10.4324/9781003185475-9


128 • Number Lines and Fractions   

 
 

 

 

 

At grade 5, students use number lines to extend their understanding of addition and subtrac-
tion of fractions as well as to build understanding of multiplication of fractions. (See Chapter 11, 
Addition and Subtraction of Fractions, and Chapter 12, Multiplication and Division of Fractions.) 
The use of the number line is extended to the set of rational numbers in grade 6, which includes 
negative fractions in grade 7. 

This chapter builds on the introductory discussion in Chapter 2, Visual Models. The chapter 
also contains descriptions of difficulties students encounter when using a number line as well as 
instructional strategies that have been effective in helping students use a number line to develop 
an understanding of the important fraction concepts contained in the CCSSM. 

Characteristics of the Number Line 

The following are four important characteristics that distinguish the number line from other frac-
tion models (Bright et al., 1988): 

1. The unit is represented by a length as opposed to an area or a set of objects. 
2. A number line requires symbols to define the unit, whereas the unit in an area or set of 

objects is implied in the model. 
3. There are no visual separations between iterations of the units; that is, the units are con-

tinuous, unlike an area or set model in which the units are physically divided. 

Figure 9.1 provides an example of how lengths are identified using points on a number line. 

Figure 9.1 Number lines indicate lengths. On a number line, a defined length represents the unit. A 
point on the line identifies a distance or length from 0. The point at 3 represents a length or distance 
of three units from 0. 

Figure 9.2 illustrates how the location of a fraction on a number line is dependent upon the 
symbols that define the unit. 

Figure 9.2 Symbols define the unit. The accurate location of another number (e.g., 1 ) on a number 2 
line is dependent on the symbols that define the unit. In contrast, no symbols are required to commu-
nicate 1

2  in either the set or area models. 
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Figure 9.3 contrasts the continuous iteration of the units on a number line to visual area models. 

Figure 9.3 Continuous model. There are no visual separations between iterations of the units on a 
number line—the units are continuous. In contrast, the units are physically separate in an area or set 
model. 

Figure 9.4 illustrates the subdivision of units. One can imagine subdividing the number line 
into 8ths, then 16ths, then 32nds, and so on, with the only limitation being the accuracy of the 
tools used to partition the line. 

Figure 9.4 Subdivisions. The units on a number line can be subdivided into equal subunits. Pictured is 
a number line consisting of four units, each subdivided into fourths and illustrating the representation 
of fourths greater than 1. 

Difficulties Students Encounter When Using Number Lines 

Teachers reported that when students first interacted with number lines, they often reverted 
to whole number reasoning (Figure 9.5) and placed fractions on the number line in order of 
the magnitude of their numerators or denominator (OGAP, 2005, 2007). 

These observations were supported by data from the OGAP student work substudy, which 
found about 59% 23 of the student pre-assessment responses in the sample placed the fractions ( )39 
1  and 1 as Ken did in his solution in Figure 9.5 (OGAP, 2005). 4 3 



130 • Number Lines and Fractions 

Place 3
1 and 

4
1  on the number line. 

  

 
    

 

 
 

1Figure 9.5 Ken’s response. Ken used visual area models (circles) to represent 1
2 , , and 1 . However, 4 3 

1when Ken placed 1
2 , , and 1  on the number line, he incorrectly ordered them by the magnitude of the 4 3 

denominators. 

When students first encounter number lines with multiple units, it is not uncommon for them 
to find the fractional part of the whole line instead of locating the fraction relative to the defined 
unit (Mitchell & Horne, 2008; OGAP, 2005). Peter’s response in Figure 9.6 exemplifies this error. 

These errors may, in part, be explained by research findings related to student difficulties with 
the use of number lines. 

•	 Students have difficulty integrating the visual model (line) and the symbols necessary 
to define the unit. The symbols and the tick marks that define the units and subunits 
can act as distractors (Behr et al., as cited in Bright et al., 1988). 

•	 Students have a difficult time locating fractions on number lines that have been marked 
to show multiples of the unit or to show marks that span from negative numbers to posi-
tive numbers (Novillis-Larson, as cited in Behr & Post, 1992). 

•	 Students don’t always understand that the numbers associated with points on a number 
line tell how far the points are from 0 (Petitto, 1990). For example, the two points marked 
3 and −3 on a number line are both three units from 0. 

•	 Researchers also “hypothesize [that] as long as partitioning and unpartitioning are dif-
ficult for children, number line representations of fractions may not be easily taught” 
(Bright et al., 1988, p. 17). 

Before discussing the research cited, it is important to realize that “students in the first three 
grades shift from sequential to proportional strategies to place numbers on a number line” 
(Petitto, 1990, p. 57). This suggests that before asking students to locate fractions on a number 
line, teachers should be sure that students are thinking proportionally about a number line, not 
just sequentially (see Figures 9.7 and 9.8). 

Figure 9.6 Peter’s response. Peter found 1  of the line and ignored the defined units (−1 to 0 and 0 to 1). 3 
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Figure 9.7 Sequential thinking. Whole numbers are placed on the number line considering only 
sequence, not the proportional distance between units that can define a length. The points at 2, 3, and 
4 represent the second, third, and fourth numbers in the sequence, not the distance of 2, 3, and 4 equal 
units based on a defined unit 0 to 1. 

Figure 9.8 Proportional thinking. Whole numbers are placed on the number line proportionally 
(equal intervals). The point at 4 represents a length or distance of 4 equal units from 0. 

Any number can be placed proportionally on a number line once the unit (the distance from 
0 to 1) is established. (Note that the distance between any two whole numbers could serve just as 
well to establish the unit.) The numbers on the number line in Figure 9.8 are spaced proportion-
ally, that is, 2 is twice as far from 0 as 1; 3 is three times as far from 0 as 1; and 4 is four times as far 
from 0 as 1. A firm understanding of the proportional nature of a number line allows any fraction 
to be placed on a number line once the unit is established. For example, the number 1  is half as far 2 
from 0 as the number 1, 2 1is 2 4

1 
4  as far from 0 as 1, and so forth. 

1 
4 

1 
3 

Students who are thinking sequentially, not proportionally, may place fractions on a number 
line as, Judy did in the response in Figure 9.9. 

The location of 1 suggests that Judy may not have progressed beyond sequential thinking. 4 
The mark showing her location of 1  is not 1  of the distance from 0 to 1. More evidence that Judy 4 4 
is thinking sequentially is her justification for the locations of her fractions—that they belong 
where she placed them “because 1 is bigger than 1 .” Although her comment is correct, it sug-3 4 
gests that the magnitude of those two fractions is her only consideration in locating them on the 
number line. 

Figure 9.9 Judy’s sequential response. The placement of 1 and 1 on this number line is sequential, not 4 3 
> > , but she did not place the fractions on proportional. It appears the student understands that 1 

the number line proportionally. 
2 

Students who are thinking proportionally will show evidence of partitioning proportionally 
regarding the defined units on the number line. See Figures 9.10 and 9.11 for examples of this. 
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Locate 5  on the number line.
6 

Figure 9.10 Proportional thinking. Visual area models equal to length of the number line were 
partitioned proportionally and then used to locate the fractions on the number line. 

Figure 9.11 Proportional thinking. Five-sixths is placed on the number line proportional to the dis-
tance of 0 to 1. That is, 5  is located about five-sixths of the way from 0 to 1. 6 

Introducing Number Lines into Instruction 

“Although the number line is introduced to students in elementary school textbooks, its potential 
for students’ learning has not been exploited by educators or researchers” (Saxe et al., 2007, p. 1). 
Teachers in the OGAP (2007) study began to embed the number line into instruction beyond 
what was provided in their text materials, as suggested by Saxe and colleagues. 

First, research implies that strategies for engaging students in using number lines may vary across 
grades. For example, when first introducing young students to number lines involving fractions, the 
research suggests that teachers should ensure that students are thinking about number lines with 
whole numbers proportionally, not sequentially. See A Focus on Addition and Subtraction (Ebby et 
al., 2021) for more on how to develop understanding of whole numbers on a number line. 

Second, when moving from number lines with only whole numbers to using number lines to 
locate fractions, researchers suggest that teachers use number lines with full knowledge of the 
difficulties that students may encounter (Behr & Post, 1992). Some teachers found that engag-
ing students intentionally in the features of a number line that may later cause students difficulty 
made the use of the number line a more valuable instructional tool (OGAP, 2005). 

For example, teachers might use the number line in Figure 9.12 along with questions such as 
these to guide a discussion on the features of a number line: 

1. Make a list of everything you notice about the number line. (The teacher uses the lists to 
guide a whole-class discussion.) 

2. Identify where the number 4 is on this number line. What defined where the number 4 is 
located? What whole numbers are represented on this number line? 

3. What do the tick marks between the numbers 1 and 2 indicate? 
4. What numbers are represented on the number line for the tick marks to the left of 1? 

Are there other numbers between the tick marks on the number line? How could you 
determine what those numbers are? (See Chapter 10, The Density of Fractions.) 

Figure 9.12 Sample number line to use with guided questions. 
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Place 8 , 8 , and 2  on the number line below in the correct position. 12 3 3

Another strategy adopted by some teachers and implied in the research is to vary the number 
lines presented to students. Number lines might contain single or multiple units, span from negative 
to positive numbers, or require partitioning or repartitioning. Figures 9.13 to 9.15 provide examples 
from students who successfully located fractions on number lines with different structures. 

Figure 9.13 Asher’s response. One-third is placed in the correct location on the number line that spans 
−1 to 1, providing evidence that he integrated the visual model with the symbols. 

1Place in the correct location on the number line.
3 

In the problem in Figure 9.14, Kim was given a number line partitioned into sixths and was 
35asked to locate the fractions  and 

12 
. To solve the problem, Kim repartitioned the number line 4 

into twelfths and then recognized that 9 was equivalent to 3
4 .12 

In Figure 9.15, Adam was given a number line that spans from −1 to 3 and used equipartition-
ing to correctly locate 8 

Figure 9.14 Kim’s response. The student repartitioned the number line into twelfths and marked the 
5location of . Recognizing the equivalence of 3  with 9  allowed the student to accurately locate 3  on12 4 12 4 

the number line. 

, and 2 on the number line. 33
8,12 

Figure 9.15  Adam’s response. To correctly locate 8
12 , 

8 
3 , and 2

3  on the number line, Adam partitioned 
from 0 to 3 into thirds and from 0 to 1 in to twelfths. 

The number line in Figure 9.16 was used in a study conducted by Saxe et al. (2007). The problem 
includes a complete equipartitioning of the unit into fourths and includes an incomplete parti-
tioning of the unit into eighths. Saxe and colleagues found that this number line with its missing 
partitions created challenges for students who lacked a strong conceptual sense of the magnitude 
of a fraction or who thought sequentially instead of proportionally. For these reasons, number lines 
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8 8Place , , and
3
2 on the number line in the correct position.

12 3 

7Place on the number line.
8 

such as this one, which force students to use their proportional sense of the distance from 0 to the 
tick mark with the arrow in relation to the defined unit 0 to 1, can be a valuable instructional or 
assessment task. 

Figure 9.16 A non-routine problem with incomplete partitioning into eighths (Saxe et al., 2007). 
Reprinted with permission from Te Learning of Mathematics—Sixty-ninth Yearbook, copyright 2007 by the National Council of Teachers 
of Mathematics. All rights reserved. 

Evidence shows that translating the linear feature of visual area models or tape diagrams to 
number lines may help to explain improvement in the use of number lines (Bright et al., 1988; 
OGAP, 2005). This was a strategy adopted by many students and teachers in the 2005 OGAP 
study and evidenced in Laura’s and Marko’s responses found in Figures 9.17 and 9.18 (OGAP, 
2005). 

Figure 9.17 Laura’s response. Laura drew visual area models under the number line, then used her 
partitioning of the linear feature of the area models to correctly locate the fractions on the number line. 

Figure 9.18  Marko’s response. Marko partitioned a visual area model equal to one unit on the number 
line and then located 7  relative to the defined unit. 8

To reinforce the underlying structure of a number line and to strengthen understanding of 
the relative magnitude of fractions and decimals, some teachers in the OGAP studies used a 
classroom-sized number line. The design allowed teachers from day-to-day to change the focus 
from one aspect of the number line to another (e.g., change the size of the unit or the number of 
units) (see Figure 9.19) (OGAP, 2005, 2007). These number lines can allow students to use their 
understanding of unit fractions, equipartitioning, equivalence, and relative magnitude to place 
both fractions and decimals in relation to the given units. 
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Number Lines and Decimal Fractions 

Number lines can also be used to develop the concept of the magnitude of decimal fractions 
and equivalence between fractions and decimal fractions. In the number line from 0 to 3 in Fig-
ure 9.20, each unit is partitioned into tenths and shows that 0.1 is the distance from zero when 
the unit is divided into 10 equal parts and that 0.4 is four times the distance of 0.1 from 0, and 
1.2 is 12 times the distance of 0.1 from 0. 

Figure 9.19 Two different classroom-sized number lines are displayed on a blackboard. Each number 
line has a different-sized unit and a different number of units. 

Figure 9.20  Number line representing the location of 0.4. 

As discussed in Chapter 7, some students have a hard time believing that a single value can be 
expressed in different symbolic formats (Hiebert & Wearne, 1986). The number line can be used 
to develop the understanding of the equivalence of fractions and decimal fractions. In Figure 
9.21, fractions equivalent to 0.4 are represented on the number line. The visual cue that they 
are indeed equivalent is the fact that they are located at the same point on the number line. Also 
identified are fractions equivalent to 1.2. Decimal fractions, like fractions, are a natural extension 
of whole numbers, and using the number, line reinforces this concept as well as helps students 
understand the relative magnitude of decimal fractions to each other and to whole numbers. 

Figure 9.21  Number line with equivalent fractions and decimal fractions. 
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Place 1  on the number line in the correct location. Explain your answer using words or diagrams.
3 

Locate and label a point on the number line to show where − 2  is located.
3 

The Number Line and Negative Fractions 

A central notion in this chapter and in other chapters throughout this book is the vital role the 
number line plays in developing students’ understanding of fractions as quantities, unit frac-
tions, equivalence, and operations with fractions. It is not a surprise that in sixth grade, the 
number line also takes a prominent instructional role as students begin to compare, order, and 
operate with rational numbers, first with integers and then with positive and negative fractions 
and decimals in grade 7. Since negative fractions (e.g., − 1 ) cannot be represented using visual 3 
area models or sets of objects, the number line takes a prominent instructional role when devel-
oping understanding of integers and negative fractions as quantities. This section focuses on 
potential problems students may encounter when comparing and using number lines with nega-
tive fractions. 

The issues that students encounter while making sense of positive fractions tend to resurface 
as they begin working with negative fractions. That is, foundational misunderstandings about the 
magnitude of positive fractions can significantly affect student’s learning of negative fractions. 

Review Asher’s and Nick’s responses to the same problem in Figures 9.13 and 9.22, respec-
tively. Based on evidence in Asher’s work, it appears he understands that 1  is not a negative num-3 
ber; therefore, he focuses his attention on the positive side of the number line. In contrast, Nick 
appears to believe that the fraction 1  is located on the negative side of the number line. Although 3 
we do not know for sure, it appears that Nick has a fragile understanding of positive fractions, 
perhaps believing that because a fraction is not a whole number, it is less than 0. 

Figure 9.22 Nick’s response to placing 1  on a number line between −1 and 1. 3 

Figure 9.23 Eli’s response. 

This example illustrates how important it is for students to encounter multiple opportunities to 
place and make sense of positive fractions on number lines that extend from negative to positive 
numbers before considering negative fractions on a number line. Nick’s response is an example of 
a foundational misunderstanding about the magnitude of a positive fraction that will undoubt-
edly make it more difficult for him to conceptualize negative fractions. 

Earlier in this chapter, we briefly discussed the importance of students understanding that 
points on a number represent a distance from 0. This concept is central when thinking about the 
magnitude of negative fractions. To understand the importance of this concept, contrast Eli’s and 
Evan’s responses in Figures 9.23 and 9.24 to a question related to placing − 2  on a number line 3 
that is marked with only 0 and 1. 
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Locate and label a point on the number line to show where − 2  is located.
3 

Figure 9.24 Evan’s response. Evan correctly located − 2  on the number line. 
3 

Both responses show evidence of understanding the magnitude of the unit by locating −1 and 
1 as the same distance from 0. Where the solutions differ is in the placement of − 1  and − 2. Evan 3 3 
correctly located − 1 and − 2 as the same distance from 0 as + 1  and + 2 .3 3 3 3 

In contrast, notice that in Eli’s response the distance from 0 to − 1  is not equal to the distance 3 

from 0 to 1 , nor is the distance from 0 to − 2  the same distance as 0 to 2 . It seems he incorrectly 3 3 3 
interpreted both negative fractions originating from −1 rather than from 0. 

The mathematical concept described here is central to understanding negative fractions. That 
is, two fractions that are additive opposites, such as 1 and − 1  or 2  and − 2 , are the same absolute 3 3 3 3 
distance from 0. Building this idea in the context of placing fractions on a number line will later 
help students use the number line to conceptualize operations with negative fractions. One way to 
help students develop this idea is to build upon their understanding of integers on a number line. 

The number line in Figure 9.25 and the question sequence that follows provide an example of 
some questions that build understanding of negative fractions on a number line from students’ 
prior work with integers on a number line. 

Figure 9.25 Use this number line for accompanying questions 1 through 9. 

Example Question Sequence 

1. Use what you know about number lines to place other positive integers on this number 
line. How did you do this? What limits the number of positive integers that can be placed 
on this number line? 

2. Use what you know about the placement of the positive integers to locate the negative inte-
gers. (Students should develop the understanding that the distance from 0 to 1 is the same 
as the distance from 0 to −1. Therefore, to locate −1, one can begin at 0 and move to the left 
the distance from 0 to 1. In the same way −2 can be located using the distance from 0 to 2). 

3. Can other numbers be placed on this number line? Explain why or why not. (An infinite 
number of fractions, both positive and negative, could be placed on the number line, 
limited only by the ability and space to physically partition the number line.) 

4. Is − 2 closer to 0 or 1? Explain your answer. 3 
5. Is − 2 closer to 0 or −1? Explain your answer. 3 
6. Place 2  and − 2 on the number line. What do you notice about the placement of these two 3 3 

fractions? (Both are the same absolute distance from 0.) 
7. Place one negative fraction on the number line that is located between 0 and − 23. 
8. Place one negative fraction on the number line that is less than −1. 
9. Place one negative fraction on the number line that is located between −1 and − 23 . 

Note how these questions help to move beyond partitioning to focus students on the distance 
from a given fraction to 0 on the number line. 
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Tina ate 2
3

 of her candy and gave 
4
1 of her candy to her sister. She saved the rest of her candy. What is 

the fractional part of the candy that Tina saved? 

Name two fractions that are between 3
1 and 5 

6. 

Student Use of Number Lines to Solve Problems 

Many OGAP teachers in the 2005 study encouraged students to use number lines to solve prob-
39lems. A preliminary analysis of 39 fourth-grade OGAP pre-assessments ( ) illustrates this 229 

16point. Approximately 41% ( ) of the students used number lines to solve problems in the post-39 
3assessment. In contrast, only 8% ( ) of the students used the number line to solve problems in 39 

the pre-assessment (see Table 9.1) (OGAP, 2005). 

Table 9.1 Grade 4 OGAP—Use of Number Lines Pre- to Post-Assessment (OGAP, 2005) 

Pre-assessment Post-assessment 

Percentage of students (n = 39) 8% 41% 
Number of responses with number lines used to help solve problems 3 43 

Examples of some ways that students used number lines to solve fraction problems are shown 
in Figures 9.26–9.28. In Figure 9.26, Kaitlyn used a number line to solve a problem involving the 
density of fractions. 

See Chapter 7, The Density of Fractions, for more examples on how number lines can be 
used to develop understanding of the density of rational numbers. 

Notice that Juan effectively used a number line to find the difference between the sum of 2 
3 +

1 
4 

11
and 1. He partitioned the number line into twelfths. He then used the partitioned number line 
to: (a) identify the distance from 0 to  on the number line, (b) represent the addition of  and 
2 
3 

4 4 
 by placing a segment equivalent to the length of 4

1 at 2
3 , and (c) identify the difference left as 

1 (circled on his solution). 
12 

Figure 9.26 Kaitlyn’s response. Kaitlyn created a number line that she partitioned into twelfths and 
then she used the partitions to identify fractions between 1  and 5

6 .3 

Figure 9.27  Juan’s response. Juan effectively used a number line to solve a problem involving addition 
and subtraction of fractions. 
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Which fraction is closest to 1? 

  

 
 

 

There are some candies in a dish. 

2  of the candies are chocolate.
5 

3  of the candies are peppermint.
10 

Are there more chocolate candies or more peppermint candies in the dish? 

Figure 9.28 Mathew’s response. Mathew effectively used a number line (and visual area model) to 
3compare 2  and 5 10 . 

While it is important that students understand and use number lines to solve problems, stu-
dents need to develop more generalized understandings of fraction concepts. An overreliance 
on visual models can sometimes interfere with students gaining a deeper, more abstract under-
standing of concepts. The case study that follows involves a student, Maria, who consistently uses 
number lines to solve problems even though her teacher, Mr. King, is confident the student can 
use more efficient strategies. 

Case Study—Provide Actionable Feedback 
Mr. King regularly provides actionable feedback to his students, that is, 
feedback that will advance student thinking and deepen understanding. He 
understands that comments like “think,” “try again,” or “good work” do not 

result in increased motivation or achievement (Wiliam, 2011). Sometimes Mr. King’s feed-
back is provided orally, either to the whole class or to individual students. Other times he 
provides written feedback to all or some of his students. 

Study Maria’s solution in Figure 9.29. What do you notice about her solution? 

Figure 9.29 Maria’s solution to the problem. One can see that Maria successfully used the num-
ber line to determine which fraction was closest to 1. 
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You probably noticed that Maria effectively partitioned the number line into 3rds,
76ths, and 12ths, and used an area model to help her locate  on the number line. This 5 

evidence suggests that Maria can construct and partition a useable number line to 
solve problems. Knowledge of and flexibility with visual models, including number 
lines, are important aspects of understanding fraction concepts. Yet Mr. King knows 
that effective use of visual models alone reflects an incomplete understanding of fraction 
comparison. Students must also develop reasoning strategies that do not require the cre-
ation of a visual model to compare fractions. To help Maria and other students develop 
reasoning strategies beyond visual models, Mr. King included a challenge problem in his 
written feedback. The feedback and problem is shown in Figure 9.30. 

Figure 9.30  Mr. King’s feedback to Maria 

By asking Maria to compare 9  and 7  without writing on her number line, Mr. King was 
8 6 

nudging Maria to use what she has learned from her experiences constructing number lines 
to reason about the two fractions. Study Maria’s response to Mr. King’s challenge problem 
in Figure 9.31. 

Figure 9.31  Maria’s response to challenge problem. 

After receiving the student responses to the challenge problem in Figure 9.30, Mr. King 
decided to pose the question in Figure 9.32 to the whole class. Why do you think Mr. King 
gave his students this problem? 
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Isaac said that 1 > 1 . Is Isaac correct? Why or why not?
129 59 

Figure 9.32 Exit question. 

You probably noticed that the numbers in this problem make the use of a visual model 
unreasonable. In this way Mr. King engineered a problem that supports the use of unit frac-
tion reasoning rather than the creation of a visual model. As you have seen in this case some-
times the instructional response based on the evidence is to use another formative assessment 
item to move student thinking forward on the OGAP Fraction Progression. 

Chapter 6 Using the OGAP Fraction Progression for more on instructional response to 
evidence. 

Math Programs and Number Lines 

To capitalize on the potential power of using the number line, OGAP teachers found themselves 
supplementing their mathematics program (OGAP, 2005, 2007). This is consistent with the observa-
tions of Saxe et al. (2007): 

We argue that number lines can support students’ understanding of important properties of 
fractions. Fifth- and sixth-grade students can use the number line as a vehicle for understanding 
ideas like numerical units, relations between whole numbers and fractions, the density of the 
rational numbers (there are infinitely many rational numbers between any two), and although 
every number is unique, the number can be named in infinitely many ways (equivalence). 

(p. 1) 

In US textbooks, area models are the most prominent representation used for fractions. In 
Japanese textbooks, the primary representation is the number line and linear models (Watanabe, 
2007). With the focus on linear models in the CCSSM, this is likely to change as new textbooks 
are produced. To examine how your program uses number lines in instruction, complete the 
Instructional Link activity at the end of this chapter. 

Measurement: A Direct Application of the Number Line 

Some teachers have told us how surprised they are after completing a fraction unit to find 
that students have difficulty measuring with rulers. It appears that the students had not made 
the connection between the fraction concepts they had learned and their application to linear 
measurement. 

Bright et al. indicated that “the number line can be treated as a ruler” (1988, p. 1). This appears to 
be a question of which comes first: understanding of the number line and application to measure-
ment, or measuring with an application to the number line? While one can argue for a particular 
order, one teacher who used the number line first experienced huge payoffs: 

My students were surprised to learn that the tick marks on a ruler seemed to be related in 
size to their value just like a number line. The tick mark for 1  was half of the distance from 2
0 to 1. The tick mark for 1  was quarter the distance from 0 to 1. The tick mark for 11  is 11 

4 2
times the distance from 0 to 1. 

(OGAP, 2007) 

Experience has shown that students have difficulty both measuring and using the number 
lines. Both, however, have the same conceptual foundation. To help think through the concept 
related to number lines and measurement, go to question 1 in Looking Back. 

2 
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The OGAP Fraction Progression and Number Lines 

The number line is an important visual model to help build understanding of fractions 
as quantities. Therefore, it has a prominent place on the OGAP Fraction Progression. 

Fractional Strategies include accurately locating fractions on a number line provided 
without using other visual models, as Evan did in Figure 9.24. Transitional Strategies are evidenced 
by effective use of a visual model to solve a problem (e.g., Figures 9.26 and 9.27) or by locating 
fractions on number lines using another visual model (Figure 9.17). The use of the number line as 
a model, like other visual models, can also be a transitional strategy to help build understanding 
of the magnitude of fractions, equivalence, and operations with fractions. 

Chapter Summary 

This chapter presented ideas related to the use of number lines that research has shown help stu-
dents as they develop their understanding of fraction concepts. In particular, the chapter focused 
on: 

•	 the potential instructional benefits of using number lines as students develop an under-
standing of fraction concepts 

•	 the difficulties that students may encounter as they begin using number lines 
•	 instructional strategies using number lines 
•	 the number line and negative fractions 
•	 examples of how students use number lines to solve problems 
•	 the importance of reviewing your mathematics program to assure that both the mate-

rial and your instruction maximize the power of the number line to aid students as they 
develop their understanding of fractions. 

Looking Back 

1. To help explore the relationship between measurement and number lines, respond to the 
following questions. 
a. What are at least three important properties that number lines and measurement tools 

(such as rulers) share that have the potential to facilitate students’ understanding of the 
connections between rulers and number lines? 

b. What are two important diferences between number lines and scales on measuring 
tools? 

c. You provide your students with inch rulers, centimeter rulers, and strips of paper to 
measure. Teir task is to measure each of the strips to the nearest eighth of an inch 
and tenth of a centimeter. Before your students begin using the rulers to measure the 
strips, identify three similarities and three diferences between an inch ruler and a 
centimeter ruler that will allow students to measure strips accurately or identify chal-
lenges to accurate measurements. Use Figure 9.33. 

Figure 9.33  Centimeter and inch rulers. 
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Place 5  and 3  on the number line.
12 4 

1Place on the number line in the correct location.
3 

Explain your answer using words or diagrams. 

2. Mr. Brown had a large number line in the front of his classroom (Figure 9.34). On the 
first day that he used the number line, he asked some students to place 1  on the num-2 
ber where they thought it belonged. Mr. Brown had done no prior instruction with 
number lines, but he thought this would be a good way to get information about what 
instructional issues he might face as students began using number lines to solve fraction 
problems. 
a. Te students were unsure where to locate 1 , but decided to locate it at the 3 on the 2 

number line. Is this correct or incorrect? Explain. 
b. What feature(s) of the number line may have been ignored by these students? 

Figure 9.34  The number line in Mr. Brown’s class. 

3. Look at Matt’s response to the problem in Figure 9.35. What understandings and misun-
derstandings are evidenced in Matt’s response? Describe the evidence. 

Figure 9.35 Matt’s response. 

4. Nick (Figure 9.36) placed 1  to the left of 0 on the number line. 3 
a. What reasoning did Nick use to solve the problem? Describe the evidence. 
b. What are some potential next instructional steps for Nick given the evidence in his 

work? 

Figure 9.36 Nick’s response. 
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5. OGAP Fraction Progression: Review student work in Figures 9.9, 9.10, 9.11, 9.13, 9.15, 
9.17, and 9.26 in this chapter using the OGAP Fraction Progression. For each piece of 
student work: 
a. Use the evidence in the student work to locate the work on the framework. 
b. Provide a rationale for your decision. 
c. Discuss some possible next instructional steps or feedback you might give to the stu-

dent based on the evidence in the student work. 

Instructional Link: Your Turn 

Use the prompts in Table 9.2 to help you think about how your instruction and mathematics pro-
gram provide students the opportunity to develop understandings of number lines. 

Table 9.2 Strategies that support development of reasoning with fractions as quantities with an empha-
sis on instructional strategies that include number lines. 

Do you (or does your program): Yes/No 

1. Use number lines to build concepts of magnitude, equivalence, and the density of 
rational numbers? 

2. Provide opportunities for students to regularly engage in problems involving 
number lines? 

3. Engage students in understanding the features of number lines? 
4. Provide opportunities for students to place fractions and decimals on number lines 

with more than one unit? 
5. Provide opportunities for students to place fractions and decimals on number lines 

with units of different sizes? 
6. Provide opportunities for students to place fractions on number lines that are 

already partitioned? 
7. Provide opportunities to solve nonroutine problems involving number lines? 
8. Encourage students to use number lines to solve problems? 

Based on this analysis, what gaps in your instruction or mathematics program did you identify? 
How might you address these gaps? 
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The Density of Fractions 

Big Ideas 

•	 There are an infinite number of fractions between any two fractions. 
•	 Number lines can help students understand the betweenness of rational 

numbers. 

When studying fractions, students encounter a feature of fractions that is different from whole 
numbers; between any two fractions there are an infinite number of unique fractions. 

To understand this concept, let us investigate a TV remote control. A remote control for a 
television set has sound settings (volume) that show on the television screen as shown in Figures 
10.1 and 10.2. The volume indicator on the television screen works much like counting whole 
numbers. In these examples, there are 10 settings for volume, from no volume to the loudest 
volume. 

Figure 10.1 The volume indicator showing no volume. 

Figure 10.2 The volume indicator showing the loudest setting. 

There is no compromise sound setting that is louder than setting 4 (Figure 10.3) but quieter 
than setting 5 (Figure 10.4). The whole numbers have this property; that is, there is no whole 
number between 4 and 5. 

DOI: 10.4324/9781003185475-10 

https://doi.org/10.4324/9781003185475-10
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Figure 10.3 The volume set at 4. 

Figure 10.4 The volume set at 5. 

Fractions are different: Between any two fractions, there are many different fractions. In 
fact, there are an infinite number of fractions between any two fractions. Students encounter 
this property in a number of situations when working with fractions. In mathematics class, for 
instance, students may be asked to name three fractions between 1  and 3

8 .4 
However, this idea is more than a mathematical exercise. It is encountered in everyday 

situations, often without people realizing it. For example, unlike the television with a limited 
number of settings, imagine a volume control that can be placed at any position along a slide, like 
the example in Figure 10.5. 

Figure 10.5  Volume control on a slide. 

Unlike the previous volume indicator, there are many positions between the fourth and fifth set-
tings that are slightly louder than the fourth setting but softer than the fifth setting. For instance, 
the sound setting of 4 1  delivers a level that is louder than setting 4 and softer than level 5. The 4 
setting 4 1 provides a louder sound than 4, but a softer sound than 4 1

4 . Every position on the 7 
30 31slide can be approximated by a fraction (e g. .,4 ,4 ) .100 100 

The volume control on a slide helps one begin to conceptualize the idea of density. However, to 
1truly comprehend the density property, we can start with two different fractions, such as  and 1 
4 2 

and see how to develop an infinite number of fractions that are between them. As a start, it should 
be clarified what it means to say “an infinite number of fractions” between 1  and 1 ; this means 4 2 
that a list of all the different fractions between these two is infinite—no matter how many frac-
tions one identifies, there are more to be found. 

Density of Fractions: The Mathematics 

One way to mathematically demonstrate the density of fractions is by looking at averages. The 
average of any two different numbers results in another number halfway between the two numbers 
(see Figure 10.6). 
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Figure 10.6 The average of two different numbers results in another number halfway between the two 
numbers. Start with 60 and 100 and use averages to generate an endless list of numbers, all of them 
between 60 and 100. 

These averages give us the start of a list: 60 < 80 < 90 < 95 < 97.5 < . . . < 100. Note that the 
ellipsis in the previous sentence indicate that the list we are generating is an endless list (an infinite 
list) of numbers that are between 60 and 100. 

The number line allows us to understand the average of two numbers geometrically. For two 
different numbers, their average is located on the number line exactly midway between them. 
(See the location of 80 midway between 60 and 100 in Figure 10.7.) Starting at 80 and going 
halfway to 100 brings us to 90, the average of 80 and 100. Next, the average of 90 and 100 is 95, 
and the average of 95 and 100 is 97.5 (which is halfway between 95 to 100). Notice when we start 
at the previous average and go halfway to 100, we can never reach 100. We have an endless list of 
averages, and these averages form an infinite list of numbers. (Note that this averaging process 
will be referred to in the rest of the chapter as successive averages.) 

Figure 10.7 The average of 60 and 100 is 80 or the midpoint between 60 and 100. The average of 80 
and 100 is 90 or the midpoint between 80 and 100. The average of 90 and 100 is 95 or the midpoint 
between 90 and 100. 

11
We can continue with the idea of successive averages to investigate the infinite number of 

fractions between  and 1 . Figure 10.8 illustrates how halving the distance between  and 1 
4 2 24 

3(averaging the two) results in the fraction ( )  that is exactly midway on the number line between 8 
1 3 5 9 1 1 and 1 . While successive averages ( , ,  ,...,> )  get closer and closer to , the average will 4 2 8 16 32 4 4 

1never reach 1  because there will always be a fraction halfway between  and the fraction being 4 4 
averaged. 

The density of fractions property applies to mixed numbers as well (see Figure 10.9). Through 
successive averaging starting with 1 1  and 11 , we will find an infinite list of mixed numbers that are 4 2 

3 5 9 1between 1 1  and 1 1 , but that never reach 1 1 (1 > 1 > 1 ,...,> 1 ) .4 2 4 8 16 32 4 
The number lines in Figures 10.8 and 10.9 help us understand an important idea about how 

density between proper fractions is related to density between mixed numbers. What we can see 
is that each fraction on the number line in Figure 10.9 is exactly one more than a corresponding 
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fraction on the number line in Figure 10.8. For the infinite list of fractions we generated that are 
1 1between  and , adding 1 to each of these gives us an infinite list of mixed numbers that are 4 2 

between 1 1 and 11
2 .4 

Figure 10.8 Three-eighths is the midpoint between 1 and 1
2 . Five-sixteenths is the midpoint between 4 

3 4 5 9 and 2 . The midpoint between  and  is8 8 16 16 32 . 

Figure 10.9  The fractions on the number line illustrate that the same rational numbers that can be 
mapped between 0 and 1 can be mapped onto the interval between 1 and 2. 

To accept as true that there are an infinite number of fractions between any two fractions 
requires integrating these ideas: 

1. The successive averaging of fractions in Figure 10.8 (starting with averaging of 1  and 1)4 2 

1 

1 

illustrates the use of averages to generate an unending list of different fractions, each aver-
1age closer to  than the previous average. Because all of these averages are between 

and 1 4 
 and 1

2 . 
4 

2 , we have generated an infinite list of fractions that are between 4 
2. While the example used focused on the fractions 1  and 1 , successive averages between 4 2 

any two different fractions would have produced the same effect: Between any two different 
fractions, there is an infinite number of fractions between them. 

3. Any fraction that is located between 0 and 1 can be mapped onto any other consecutive 
whole number interval as was previously explained and modeled in Figure 10.9. 

4. Because there are an infinite number of proper fractions between any two fractions, and 
they can be mapped to other intervals, there is an infinite number of fractions between 
any two numbers. 

The next section illustrates how the density of rational numbers property is applied in the 
design of measurement tools. 

The Connection of Density of Fractions to Accuracy in Measurements 

Measurement is another common area in which people encounter this betweenness property 
of fractions and rational numbers. As you read this section, think about how the halving pro-
cess (successive averaging) described previously might be used to manufacture measurement 



  

 

 

     
   

  
     

The Density of Fractions • 149 

instruments of varying accuracy. For example, one may use a ruler (or other scale) to measure 
something that requires greater accuracy than the tool allows. In Figure 10.10, the object being 
measured has a length between 1 5  inches and 1 3  inches. To determine a more exact length of the 8 4 
object would require an understanding that there are fractions between 1 5  inches and 1 3  inches. 8 4 
In fact, a new ruler that measures in sixteenths of an inch could allow us to decide that the length 
is about 116

11  inches. 

Figure 10.10  The picture is about 111  inches long. 16 

To connect this directly to the concept of density, each mark on the new ruler to sixteenths 
would be based on averaging adjacent numbers on the pictured ruler. For example, 111  is the 16 
average of 1 5  and 1 3

4 .8 
While the example in Figure 10.10 may seem simplistic, the idea and its applications are not. 

The concept of the density of rational numbers is applied when making measuring tools designed 
for different purposes. For example, a carpenter building a barn would be content with accu-
racy to the nearest eighth of an inch. However, a cabinet maker would not. The cabinet maker 
may need accuracy to 32nds of an inch to assure that components of the cabinet fit together. 
However, 32nds of an inch would be wholly inadequate for someone making electronic compo-
nents because electronic components need to be accurate to microns (40-millionths of an inch). 
Imagine the repartitioning necessary to go from a 32nd of an inch to a 40-millionth of an inch! 

To engage students in the concept, you may want them to interview people who use measure-
ment in their work or have students research the accuracy needed to produce different products, 
such as an iPod, a bicycle, a car, an airplane, or another other item. 

The CCSSM and Density 

Although there are no standards that relate specifically to density of fractions, the 
concept of density as related to decimal expansion is a central notion in grade 7, “Number Sys-
tem.” Here students see partitioning of 10ths into 100ths and 100ths into 1,000ths, as an infinite 
process, and they use the concepts related to this process to understand finite expansion (decimals 
that reside on a 10th, 100th, 1,000th, etc. mark on the number line, such as the number 0.235) and 
infinite expansion (decimals that always reside between the 10th, 100th, 1,000th, etc. mark on the 
number line, such as the number 0.3) (Common Core Standards Writing Team, 2013b). 

Multiple opportunities to locate fractions on number lines, compare and order fractions, and 
find fractions between fractions provide students the foundations needed to use density concepts 
in the context of decimals in seventh grade. 

Developing Students’ Understanding of the Concept 

Despite the importance of this concept, researchers indicate that students have a difficult time 
understanding and applying the concept of the density of rational numbers (Orton et al., 1995). 
This finding was supported in an assessment of prospective teachers’ knowledge of rational 
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Name two fractions that are between 1 
3

and 3 
4

. 

Name two fractions that are between 1 
3

and 3 
4

. 

numbers involving 147 first-year elementary majors. Tirosh and colleagues (1998) found that 
1 1“only 24 percent knew there was an infinite amount of numbers between  and , 43 percent 5 4 

claimed that there are no numbers between one-fifth and one-fourth, and 30 percent claimed that 
one-fourth is the successor of one-fifth” (pp. 8–9). 

These findings are also supported with data from the OGAP (2005) study based on two ques-
tions in the OGAP pre- and post-assessments assessing fifth-grade students’ understanding of 
the density of fractions. The first question asked students to name two fractions that are between 
one-third and three-fourths. The second asked the more general question about the concept: Do 
you think there are any other fractions besides the ones you identified that are between one-third 

15and three-fourths? Only about 46% ( )  of the fifth-grade students in the sample correctly iden-35 
21tified two fractions between one-third and three-fourths in the pre-assessment and 60% ( ) in35 

the post-assessment (see Table 10.1) (OGAP, 2005). 
Richard’s response (Figure 10.11) is typical of solutions in which only one fraction was named. 

While we don’t know for sure, Richard may have used his benchmark understanding to recognize 
that < < , but he was unable to apply another strategy or understanding to naming another 3 

4 
1 
2 

1 
3 

3fraction between 1
3  and 4 . 

While Richard seemed limited in his understanding, other students, like Madison (Figure 10.12), 
either misunderstood the problem or the concept. While Madison is correct that 2  and its equiva-3 

4 1 3lent, , are between  and , they are not different fractions, just different names for the same 6 3 4 
fraction (see Chapter 7, Equivalence). Researchers indicate that using number lines has the potential 
to help build an understanding of the density of rational number concept (Saxe et al., 2007). 

Table 10.1 Percentage of Sample That Identified No Fractions, One Fraction, or Two Fractions in the 
Grade 5 OGAP Pre- and Post-Assessments 

Number of Fractions Identified OGAP Pre-Assessment (n  = 35) OGAP Post-Assessment (n = 35) 

0 26% 11% 
1 29% 29% 
2 46% 60% 

Figure 10.11 Richard’s response—Richard’s response leads one to believe that he assumed there were 
3only 2 fractions between 1  and 4 .3 

Figure 10.12 Madison’s response. Madison identified two equivalent fractions that are between 1 
33and 4 . 
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1 3Name two fractions that are between and .
3 4 

1 3Name two fractions that are between and .
3 4 

Todd’s (Figure 10.13) and Kaitlyn’s (Figure 10.14) responses show some ways in which students 
use number lines to solve problems involving “betweenness.” Todd partitioned a number line into 
twelfths. This enabled him to identify the twelfths found between 1  and 3

4 .3 

Figure 10.13 Todd’s response. Todd partitioned a number line into twelfths, which enabled him to 
3identify four fractions between 1  and 4 .3 

Kaitlyn (Figure 10.14) partitioned two number lines of equal length: one into fourths and the 
other into sixths. This enabled her to see the “betweenness” involved in the problem and identify 

1two different fractions that are between 3 and 4 . 

1 

3 

Figure 10.14 Kaitlyn’s response. Kaitlyn partitioned two number lines and successfully identified 231and 4
6  as fractions between  and 4 .3 

Based on the results from the OGAP pre- and post-assessment, most students were not suc-
cessful with the second, more general density of fractions question: Do you think there are any 

1 3other fractions besides the ones you identified that are between and ? Only one student 3 4
1 2response in the OGAP pre-assessment sample ( )  and two student responses ( )  in the post-35 35 

assessment showed evidence of understanding the infinite nature of the density of rational num-
bers (OGAP, 2005). 

Ava’s response (Figure 10.15) illustrates a developing understanding that there are an infinite 
3number of fractions between 1

3  and 4 . 

Figure 10.15 Ava’s response. Ava recognized that there are unlimited fractions between 1  and 3 .3 4 
1 3Do you think there are any other fractions besides the ones you identified that are between and ?
3 4 
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Do you think there are any other fractions besides the ones you identified that are between 
3
1 and 

4
3 ? 

  

 
 

 

 

 Do you think there are any other fractions besides the ones you identified that are between 1  and 
3 
4 ? Explain why or why not. 

3 

20The most common (57% of the sample °̃ 35 ̨̋  ) misconception evidenced for the more general 
question involved students explicitly stating or alluding to there being a finite set of fractions 
between the two fractions (OGAP, 2005). This type of response represents a developing under-
standing—that is, they are able to name other fractions, but have not generalized the concept to 
recognize that there are infinite fractions between any two fractions. 

Todd’s response (Figure 10.16) to the more general question about the density of fractions is an 
example of this developing understanding. Todd explicitly states that “I only named 2 of 5 num-
bers,” inferring that there is a finite set of fractions between the two fractions. 

Figure 10.16 Todd’s response. Todd’s response suggests that he believes there is a limited number of 
4 9fractions between  and 12 12 . 

Renee’s response in Figure 10.17 illustrates the second most common error found in the OGAP 
post-assessment sample related to the general question about the density of fractions. Some 26% 
of the sample indicated that there are more fractions between 1  and 3 , but identified equivalent 3 4 
fractions, not different fractions (OGAP, 2005). 

Figure 10.17 Renee’s response. Renee’s response describes finding equivalent fractions “forever.” 

Because number lines provide a visual picture of the “betweenness” of fractions, they can be 
used to extend the developing understanding of each of these students: Richard (Figure 10.11), 
who named only one fraction; Madison (Figure 10.12) and Renee (Figure 10.17), who named 
equivalent fractions instead of different fractions; and Todd (Figures 10.13 and 10.16), who 
used a number line to identify some fractions, but who did not extend that to a more general 
understanding. 

Question 2 in Looking Back provides an opportunity for you to think about how number lines 
can be used to extend each of these student’s developing understanding of the density of fractions. 
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Case Study—Whole Class Instruction 
After reading this chapter Ms. Cane, a sixth-grade teacher, administered the 
question in Figures 10.11–10.17 and shown in the following. She was sur-
prised by the findings in the study and interested to see how her students 

responded to these questions. 

1. Name two fractions that are between 1
3  and 3

4 . 
2. Do you think there are any other fractions besides the ones you identified that are 

3between and 1  and ? Why or why not? 3 4 

Consistent with the findings of the OGAP study described earlier, she found that about half of her 
students identified two fractions between 1 and 3 . She also found that a quarter of her students 3 4 
could name one or more additional fractions between 1 

3 and 3 
4 . About a third named equivalent 

fractions like Renee in Figure 10.17. No students indicated that there are an infinite number 
of fractions between any two numbers. She decided to design a lesson to help her students gain a 
better understanding of this concept by asking them to respond to a task that involved a fictional 
student, Sam, making a conjecture about the density of fractions: 

Sam said, “there are an unlimited number of numbers between any two other numbers.” 
Is Sam correct? Why or why not? 

After posing the task, Ms. Cane decided to use a think, pair, share strategy to gather addi-
tional evidence by listening to conversations and probing deeper when the opportunity arose. 
As she walked around the room listening, she realized that her question was too abstract. 
Students were choosing whole numbers and stopping there (e.g., deciding that 2, 3, and 4 
were the only numbers between 1 and 5). She stopped the class and had some students share 
what they found and write them on the white board, as shown in Figure 10.18. She asked the 
students to study the responses on the board and then asked, “What do you notice? What 
do you wonder?” 

Ms. Cane wrote their thoughts on the white board shown in Figure 10.19. Study the stu-
dents’ comments. What do you observe about the student’s thoughts? 

Figure 10.18  Ms. Cane’s recording of student solutions on the board. 
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Figure 10.19  Students comments—What do you notice? What do you wonder? 

As you probably observed the students also recognized that everyone was only thinking 
about whole numbers. Some students wondered if Sam meant only whole numbers or won-
dered if fractions were numbers. After having a discussion that led to students agreeing that 
fractions are numbers, the class decided to explore Sam’s conjecture by looking at numbers 
between two consecutive whole numbers. Everyone agreed they knew there were some frac-
tions between consecutive whole numbers but still weren’t sure if Sam’s conjecture—“there 
are an unlimited number of numbers between any two numbers”—was true. 

Ms. Cane asked each pair of students to pick two consecutive whole numbers. She wrote 
the consecutive whole numbers on the board and asked each pair to choose their number 
pair or someone else’s pair and identify as many fractions as they can between the two num-
bers. Some pairs picked low numbers like 0 and 1 and 1 and 2 while others picked larger 
numbers like 56 and 57, and one pair picked 199 and 200. 

Arnold and Izola decided to explore the conjecture using the numbers 0–1. They made a 
couple of number lines that led to agreeing with Sam’s conjecture. Study Arnold and Izola’s 
number lines in Figure 10.20. What do you think Arnold and Izola discovered? 

You probably noticed that Arnold and Izola kept making the number line 0–1 longer, real-
izing that they could partition the number line further. During the group discussion they 
said, “We first partitioned the number line into 8ths but could not fit any more partitions, 
so we made the number line longer. We could partition the second longer number line into 
16ths and the third longer number line into 32nds. We decided that Sam was right. If our 
pencil was sharper or our number line was drawn longer and longer, we could go on forever 
partitioning with no end in sight.” Other students had similar experiences and made similar 
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1. Name two fractions that are between 12 1  and 12 3 .
4 4 

2. Do you think there are any other fractions besides the ones you identified that are between 

and 12 
4
1 and 12 

4
3 ? Why or why not? 

Figure 10.20  Arnold and Izola’s number lines. 

conclusions working with their own numbers. One student went online looking for rulers 
and found the ruler in Figure 10.21 that measures to 32nds and 64ths and stated, “You don’t 
have to make the number line longer, you just need to be more precise in your partitioning 
which I could never do with my pencil, but machines can.” 

Figure 10.21  Ruler partitioned to the 32nds and 64ths. 

Following the class discussion, Ms. Cane administered the exit question shown in Figure 
10.22. 

Figure 10.22 Ms. Cane’s exit question. 
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5 11Name 3 fractions that are between and .
12 12 

Why do you think Ms. Cane administered this exit question? 
This question, as you can see, asks students to identify other numbers between two mixed 
numbers instead of just between two whole numbers or between 0 and 1, as in the original 
problem and the focus of the class discussion. By using an exit question, Ms. Cane hoped to 
gather evidence of developing understanding from each student. 

This case study illustrates an important point about the OGAP cycle—you can use the evi-
dence from a formative assessment item to inform whole class instruction when you notice that 
most students do not show understanding of an important concept. Ms. Cane allowed stu-
dents to grapple with this idea, rather than just telling them that there are an infinite amount of 
numbers between any two numbers. She recognized that students needed time to explore with 
number lines to really think about this concept. She then used another formative assessment item 
to gather evidence of their developing understanding after the lesson. 

Density at the Elementary and Middle School Levels 

Most elementary and middle-school students’ experience with density is limited to identifying 
fractions between fractions. Teachers should carefully select pairs of fractions that strategically 
and thoughtfully expand their students’ abilities to identify fractions between fraction pairs and 
to develop their understanding of the generalized concept. 

For example, one might provide students fraction pairs with common denomina-
5 11tors, such as  and . Kim’s counting strategy in Figure 10.23 is effective in identify-12 12 5 11ing several fractions between  and . Notice however, that this strategy is limiting in 12 12 5 11that it does not help one see that that are an infinite number of fractions between  and 12 ,12 

not just five. 
On the other hand, choosing a pair of fractions based on students’ experience is important. For 

1 1younger students, asking them to find two fractions between and may be unreasonable 3 4 
because the fractions are very close to each other. 

Figure 10.23 Kim’s response. Kim may have used her whole number understanding of counting numbers. 

You may want to start with fractions such as 1 and 3
4 . These fractions are not so close together, 3 

are familiar fractions, and are on either side of the benchmark 1 . Over time, however, students 2 
should be able to use their understanding of partitioning and equivalence to identify fractions 
between a variety of given fractions. Older students should solve density of rational number prob-

1 1lems involving fraction pairs that are very close, such as  and , and fraction pairs that include 10 11 
mixed numbers and improper fractions. 

Finding fractions between fractions that are “very close” requires a more generalized under-
standing and greater flexibility than partitioning a number line, as Todd did in Figure 10.13, or 
using benchmark fractions, as Richard did in Figure 10.11. 

Question 3 in Looking Back provides an opportunity for you to determine fractions between 
pairs of fractions using a range of reasoning strategies. 
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The OGAP Fraction Progression and Density 

Students at the Fractional Strategies level are able to explain why there are an infinite 
number of fractions between any two numbers. An explanation at the Fractional 
Strategy level should express this understanding. Transitional Strategies will be 

evidenced using visual models to identify fractions between fractions, as seen in the student work 
in Figures 10.13 and 10.14. Strategies at the Early Fractional Strategies level suggest that there 
are a limited number of fractions between the numbers being considered. Richard’s response in 
Figure 10.11 is an example of an early fractional strategy. Solutions that indicate there are no 
fractions between other fractions or that rely only on whole number reasoning are considered 
Non-Fractional Strategies. 

Chapter Summary 

This chapter focused on the concept of the density of fractions with an emphasis on: 

•	 the concept of density of fractions 
•	 misunderstandings that students have as they are identifying fractions between fraction 

pairs and developing an understanding of the generalized concept of density 
•	 the role number lines can play in helping build students’ understanding of the between-

ness of fractions. 

Looking Back 

1. Review Seth’s response in Figure 10.24 and then answer the following questions. 

Figure 10.24 Seth’s response. 
1 3A) Name two fractions that are between and .
3 4 

B) Do you think there are any other fractions besides the ones you identified that are between 
3
1  and 3

4 
? 

a. How did Seth use his understanding of partitioning to answer part A of the question? 
b. Based on Seth’s response to part B, what are the strengths and limitations of his 

partitioning strategy? 

2. It was suggested in the chapter that number lines could be used to extend the developing 
understanding of Richard (Figure 10.11), Madison (Figure 10.12), and Todd (Figures 
10.13 and 10.16). Review each response and then answer the following questions. 
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a. Richard (Figure 10.11) named only one fraction. Provide an example of a way 
the number line could extend his understanding to identifying diferent fractions 
between 1

3  and 3
4  besides 1

2 . 
b. Madison (Figure 10.12) named equivalent fractions instead of other fractions. Pro-

vide an example of a way the number line could extend her thinking beyond equiva-
lent fractions. 

c. Todd (Figures 10.13 and 10.16) used a number line to identify some fractions, but did 
not extend that to a more general understanding. Provide an example of a way the 
number line could extend his thinking beyond equivalent fractions. 

3. Find three different fractions between the following fraction pairs using two different 
strategies for each fraction pair. Then answer the questions that follow. 

4 7 and 10 10 
1 1 and 8 4 

10
1  and 1

9 

a. What difculties do you think students might encounter as they solve these problems? 
b. What kinds of errors might result from these difculties? 
c. As a set of questions, what information can the student work provide that the evi-

dence from a single question might not provide? 

Instructional Link: Your Turn 

Use the guiding questions in Table 10.2 to help you think about how your instruction or 
mathematics program provides students with the opportunities to solve problems involving 
the density of rational numbers. 

Is there anything in your instruction or mathematics program (activities, games, lessons, 
problems) that intentionally provides opportunities for students to transfer their knowledge of 
partitioning and equivalence to identifying a fraction or fractions that are between any two given 
fractions? 

Table 10.2 Strategies to Support Development of Concepts Related to Density of Fractions 

Do you (or does your program): Yes/No 

1. Provide opportunities for students to use number lines to develop and expand 
their understanding of density? 

2. Make a connection between density of fractions and accuracy in measurements? 
3. Provide students opportunities to solve problems that promote a clear 

conceptualization of the density of fractions? 

Based on this analysis, what gaps in your instruction or mathematics program did you identify? 
How might you address these gaps? 
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1Tina ate 2

3
 of her candy and gave 4  of her candy to her sister. She saved the rest of her candy. What is 

the fractional part of the candy that Tina saved? 

11 
Addition and Subtraction of Fractions 

Big Ideas 

•	 Procedural fluency and conceptual understanding work together to deepen 
student understanding of fraction addition and subtraction. 

•	 Conceptual understanding of addition and subtraction of fractions is built 
using visual models, estimation, unit fraction understanding, equivalence, and 
properties of operations. 

Conceptual Understanding and Procedural Fluency 

An important goal of fraction instruction is to ensure that students develop procedural fluency 
when adding and subtracting fractions. “Procedural fluency refers to knowledge of procedures, 
knowledge of when and how to use them appropriately, and skill in performing them flexibly, 
accurately, and efficiently” (National Research Council [NRC], 2001, p. 121). 

It is important to understand, however, that procedural fluency alone is not sufficient to ensure 
proficiency with addition and subtraction of fractions. Procedural fluency works together with 
conceptual understanding, each contributing to a deeper understanding of the other. 

Conceptual understanding refers to an integrated and functional grasp of mathematical 
ideas. Students with conceptual understanding know more than isolated facts and methods. 
They understand why a mathematical idea is important and the kinds of contexts in which 
it is useful. 

(NRC, 2001, p. 118) 

Figure 11.1 shows Kenny’s strategy for solving a multistep fraction operation problem. Kenny 
finds and uses common denominators to add 2 

3 +
1 
4 , then uses his understanding that 12 

12  = 1 to 
find the missing fractional part. 

Figure 11.1 Kenny’s response. The response shows an understanding of equivalent fractions. 

DOI: 10.4324/9781003185475-11 

https://doi.org/10.4324/9781003185475-11
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Josh and Alison ordered one pizza. Josh ate 1  of the pizza and Alison ate 5  of the pizza. Did Josh and
4 8

Alison eat the whole pizza? 

Tina ate 2
3

 of her candy and gave 
4

 of her candy to her sister. She saved the rest of her candy. What is 

the fractional part of the candy that Tina saved? 

1

To determine Kenny’s overall proficiency regarding adding and subtracting fractions, however, 
one would need to consider Kenny’s understanding of addition and subtraction across contexts 
and with a variety of fractions (e.g., fractions with the same and different denominators, mixed 
numbers). That said, the evidence suggests that Kenny is on his way to becoming both procedur-
ally fluent and conceptually sound with fraction addition and subtraction. 

Fraction instruction that includes thoughtful use of visual models and reasoning strategies 
based on an understanding of the magnitude of fractions can lead to both procedural fluency and 
conceptual understanding of addition and subtraction of fractions. Researchers have found that 
students who can translate between various fraction representations “are more likely to reason 
with fraction symbols as quantities and not as two whole numbers” (Towsey, as cited in Huinker, 
2002, p. 4) when solving problems. 

The solutions in Figures 11.2 and 11.3 are examples of using visual models (an area model and 
a number line) to solve addition and subtraction problems. 

Juan did not explicitly use common denominators to find the amount of candy that Tina saved, 
but evidence on his number line reveals a developing understanding of equivalence. For example, 
Juan partitioned his number line into thirds and twelfths. He used the partitioning to locate 1  and 42 1 on the number line, and then recognized that  was left. 3 12 

Figure 11.2 Felicia’s response. Felicia used an area model to find the sum of 1 
4 +

5 .8 

Figure 11.3  Juan’s response. Juan used a number line in his solution to find the candy Tina saved. 

Both Felicia and Juan appear to be in a good position to move to a more efficient strategy that 
is grounded in conceptual understanding of equipartitioning, equivalence, and recognition of an 
additive situation. Future instruction should include opportunities for these students to compare 
the information presented in a visual model with a calculation to ensure that they can: 

•	 recognize the answer from a visual model 
•	 use an algorithm to solve fraction addition/subtraction problems 
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3 4Jill walked her dog of a mile on Saturday and  of a mile on Sunday. Is the total distance Jill walked 
10 10 

her dog on Saturday and Sunday closer to 1  of a mile or 1 whole mile?
2 

 

•	 compare answers from calculations with answers from visual models 
•	 complete similar calculations without reference to a visual model 

Using a visual model is one way to solve the pizza problem in Figure 11.2. Another way to solve 
this problem is by reasoning, which involves an understanding of the magnitude of the fractions 
1  and 5 , particularly because an exact answer is not a requirement of the problem. 4 8 

Sample reasoning strategies: 

1. Five-eighths is three-eighths less than the whole pizza. One-fourth is the same as two-
eighths. That leaves one-eighth uneaten. 

42. Five-eighths is one-eighth more than one-half ( )  of the pizza. One-fourth is the same 8 
as two-eighths. One-eighth (the amount five-eighths is over a half) plus two-eighths do 
not equal one-half of the pizza. So, one-half of the pizza and less than one-half of a pizza 
is less than a whole pizza. 

3. Five-eighths is three-eighths less than a whole pizza. One-fourth of a pizza is less than 
three-eighths of the pizza. So, 15  is less than a whole pizza. +8 4 

Many times, instruction in adding and subtracting fractions focuses primarily on facility with 
algorithms and less on the conceptual underpinnings. Premature experience with formal proce-
dures may lead to symbolic knowledge that is not based on understanding or connected to the 
real world. This may impede students’ number and operation sense (Kiernan, as cited in Huinker, 
2002). 

Figures 11.4 and 11.5 contain pieces of student work that exemplify this point. You will notice 
that both students utilize an algorithm to solve the problems. The type of partial understandings 
and errors seen in these examples are typical of students who use algorithms without full under-
standing of the underlying concepts. 

Felix (Figure 11.4) found a common denominator of 100 even though the fractions given in 
the problem already share a common denominator of 10. In doing this, he may have made the 
problem unnecessarily harder. 

Figure 11.4 Felix’s response. Felix found a common denominator even though each fraction has a 
denominator of 10. 

Darcie (Figure 11.5) used an algorithm correctly to convert the given fractions to fractions with 
a common denominator and found the correct sum. However, her choice of 11 as being closest to 
25  provides evidence of a lack of understanding of the magnitude of the fractions in the problem 24 
or in the solution. 

It is important to note that if Darcie had been asked to only compute 3 
8 +

2 
3 , one might have 

been confident that she is well on her way to developing proficiency with fraction operations. 
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 Figure 11.5 Darcie’s response. Darcie calculated the correct sum, but she concluded that 24  is closest 25 
to 11, not to 1. 

Of course, there is no way of knowing whether Darcie’s solution is the result of premature focus 
on formal algorithms. However, research indicates that students can struggle with the use and 
understanding of formal algorithms when their knowledge is dependent primarily on memory, 
rather than anchored with a deeper understanding of the foundational concepts (Kieren, as cited 
in Huinker, 2002). Solutions like Darcie’s serve as a reminder of the importance of focusing on 
understanding as students are developing efficient procedures. 

Using Visual Models, Equipartitioning, and Equivalence to Develop Fraction 
Addition and Subtraction Concepts 

Even though instruction in addition and subtraction of fractions does not formally begin 
until the upper elementary grades, the roots of these operations begin in earlier grades as 
students equipartition visual models to represent fractional parts of a whole and compare 
fractions. Fraction addition and subtraction ideas are not isolated from fraction concepts 
explored in earlier grades, but rather are a logical continuation of unit fraction, equivalence, 
and magnitude concepts. As students’ understanding of fraction concepts grows, they often 
move from ordering and comparing fractions and finding equivalent fractions to adding and 
subtracting fractions (OGAP, 2005). 

The examples that follow, like those shown earlier, provide evidence of students’ developing 
understanding of equipartitioning, unit fractions, and equivalence to compare fractions.

1 2In Figure 11.6, Holly states that “ 3  is just  away from .” She is describing an additive 10 10 5 
3 2 3 1 2 1 3relationship between  and . This relationship can be interpreted as + = or 2 − = .10 5 10 10 5 5 10 10 

Holly’s solution is an example of how fraction addition and subtraction concepts can logically 
develop from investigations of equivalence and magnitude. 

2 3It is important to note that Holly’s ability to use a visual model to represent  and 10 ,5 
including her attention to the size of the whole and accurate equipartitioning of the whole, made 

Figure 11.6 Holly’s response. Holly created models and used equivalence to compare the relative size 
3of 10  and 2

5 . 
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There are some candies in a dish. 

2  of the candies are chocolate.
5 
3  of the candies are peppermint.

10 
Are there more chocolate candies or more peppermint candies in the dish? 

2 3it possible for her to consider how much larger is than . These ideas, together with her 5 10 
developing understandings of the magnitude of fractions, serve as a foundation upon which she 
can build additive concepts and skills. 

2 1 4 2Patrick’s visual models in Figure 11.7 show that =  and = . This can be an important 10 5 10 5 
first step leading to an understanding of common denominators, a concept that is integral to 
developing an efficient algorithm to solve addition and subtraction problems. Although there is 
no evidence that Patrick contemplated addition or subtraction ideas, this work is ripe for those 
ideas to take root. 

Figure 11.7 Patrick’s response. Patrick used models to compare 5
2  and 3 

10 . 

Teachers can facilitate this type of additive reasoning as students solve equivalence and magni-
tude problems by asking questions such as: 

•	 How much greater or less is one fraction than another? 
•	 How much would you have to add to or subtract from one fraction to equal the other? 
•	 Create and describe a visual model that shows not only which fraction is greater, but also 

how much greater. 
•	 Use your visual model to show equivalence. 

Chapter 7, Equivalence, and Chapter 8, Comparing and Ordering, for an in-depth 
discussion of developing understanding of equivalence and magnitude. 

The Importance of Estimation When Adding and Subtracting Fractions 

“The development of a quantitative notion, or an awareness of the ‘bigness’ of fractions is very 
important” (Bezuk & Bieck, 1993, p. 127). Estimation plays a critical role in students’ development 
of procedural fluency (Siegler et al., 2010) and conceptual understanding with fraction addition 
and subtraction. Procedural fluency includes the ability to recognize the most efficient way to 
solve a problem. A student with procedural fluency knows when and how to use a certain strategy 
depending on the problem and possesses the ability to use estimation to judge the reasonableness 
of an answer, as Lisa did in Figure 11.8. 
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Aunt Sally has a jar that holds one cup of liquid. 

Her salad dressing recipe calls for 2 
3

 cups of oil, 1 
8

 cups of vinegar, and 1 
4

 cups of juice. 

Is the jar large enough to hold all the oil, vinegar, and juice? 

Aunt Sally has a jar that holds one cup of liquid. 

Her salad dressing recipe calls for 2  cups of oil, 1  cups of vinegar, and 1  cups of juice. 
3 8 4

Is the jar large enough to hold all the oil, vinegar, and juice? 

Figure 11.8  Lisa’s response. Lisa used her understanding of the magnitude of the given fractions to 
correctly answer the question. 

Lisa did not calculate an exact answer (although she did determine the sum of 1 1 ) or create a + 48
visual model to represent the situation. Instead, she used her understanding of the magnitudes of 
1 3 
3 , , and 2  to determine that the jar is not large enough to hold all three liquids. 8 3 

Cody’s solution, shown in Figure 11.9, is correct and suggests facility with a fraction addition 
algorithm. However, it may not be the most efficient solution for this particular problem. Cody’s 
solution illustrates the notion that students often do not apply their understanding of the magni-
tude (or meaning) of fractions when they operate with them (NRC, 2001). 

Figure 11.9  Cody’s response. Cody calculated a specific sum even though an exact answer is not 
needed in this particular context. 

Using visual models to estimate a sum, as Oscar did in Figure 11.10, is a useful step along 
the continuum that leads to estimating sums in a more abstract manner. His experiences with 
drawing visual fraction models can help Oscar develop efficient estimation strategies, like the one 
Lisa (Figure 11.8) used, for determining the relative magnitude of fractions. 

An important instructional point is exemplified by Cody’s, Oscar’s, and Lisa’s responses: “Stu-
dents need facility with a variety of computational tools, and they need to know how to select the 
appropriate tool for a given situation” (NRC, 2001, p. 122). Although each response includes a dif-
ferent strategy to answer the questions correctly, Lisa’s strategy of reasoning about the quantities 
involved may be the most efficient, given a context that does not require an exact numerical answer. 
Oscar’s solution using a physical visual model might illustrate a developing understanding of esti-
mating fraction sums. The evidence in Cody’s response suggests that he is developing fluency with 



  

 

 
 
 
 
 

 

 
 show the relative size of 7  and 1 .

8 12 
1 7The sum of +  is closest to:

12 8 
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Figure 11.10 Oscar’s response. Oscar did not calculate an exact answer. Instead, he used a model to 

1111 
4
1 

4
2 

an algorithm when adding and subtracting fractions. Although this may not be the most efficient 
strategy for this problem, it may be quite efficient for a problem that requires an exact sum. 

Unit Fractions and Fraction Addition and Subtraction 

As discussed in Chapter 1, unit fractions are the building blocks for developing understanding of 
fraction addition and subtraction. Students begin building the understanding that fractions are 
composed of unit fractions when they use number lines and area models to add fractions with 
common denominators. Sam’s solution in Figure 11.11 provides evidence that he understands 
fractions are built from unit fractions and that the sum of fractions with like denominators is the 
sum of the associated unit fractions. 

This essential notion that fractions are composed of unit fractions can help students transition 
from reliance on number lines and other visual models to solve problems involving addition and 

( + = + + + + = )3 5

Ethan’s response in Figure 11.12 suggests an understanding  that  3 = +1 1 + 1 
5 5 5 5 . He uses this to 

subtract 3 
5  from  2 1

5 . 

subtraction of fractions with common denominators e g. ., 4 444 . 4 4 

Figure 11.11  Sam used a number line and unit fractions to determine that 2 + =1 3 
8 

 and t 3
8 8 

hat 
8

is 
closest to 0. 
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Figure 11.12 Ethan’s response. Ethan used his understanding that fractions can be decomposed into 
unit fractions to subtract 3

5  from 2 15 . 

The distance from Billy’s house to work is 2 1 
52 miles. His car broke down 3 

5 of a mile from work. How far 
is Billy from his house? Show your work. 

3 
5

 into 1 
5 +

2 
5Figure 11.13 Alyssa’s response. Alyssa decomposed  and used the decomposition to deter-

mine the distance Billy is from his house. 
1 
5 

3 
5 of a mile from work. How far2The distance from Billy’s house to work is 2 miles. His car broke down 

is Billy from his house? Show your work. 

21
Alyssa’s response in Figure 11.13 shows evidence that she used unit fraction understanding to 

decompose 3  into 5 + .5 5 
When students solve problems involving addition and subtraction of fractions with unlike 

denominators, they combine their understanding of addition and subtraction of fractions (devel-
oped using unit fraction understanding) with their understanding of equivalence by finding com-
mon denominators before adding or subtracting the fractions. Kenny’s response in Figure 11.1 
illustrates the use of common denominators when adding fractions as well as evidence of unit 
fraction understanding when he indicates that 12  = 1.12 

Adding and Subtracting Mixed Numbers 

Up to this point, the chapter has focused on building conceptual understanding and procedural 
fluency with addition and subtraction of fractions less than 1. You have seen examples illustrating 
how this knowledge can develop from visual models, partitioning, reasoning about the magni-
tude of fractions, and fractions as iterations of unit fractions. It is not surprising that these same 
ideas are fundamental to students’ understanding of adding and subtracting mixed numbers and 
improper fractions. 

We discussed earlier in the chapter how fraction addition and subtraction concepts can build from 
thoughtful exploration of equivalence and magnitude. Figures 11.14 and 11.15 illustrate this point. 



Addition and Subtraction of Fractions • 167   

 
   

 

 

 
 
 

 

  

Susan ate 116
1 cupcakes and Billy ate 8

7
 cupcakes. 

Who ate more cupcakes? 

Figure 11.14 Marcus’s response. Marcus used the benchmark 1 to compare 1 1  and 9
8 .2 

Susan ate 111  cupcakes and Billy ate 9  cupcakes.
2 8 

Who ate more cupcakes? 

Figure 11.15 Gregory’s response. Gregory appears to incorrectly base his decision on whether a whole 
number is explicit in the fraction notation given in the problem. 

Marcus may be in a good position to add 112
1  and 9

8  because he has the sense of the magnitude 
of the two numbers relative to 1, and he converted the improper fraction 9  to 11 . Based on the 8 8 
evidence in Marcus’s work, one might expect that he would easily recognize the sum to be greater 
than 2. 

Unlike Marcus’s solution, the evidence in Gregory’s work (Figure 11.15) leads one to believe 
that he does not understand the magnitude of the improper fraction 8 . Gregory ignores the frac-7 
tion part of the mixed numbers and considers only the whole numbers. 

Gregory might benefit from opportunities to represent fractions greater than 1 on number lines 
and with area visual models, generalizing the relationships between mixed numbers and equiva-
lent fractions. Marcus, on the other hand, appears to be ready to consider questions such as: 

•	 How many cupcakes did Susan and Billy eat together? 
•	 How many more cupcakes did Susan eat than Billy? 

In an error analysis related to addition and subtraction of mixed numbers and improper 
fractions, Tatsuoka (1984) found that students may subtract the smaller fractional part of one 
mixed number from the larger fractional part of another regardless of the context. Renee’s 
solution shown in Figure 11.16 provides an example of this error. 
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Figure 11.16 Renee’s response. Renee ignored the whole number part of the mixed number and incor-
rectly subtracted the smaller fractional part, 1 , from the larger fraction, 3

5 .5 

The distance from Billy’s house to work is 2 1 
5 miles. 

His car broke down 3  of a mile from work.
5 

How far is Billy from his house? 

Another common error related to subtracting mixed numbers involves errors in regrouping. 
Students may borrow by reducing the whole number by one but incorrectly add that amount to 
the fraction part of the number (e.g., students add 10 to the denominator or ignore the value of 
the fraction part of the number) (Tatsuoka, 1984). This is exemplified in Shaun’s response, shown 

1in Figure 11.17. He subtracted 1 from 2 but incorrectly added this amount to . In performing 5 
the subtraction, he seemed to ignore the whole number part of the mixed number. 

Figure 11.17 Shaun’s response. Shaun recognized that the problem could be solved using the operation 
32 1 − . However, when borrowing, he seemed to ignore the fraction part of the mixed number, 2 15.5 5 

The distance from Billy’s house to work is 2 1 
5

miles. 

His car broke down 3 
5 of a mile from work. 

How far is Billy from his house? 

Gregory, Shaun, and Renee all made errors that led to answers with unreasonable magnitudes 
given the problem (e.g., subtracting 3  from 2 1  and obtaining an answer of 2 ). For this reason, 5 5 5 
all three students might benefit from representing their problems on a number line, much as Lola 
did in Figure 11.18. 
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 Figure 11.18 Lola’s response. Lola used a number line to successfully solve this problem involving 
mixed numbers. 

The distance from Billy’s house to work is 2 1  miles.5 

His car broke down 3  of a mile from work.
5 

How far is Billy from his house? 

Notice that Lola’s visual model suggests an understanding of the relative magnitude of the 
fractions presented in the problem. Lola is ready to use this conceptual understanding to 
develop a more generalized strategy for adding and subtracting mixed numbers. 

The CCSSM and Adding and Subtracting Fractions 

Procedural fluency with addition and subtraction of fractions is expected by the end 
of fifth grade. The development of procedural fluency for adding and subtracting fractions is 
anchored in the use of visual models, unit fraction understanding, and properties of operations 
in earlier grades. 

At grade 3, students investigate unit fractions and understand that fractions are built by iterat-
ing unit fractions. For example, through the use of number lines and visual models, students at 
grade 3 learn that 3  is formed from three units of size 1 , thus leading to the understanding that 4 4 

. This provides coherence 

( ) . 

e g. .  ) 

 can be interpreted as 

( 

Using visual models, unit fraction understanding, properties of operations, and the relationships 
between addition and subtraction, students at grade 4 are expected to solve addition and subtrac-
tion problems that involve proper fractions and mixed numbers. 

At grade 5, students combine their understanding of addition and subtraction of fractions with 
like denominators together with equivalence concepts to solve problems involving addition and 
subtraction of proper fractions and mixed numbers with unlike denominators. 

+ 

be represented in various ways using addition 

as the sum of unit fractions. For example, 

1 
4 

1 
4 

1 
4= + + . See Figures 1.2, 1.10, and 1.11 in Chapter 1, Understanding a Fraction as a Number, 

for examples of visual models that illustrate these concepts. 
At grade 4, students extend unit fraction understanding by decomposing fractions into the 

sum of fractions with the same denominator. This allows them to understand that fractions can 
2
6 

1
6= +  = +  

because this concept is closely related to what students have learned in previous grades regarding 
how whole numbers can be decomposed and represented in multiple ways. This also supports 

11 
4 

1 
4 

11 
4 

1
foundational understanding that addition of fractions with like denominators can be thought of 

+ + ) + ( + + 444 

3
6 

5
6;4

6 
5
6, 

33 
44 

3 
4 
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The Importance of the Commutative and Associative Properties 

Students can use their understanding of the commutative and associative properties for addition 
of whole numbers to support their development of concepts related to adding fractions. In partic­
ular, these properties can help build a deeper understanding of the concepts underlying addition 
of mixed numbers. To begin this discussion, it is important to understand that a mixed number is 
the sum of a whole number and a fraction less than 1. Thus, the number 3 14  means 3 + 1

4 
. 

Consider the following problem: 

Richard worked on a project due in science class. During the first week he worked for 2 3 
5 

hours. During the second week he worked for 2 1 hours. How many hours did Richard 4 
work on his project during these two weeks? 

Students may learn how to follow a procedure to solve mixed-number addition problems like 
this one. For many students, the procedure is not coherently linked to properties of operations 
that can bring conceptual meaning to the procedure. Figure 11.19 is an example of a common 
procedure for adding mixed numbers. 

Figure 11.19 A typical algorithm for adding mixed numbers. 

In this procedure, students learn to set up the mixed numbers so that the two whole numbers and 
the two fractions are aligned. The next step is to find equivalent fractions with common denominators 
and to notate them using equal signs. Finally, students learn to add the whole numbers, add the 
fractions, and write the sum as a mixed number. This procedure will result in a correct sum, but for 
many students it is a collection of steps to remember rather than a procedure built from meaning. 

Although the answer in Figure 11.19 is correct, it is important to point out that the equal signs 
are not used correctly: 3 3 ≠ 12 and 2 1 ≠ 5 . While it may not be apparent in the procedure shown 5 20 4 20 
in Figure 11.19, this solution is based on important mathematics properties. Figure 11.20 illus­
trates these concepts. 

3 1 3 1The relationships conveyed in the solution shown in Figure 11.20, 3  2  + 3 2= + + + , present 5 4 5 4 

the opportunity for an accurate estimate of the sum of the two mixed numbers. One can reason that 
the sum is between 5 and 6. In fact, using one’s understanding that 3 

5 > 1 
2  and the meaning of the unit 

fraction 1 , one can conclude that the sum of 34 
3 
5 + 12 4  is closer to 6 than it is to 5. Also notice that the 

equal signs are used correctly throughout this example. 
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 Figure 11.20 A procedure for adding mixed numbers is built on decomposition, the commutative 
property, equality, and the associative property. 

Case Study—Facilitating a Mini-Lesson 
Ms. Pratt, a fifth-grade teacher, had never considered the ways in which a 
focus on reasoning strategies and the properties of operations could help 
students more deeply understand addition of mixed numbers. She had 

just introduced her students to the algorithm for adding mixed numbers as shown in Fig-
ure 11.19 and they seemed to be able to use it to add mixed numbers that did not require 
regrouping and mixed numbers with fractions that had the same denominator. She decided 
to administer a new formative assessment problem: 

Sylvia had 2 3 
4  yards of blue fabric and 3 2 

3  yards of red fabric. How much fabric did she 
have altogether? Show your work. 

Why do you think this is a good problem for her to administer to her students at this point 
in her instruction of mixed number addition? 

Ms. Pratt selected this problem because it would provide evidence of her students’ abil-
ity to solve a mixed number addition problems in context. It would also provide valuable 
information about her students’ understanding of how to deal with fractional amounts that 
summed to more than one whole when adding mixed numbers. 

Ms. Pratt analyzed her student responses by using the OGAP Sort and recording the evi-
dence on the OGAP Evidence Collection Sheet shown in Figure 11.21. 

After completing the OGAP Sort and recording the evidence on the OGAP Evidence Col-
lection Sheet, she made some observations before addressing the OGAP planning questions. 
Several students effectively used a visual model to add the mixed numbers. She noted that a 
couple of students used the algorithm she had taught them to find common denominators 
and understood what to do with the improper fraction, as exemplified in Natalie’s solution in 
Figure 11.22. However, she also noticed that a couple of students converted both mixed num-
bers to improper fractions and then applied a common denominator to add them, but then 
didn’t know how to interpret the resulting improper fraction in the context of the problem, 
as seen in the evidence in Azro’s solution. She wondered if students like Azro understood the 
magnitude of the answer of 68  in the context of yards of fabric. Other students made proce-12 
dural errors while attempting the use of the algorithm. She also saw several papers like Kim’s 
response with an answer of 5 5 , showing the inappropriate use of whole number reasoning 7 
to add the numerators and denominators separately. 
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Figure 11.21 OGAP Evidence Collection Sheet 

Figure 11.22 Three student solutions. 

Natalie’s response 

Azro’s response 

Kim’s response 
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Ms. Pratt addressed the three OGAP questions in preparation for planning. 

1. What are developing understandings that can be built upon? A couple of students 
successfully found common denominators and correctly added the fractions. Oth-
ers attempted this procedure but made errors. A few students showed evidence of 
understanding that they could add the whole numbers (2 and 3) and then add the 
fractions. 

2. What issues of concern were in the student work? Ms. Smith was surprised so many 
students reverted to using a visual model to add the fractions. She was also concerned 
that students were not using an understanding of the magnitude of the fractions to 

3make sense of the answers they were getting (e.g., not recognizing that + 2 must 4 3 
be more than 1). In addition, she was concerned that a few students reverted to inap-
propriate whole number reasoning. 

3. What are potential next instructional steps for the whole class, small groups, or 
individual students? Ms. Pratt decided to lead a minilesson at the beginning of the 
next class focused on using unit fraction and equivalence reasoning to add frac-

numbers. 

4 
5 

The Mini-Lesson 

2 
5 

tions and mixed numbers. She designed the activity to help students move away 
from a reliance on visual models as well as solidify understanding of decomposing 
mixed numbers and using properties of operations to solve problems with mixed 

To start the next class, Ms. Pratt created the following four problems in which students were 
to decide if the equations were true or false and to be prepared to justify their answer. Before 
reading further, work through them for yourself. 

11 
555

11 
5+ + + + = +  True or false? 

211111 

64 
5 

2 4 2 4 13. 1 + 2 = + + + = 31 2  True or false? 5 5 5 5 5 
4 4 4 84. 1 + 2 = + +1 2+  True or false? 10 5 10 10 

Ms. Pratt engaged all students in the discussion by placing one problem on the board at 
a time and then using a think, pair, share strategy to have students justify whether each 
problem was true or false. The first problem was designed to get her students thinking and 
talking about unit fraction reasoning: 

+ + + + + = +  55 

6 

5 

4 

555 

Once students had justified and agreed that this equation was true, she put up an equation 
that was deliberately false and reflected some of the inappropriate use of whole number rea-
soning she had seen on her formative assessment: 

+ =  

4 
5 

2 
4 

1 
5 

1 
5 
2 
5 

10 

6 

+ =  True or false? 10 

1. 

2. 

5  (from the previous problem). 
4 8Another used equivalence to reason that it was the same as + or 12 . Mrs. Pratt then put 10 10 10 

up a few more variations of these questions to make sure that students could use reasoning 

5 

2 4One student was able to reason that  and  was equal to 5 5 
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about unit fractions and equivalence. Finally, she presented problems 3 and 4 so that students 
could think about adding mixed numbers by using their reasoning and understanding of 
properties of operations. 

After this mini-lesson, students appeared to be more comfortable with solving a variety of 
mixed number addition problems in the math lesson that followed. At the end of the lesson, 
she decided to administer the following formative assessment question. Why do you think 
she choose this question? 

Alice had a goal to bike 38 miles one week. On Monday she biked 15 5  miles. On 8 
Wednesday she biked 11 3  miles. On Friday she biked 10 1  miles. Did she meet her 4 2 
goal? Show your work. 

Ms. Pratt selected this problem because it is an example of a contextual problem in which 
fractional reasoning and the application of the properties of operations can be applied to 
estimate the solution. Although the problem can be solved using written procedures, algo-
rithmic strategies are neither necessary nor efficient. For example, since the sum of the whole 
numbers in the problem is 36, student simply must reason whether the sum of the fractions 
5 3 1 
8 , 4 , and is greater than or less than 2 (the difference between the sum of the whole 2 

numbers and Alice’s goal of 38 miles). Ms. Pratt wanted to see if her students could demon-
strate procedural fluency by selecting the best operation or strategy for the problem at hand 
and performing the operation flexibly, accurately, and efficiently. In this case that meant 
using fractional reasoning to make an estimate of the solution rather than making an exact 
calculation. 

In this example, Ms. Pratt used evidence from a formative assessment question to design a 
mini-lesson focused on specific concepts and then gave another exit question that asked students 
to apply these concepts to a new situation (estimation in context). 

The OGAP Fraction Progression and Adding and Subtracting Fractions 

At the Fractional Strategies level, student solutions include the use of properties of 
operations, reasoning about magnitude, or efficient algorithms when solving addi-
tion and subtraction problems. Kenny’s response in Figure 11.1 is an example of using 

an efficient algorithm to solve an addition and subtraction problem. The solution in Figure 
11.23 is an example of using the properties of operations to solve an addition of mixed numbers 
problem. 

Student solutions at the Transitional Strategies level provide evidence of effective use of a visual 
model and/or the use of unit fractions when adding and subtracting fractions. Solutions at this 
level may also show evidence of using inefficient procedures such as repeated addition for mul-
tiplication of fractions. Felicia’s and Shawn’s responses in Figures 11.2 and 11.3 are examples of 
using effective models at the transitional level. 

At the Early Fractional level, there is evidence of choosing the appropriate operation given the 
problem, but the solution contains a conceptual error. In Figure 11.17, Shaun used the correct opera-
tion, subtraction, but not the correct procedure to subtract 2  from 2 15 .5 

The Non-Fractional level is characterized by solutions that use an incorrect operation given the 
problem, inappropriate whole number reasoning, or use of a rule or procedure without evidence 
of understanding. 
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Chapter Summary 

This chapter focused on research related to adding and subtracting fractions. Through an exami-
nation of pertinent research and examples of student solutions, we demonstrated how: 

•	 Procedural fluency and conceptual understanding work together to deepen student 
understanding of fraction addition and subtraction. 

•	 Fraction addition and subtraction concepts build from, and are dependent on, unit frac-
tion and equivalence, magnitude understanding, and the commutative and associative 
properties. 

•	 Estimation plays a critical role in students’ development of procedural fluency and 
conceptual und.erstanding related to fraction addition and subtraction. 

Looking Back 

1. Mrs. Grayson brought Kenny’s work (shown first in Figure 11.1 and shown here in 
Figure 11.23) to a fifth-grade team meeting. She wondered if Kenny simply followed a 
procedure or if he understood the concepts upon which the algorithm is based. 

Figure 11.23 Kenny’s response. 

Tina ate 2 of her candy and gave3 
1 
4  of her candy to her sister. She saved the rest of her candy. What is 

the fractional part of the candy that Tina saved? 

Help Mrs. Grayson by answering the following: 

a. Describe evidence in Kenny’s response that shows understanding of the context of the 
problem and related fraction concepts. 

b. What questions might you ask Mrs. Grayson about her instruction to ensure that 
Kenny has a foundation for understanding? 

c. If Mrs. Grayson wanted to be sure that Kenny understood the algorithm, what else 
could she ask him? 

2. Mr. Benson brought Mathew’s response (Figure 11.24) to the team meeting. He felt 
that this provides evidence that Mathew has a strong conceptualization when com-

2 3paring to  using both a visual area model and a number line. 5 10 

Answer the following questions: 

a. What understandings are evidenced in Mathew’s work? 
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b. What questions could be asked to build on understanding about equivalence and 
common denominators when comparing or adding and subtracting fractions? 
Explain how each question might help Mathew to move to a deeper understanding of 
equivalence and common denominators when comparing or adding and subtracting 
fractions. 

Figure 11.24 Mathew’s response. 

There are some candies in a dish. 

2  of the candies are chocolate.
5 
3  of the candies are peppermint.

10 
Are there more chocolate candies or more peppermint candies in the dish? 

3. Ms. Cunningham shared Kim’s work (Figure 11.25) at the math team meeting. She is 
asking her teammates for advice on how to transition students to accurately using visual 
models to solve problems involving addition and subtraction. 
Help Ms. Cunningham by addressing the following questions: 

a. What was Kim able to do correctly? What is the evidence? 
b. Kim’s visual model leads to an incorrect response. What errors did Kim make in her 

use of a visual model? What is the evidence? 

Figure 11.25 Kim’s response. 
2Tina ate 
3

 of her candy. She gave 1  of her candy to her sister and saved the rest of her candy. What is 
4 

the fractional part of the candy that Tina saved? 

c. What questions might you ask, or activities might you do, to help Kim understand 
how to use visual models to solve addition and subtraction problems? 
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4. Mr. Hill has been spending a lot of time working with his class on estimating sums and differ-
ences. Work from three of his students, Willy, Oscar, and Christine, is shown in Figures 11.26, 
11.27, and 11.28. Use these three solutions to answer the following questions. 

a. Analyze Willy’s, Oscar’s, and Christine’s work. What strategy did each student 
use to solve the problem? Locate each solution strategy on the OGAP Fraction 
Progression. 

b. What questions might you ask Christine to help her consider more efcient fractional 
strategies? 

c. What questions or activities could you propose that would help Oscar move from 
using a visual model to a mental visual model of the fractions being added? How 
would the questions or activities you propose help Oscar? 

d. Use the OGAP Fraction Progression to help you create other questions or activities that 
1can support or extend Willy’s understanding of the relative magnitude of  and 7 .

12 8 

Figure 11.26 Willy’s response. 

Figure 11.27 Oscar’s response. 
1 7The sum of +  is closest to:

12 8 

Figure 11.28 Christine’s response. 
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 5. Ms. Horton is helping Emanuel (Figure 11.29) understand addition of proper fractions. 
He is able to draw visual models for most fractions and use visual models to add or sub-
tract fractions with common denominators. However, Emanuel struggles with adding 
or subtracting fractions with unlike denominators (Figure 11.30). Help Ms. Horton by 
responding to the following questions and prompts. 

Figure 11.29 Emanuel’s response for adding fractions with common denominators. 

+ =3 
8

Solve 1 
8 

Figure 11.30 Emanuel’s response for adding fractions with unlike denominators. 

+ =3 
8

Solve 1 
2 

a. What feature of the visual model in Figure 11.29 allowed Emmanuel to successfully 
add the two fractions but is not present in Figure 11.30? Locate each solution strategy 
on the OGAP Fraction Progression. 

b. What would Emmanuel have to do to the visual model in Figure 11.30 to allow him 
to efectively use the same strategy for adding fractions as he used in Figure 11.29? 

c. Provide a sequence of addition/subtraction problems that would help build this 
understanding. Describe how the problems you propose can help to build an 
understanding of the meaning of common denominators. 

Instructional Link: Your Turn 

Use the questions in Table 11.1 to help you think about how your instruction and mathematics 
programs provide students the opportunity to develop understandings about addition and 
subtraction of fractions. 

Table 11.1 Strategies to Support Development of Concepts Related to Addition and Subtraction of 
Fractions 

Do you (or your program) provide opportunities for students to: Yes/No 

1. Use visual models to build understanding of addition and subtraction concepts? 
2. Solve problems that involve estimating fraction sums and differences? 
3. Build upon other foundational skills such as visual modeling, partitioning, 

estimating, unit fraction understanding, and equivalent fractions to develop both 
conceptual understanding and procedural fluency? 
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Identify any gaps between your instruction (including what your program offers) and what 
should be addressed based on the research from this chapter. Consider instructional strategies 
that you could use to address the gaps you found. 
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12 
Multiplication and Division 

of Fractions 

Big Ideas 

•	 Instructional opportunities for students should foster both conceptual under-
standing of multiplication and division across a range of contextual situations 
and procedural fluency built upon conceptual understanding. 

•	 Understanding of and fluency with multiplication and division of fractions 
should be built upon an understanding of fractions as numbers, visual models, 
unit fraction understanding, the meaning of the operations, and the properties 
of operations. 

Multiplication and Division of Fractions: Understanding the Concept 

Fraction operations in general, and multiplication and division of fractions in particular, are 
consistently sources of confusion for students. Research suggests that students often have a proce-
dural knowledge of fraction operations but lack understanding of their vital underlying concepts 
(Mack, as cited in Yetkiner & Capraro, 2009). 

A national report summarizing research findings on fraction teaching and learning suggests 
four key strategies to build procedural fluency based on conceptual understanding (Siegler et al., 
2010): 

1. Use visual models to “help students gain insight into basic concepts underlying compu-
tational procedurals and reason why the procedures work” (p. 28). 

2. Use contextual tasks in which the contexts “provide meaning to the fraction quantities 
involved in a problem and the computational procedure used to solve it” (p. 33). 

3. Use estimation to help strengthen understanding of the impact of the operations. 
4. Address common misconceptions. 

This chapter provides examples of how each of these strategies is applied to building procedural 
fluency of multiplication and division of fractions with understanding. The chapter begins with 
an overview of the expectations in the CCSSM for the development of understanding and fluency 
with multiplying and dividing fractions. 

Building on the CCSSM expectations, the chapter explores how the use of visual models, unit 
fraction understanding, contexts, estimation, and properties of operations can build fluency and 
conceptual understanding. In this chapter, all fractions used are positive fractions, and the word 
“fraction” always refers to a positive fraction. 

DOI: 10.4324/9781003185475-12 

https://doi.org/10.4324/9781003185475-12
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The CCSSM and Multiplication and Division of Fractions 

Students at grade 4 solve problems in context and use visual models and unit frac-

4 

tions to develop understanding of the multiplication of fractions by a whole number. At grade 

4 

5, students extend this work to understand multiplication as scaling. For example, a recipe for 
four people that calls for 1 pound of sugar will need five times as much sugar when the recipe is 2
adjusted for 20 people. Conversely, if the recipe is changed to feed half the number of people, half 
the amount of sugar would be needed. In the first case, the recipe is scaled up by a scale factor 
of 5. In the second case, the scale factor is 1

2 . Students at grade 5 also solve problems involving 
multiplying fractions by both whole numbers and fractions. Division with fractions is formally 
introduced in grade 5 through problems that involve the interpretation of a fraction as the division 
of the numerator by the denominator. Additionally, students at grade 5 solve fraction multiplica-
tion and division problems involving area and other measurement and data topics. 

At grade 6, students solve problems involving the division of fractions by fractions. Students 
also apply their knowledge of multiplying and dividing fractions to solve problems involving area, 
volume, data, and equations and expressions. As students develop understanding of the meaning 
of multiplying and dividing with fractions, they represent the situations with visual models, write 
equations to represent problem situations, and write story problems to match equations. 

At grade 7, fraction concepts are extended to negative fractions. It is important to note that 
fraction fluency is assumed at grade 7, and students are thus expected to solve problems involving 
fractions across a range of mathematics topics such as area, volume, surface area, percentages, 
ratios, proportions, expressions and equations, scaling, similarity, measures of central tendency, 
probability, and functions. The development of fluency through understanding in earlier grades 
is therefore critically important. 

Extending Understanding of the Properties of Operations and Relationships 

Through the early elementary grades, students interact with several important properties and 
relationships with respect to multiplication and division of whole numbers. These same proper-
ties and relationships learned in the context of whole numbers also apply to fractions and are 
central to reasoning about operations with fractions. 

•	 Identity property of multiplication: multiplication of a number by 1 results in a product that 
1is equal to the original number (e.g., 8 × 1 = 8 and 1 1× = ). This also means that division 2 2 

1by 1 results in a quotient that is equal to the dividend (e.g., 8 ÷ 1 = 8 and 1 1÷ = ).2 2 

•	 Zero property of multiplication: multiplication of any number by 0 equals 0. 
1•	 Inverse relationship between multiplication and division: This means that because 4 × = 2,2 

1then 2 ÷ = 4 and 2 4  1÷ = . Students have explored this relationship between multiplication 2 2 
and division with whole numbers. For example, they have learned that since 5 × 2 = 10, 
then 10 ÷ 2 = 5 and 10 ÷ 5 = 2. Often, students are asked to list members of the same mul-
tiplication and division “fact families.” Just as 10 ÷ 2 = 5 and 5 × 2 = 10 are in the same fact 

1 1family, the equations 2 ÷ = 4 and 4 × = 2 are in the same fact family. 2 2 

× = × 55 

•	 Distributive property of multiplication: a(b + c) = ab + ac where a, b, and c are real numbers. 
1(e.g., 2 × 2×1 = (2 × 2) + (2 2 ) = 4 + 1 = 5). Again, students have seen the distributive ×2 2 

property at work with whole numbers. For instance, they have learned that 17 × 4 = (10 × 4) 
+ (7 × 4). 

•	 Multiple interpretations of both multiplication (e.g., equal groups, area, scaling) and 
division (partitive and quotative). 

3333 
4444 × and .20 20=•	 Commutative property of multiplication: 3 × 4 = 4 × 3 and × 
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One relationship that many students overgeneralize incorrectly from their work with whole 
numbers is that multiplication always results in a larger number and division always results in a 
smaller number (Harel et al., 1994). Doug’s response in Figure 12.1 is an example of a student who 
believes that multiplication must make the result larger. 

Figure 12.1 Doug’s response. Doug states that the product has to be greater than the given factors. 

Stephanie and Paige are discussing the answer to 37
2 × 5 .9 

Stephanie said that the answer is more than 32 
7 . 

Paige said the answer is less than 37
2 . 

Who is correct? 

To undo deeply held beliefs, such as Doug’s, about the impact of multiplication and division 
on a product or quotient, instruction needs to focus on developing an understanding of why this 
result is not always true when operating with fractions. To explore this concept in more depth, we 
will use the following multiplication problem: 

A recipe calls for 3  of a cup of flour. How much flour is needed to make 1  of the recipe? 4 2 

The solution in Figure 12.2 uses an area model to represent the recipe problem. The visual model and 
the problem are used to illustrate two important points about multiplication and division of fractions: 

1 
1. Multiplication can result in a smaller product. 
2. Multiplying by  is the same as dividing by 2. 2 

In Figure 12.2, the large rectangle represents a cup of flour. The visual area model A represents 
of a cup of flour. The visual area model B shows that 1 

2 of 3 
4 of a cup of flour equals 3 

8 of a cup of 3 
4 
flour. This logical context and accompanying area models make it clear that a product in multipli-
cation can be less than the initial amount. In this case, the initial amount, 3 

4  of a cup of flour, was 
scaled by a factor of 1 

2 . Thus, half the recipe requires half the amount of flour, or 3 
8  cup of flour. 

1 
2  to multiplying a number by any fraction By extending this concept of multiplying a number by 

between 0 and 1, one sees that multiplication can make the product smaller. When multiplying by 
a fraction between zero and one, one is always finding a fractional part of a given number. 

Figure 12.2 One-half of 3 
4  of a cup of flour is represented in area model B. 
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1 
2 

3 
4 

1 
4

Model B also helps us see that multiplying by 1 
2
 is the same as dividing by 2; that is, when we 

consider 1  of 3  of a cup of flour, we either divide 3  of a cup of flour by 2 or multiply 2 4 4 ×  of a cup 
of flour. Both operations result in the correct answer, 3 of a cup of flour. In either situation, the 8 
answer, 3 , is less than 3 , the original amount of flour. 8 4 

One must not overgeneralize that anytime a fraction is involved in multiplication the product 
will be less than the original number. For example, if one is quintupling a recipe and the original 
amount of sugar in the recipe is 1 

2  cup of sugar, the calculation would be 5× 1 
2  and the recipe would 

require more than 1 cup of sugar (see Figure 12.3). 
2 

 cup of sugar by a factor of 5 results in 2 1 
2Figure 12.3 This number line shows how scaling up 1 

of sugar. That is 5× = ( ) 51 
251 

2 

 cups 
2 

= .
2 

Amount of sugar for five times the original recipe 

Notice that the answer, 2 1  cups of sugar, is greater than the original amount of sugar, 2 
1 
2
 cup. 

This is because multiplication by a number greater than 1 (in this case 5) results in a product that 
is greater than the other factor, even if that factor is a fraction. That is, the recipe was scaled up 
five times. Therefore, the amount of each ingredient, even if the amount is fractional, is five times 
greater than the original amount. 

Impact of Division by a Fraction 

As we described earlier in the chapter, students’ experiences with the division of whole numbers 
sometimes leads them to believe that the operation of division always makes something smaller. 
Glen’s work in Figure 12.4 is an example of a student who is bringing a whole number notion of 
the impact of division to dividing by a fraction. 

1 
2
 and 1 

4 using his whole num-Figure 12.4 Glen’s response. Glen chose the non-zero number less than 
ber understanding of the impact of division on a quotient. 

1 
2 ÷

1 is closest to?
4 

To investigate the impact of dividing by a fraction, we will use two problems. In each problem, 
we are dividing by a fraction between 0 and 1. Here is the first problem: 

Carly has 1 
2  of a pound of jellybeans. She filled bags with 1 

4 of a pound of jellybeans. How many 
bags did Carly fill? 

The answer can be found by making the calculation 1 
2 ÷

1 
4 . In this interpretation of division, one 

is asking, “How many 1 
4 pounds of jellybeans are in 1 

2  a pound of jellybeans?” or “How many s are 
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How much of 1 is in 
2 

1 
4 

? 

There is 1 of a half in
2 

1 
4 

. 

  

2 
1in 1 ?” Figure 12.5 illustrates that there are two 1 s in 1 , so 1 ÷ = 2. Notice that the quotient, 2, is 4 2 2 4 

greater than the dividend, 1
2 . When a number is divided by a fraction less than 1, the quotient will 

be greater than the dividend. 
Now let’s consider the second problem: 1 

4 ÷
1 
2

. 
The number line in Figure 12.6 illustrates the impact of dividing a fraction by a fraction less 

( ). Using the same interpretation of divi-than 1 when the divisor is greater than the dividend 1 
4 ÷

1 
2 

1 
4 ÷

1 
2  into “How sion that we used in the example in Figure 12.5, one can translate the expression 

much of 1
2  is in 1

4 ?” 

Figure 12.5  Given the context in Carly’s problem, the division expression 1 
2 ÷

1 
4

 can be interpreted 
as  “How many 1 s are in 1 ?” There are two 1 s in 1 

  ; therefore, Carly can fill two bags with jellybeans. 4 2 4 2

Figure 12.6  Number line illustrating the calculation 1 ÷ =1 1 
2 . 4 2

In this case, as in the previous example, the quotient, 1 , is greater than the dividend, 1 .
2 4 

It is worth repeating that for many elementary school students, the idea that the quotient 
in a division problem can be greater than the dividend, or that multiplication can result in a 
smaller number, is counterintuitive. Students will only come to this understanding after many 
opportunities to visualize the impact of dividing and multiplying by a positive fraction less than 
1. Solving contextual problems that involve making sense of the impact of the multiplication and 
division play important roles in the development of these ideas. 

Justina’s response in Figure 12.7 shows evidence of understanding the impact of multiplying by 
a positive fraction less than 1 on a product. 
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The product of 3 × 4  is?
5 

Liam is baking cookies. The recipe calls for 12
3  cups of flour. Liam wants to triple the recipe. He has only 

4 cups of flour. Does he have enough flour? 

Figure 12.7 Justina’s response. Justina’s response shows evidence of understanding that multiplying a 
number less than 1, such as 4 , results in a smaller number. 5 

Using Estimation to Strengthen Understanding of the Impact 
of Multiplication and Division 

To continue to reinforce students’ understanding of the impact of multiplication and division, 
students should be asked to make estimates of solutions before solving problems and to reflect 
on their final solutions through this estimation lens. Students should also be asked to solve both 
contextual and noncontextual problems that do not require exact answers but instead ask for 
estimates based on reasoning. Figures 12.8 and 12.9 provide examples of these types of problems. 

Figure 12.8 Example of a contextual problem that requires an estimation, not an exact answer. 

Figure 12.9 This noncontextual problem requires an understanding of the impact of multiplication 
involving fractions without asking for an exact numerical answer to each of the problems. 

Make each statement true using the greater than (>), less than (<), or equal to (=) sign. Support your 

answer. 

Anchoring Procedural Fluency in Understanding 

As discussed in Chapter 11 and at the beginning of this chapter, students may struggle with the 
use and understanding of formal algorithms when their knowledge is dependent primarily on 
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If 5 students each get 3  of a candy bar, how many candy bars do they have altogether? 
8 

memory, rather than anchored with a deeper understanding of the foundational concepts (Kieren, 
as cited in Huinker, 2002). Some researchers even suggest that instruction focused on rules may 
present unintended consequences, because rule-based instruction does not encourage students 
to think about the meaning of the operation. Mastery in the use of operations learned through 
rule-based instruction is quickly lost (Aksu, 1997). 

This research is particularly important considering the difficulties students have with multipli-
cation and division of fractions. Operations with fractions, specifically division of fractions, are 
considered by some researchers to be the least understood topics in elementary school mathematics 
(Fendel, as cited in Tirosh, 2000). 

Multiplication of Fractions: Developing Fluency Through Understanding 

Students often learn to multiply fractions by simply multiplying the numerators and multiplying 
the denominators. Unfortunately, this type of instruction often leaves students with little conceptual 
understanding of this procedure. Fraction computation can be taught as a series of rules; however, 
this focus on rote learning can result in artificial feelings of accomplishment (Aksu, 1997). 

Multiplication of Whole Numbers by Fractions 

By combining understanding of whole number multiplication and unit fraction understanding, 
students develop understanding and fluency when multiplying whole numbers by fractions. When 
learning multiplication with whole numbers, students represent the multiplication of 5 groups of 
8 as 5 × 8 = 8 + 8 + 8 + 8 + 8. This understanding can be extended to fraction multiplication to see 

111115
fractions as composed of unit fractions. That is, a fraction can be understood as the numerator 

= ( ) = + + + +  multiplied by a unit fraction (e g  )15 .. . 8, 88888 
Review the problem and solution in Figure 12.10. This illustrates how the understanding of whole 

number multiplication and unit fractions can be combined. Also notice how the context helps bring 
meaning to the operation. That is, the candy bar problem involves scaling up the amount of candy 
bar by finding five times the amount that each student received. Given this context, it makes sense 

Figure 12.10 The numerical solution, the number line, and the visual area models support an 
understanding of the relationship between repeated addition and multiplication. 

8 
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to multiply the number of three-eighths directly, as shown in Figure 12.10 (5 students × 3  of a candy 
8

bar for each student = total amount of candy bars). 
The ultimate goal, however, is not for students to use repeated addition or to construct visual mod-

els to solve multiplication problems, but to use the understanding derived from the visual models and 
n aunit fraction understanding to understand that n a× = × , where n is any number and b ≠ 0.b b 

Study the student solutions in Figures 12.11 and 12.12. These solutions approached the mul-
tiplication of a whole number by a fraction in a different way than the solution in Figure 12.10. 
In these cases, the students used unit fraction understanding by determining how many students 
represented 1 of the class and then multiplied that by 2 to determine the number of students in 32  of the class. 3 

Figure 12.11 Tamara’s solution. Tamara partitioned a visual area model into thirds and then deter-
mined how many students represented 1 of the class. She then determined the number of students who 

3 
had brown eyes in 2 of the class by multiplying 2 × 12. 

3 

There are thirty-six students in Ashley’s class. Two-thirds of the students in Ashley’s class have brown 

eyes. How many students have brown eyes in Ashley’s class? 

Figure 12.12  Zoe’s response shows her understanding that finding 1
3  of a quantity is the same as 

dividing the quantity by 3. She then used this understanding to determine the number of students in 
2
3  of the class. 

There are thirty-six students in Ashley’s class. Two-thirds of the students in Ashley’s class have brown 

eyes. How many students have brown eyes in Ashley’s class? 

Also notice how the context of the problem brings meaning to the operation, but in a different 
way than the candy bar problem did in Figure 12.10. That is, in the classroom problem, we are 
finding a fractional part of a whole rather than scaling up. When determining 2 of 36 students, 3 
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it makes sense to find the number of students in 1  of the class then multiply this number by 2 3
since the problem involves 2 of the students (2  × 36 students [whole] = number of students with 3 3
brown eyes in the class [part]). 

It appears that Tamara applied similar reasoning using her visual model as Zoe did in her more 
efficient solution. One can imagine asking Tamara to explain how she determined the number 
of students in each third of the class and why she decided that 24 students have brown eyes. 
From that discussion, one could then ask Tamara to write equations or expressions to represent 
her thinking. With more opportunities to solve problems like these, Tamara has the potential to 
quickly transition from relying on visual models to using a more efficient strategy. 

Students need to be flexible in their use of efficient strategies as they make sense of problem con-
texts drawing on their understanding of the problem and mathematics concepts underlying the prob-
lem. To support the development of flexibility, instruction should engage students in different types 
of multiplication problems with fractions (e.g., equal groups and measures, parts of wholes, scaling 
up, area, volume, data), allowing for students to use strategies that make sense for the problem situa-
tions and the quantities involved. 

Multiplication of Fractions by Fractions 

The common algorithm for multiplying fractions involves multiplying numerators of the factors 
and the denominators to obtain a product. 

1 3 ×1 3  3× =  = 2 4 ×2 4  8 

The calculation 

number of s in the product: 3
8. 

Figure 12.13  Area model showing that 1 × =3 3 
4 8 . 2 

Understanding procedures for multiplying a mixed number by a mixed number are also 
important. 

3× =  is illustrated by the visual area model in Figure 12.13. Models such 8 
as these can be used to help students bring meaning to the procedure. There are two regions to 
consider in the representation in Figure 12.13: 1) the area that represents the whole, indicated 
by the large rectangle; and 2) the area that represents 1 of 3 , represented by the swirled shading. 

3 
4 

2 4 
The product of the denominators (4 × 2 = 8) indicates the number of equal parts in the whole and 
the size of one of those equal parts, 1 . The product of the numerators (1 × 3 = 3) indicates the 8 

1 
2 

1 
8 

3 
2 

3 
2 

1 
21×  = × =  

A visual model like the one in Figure 12.14 can help bring meaning to the procedure by focusing 
3on the area of a square that is 11  by 11 . The dimensions (11 or ) are along the sides of the visual 2 2 2 2 

1 
429 

4 
11 = 2 



10 2 52miles miles miles÷ = =
10 miles
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model. One square unit (1 × 1) is partitioned into fourths. Next notice that the number of fourths 
in the 11

2  by 11
2 

shaded region is 9
4 . 

The diagram in Figure 12.14 also clearly illustrates the distributive property in the context of frac­
1 1 1 1 1 1tions. Using this property, one can see four partial products: 1  1  × = 1 1× 1 + ×+ × 1 + × .( ) ( ) ( ) ( )  2 2 2 2 2 2 

The sum of these four partial products is the area of the 11 by 11  square. 2 2

Figure 12.14 Visual model based on the area of a square 11 by 11 
2 2 illustrates some important points. 

The whole (1 × 1 square) is partitioned into fourths. Therefore, the region representing the area equals 
9 or 2 1 
4 . 4

Division of Fractions 

The two most widely used algorithms for division of fractions are the common denominator 
algorithm and the more traditional invert-and-multiply algorithm. 

To understand how and why the common denominator algorithm works mathematically, we will 
look closely at the bike problem, the fraction problem, and the model in Figure 12.15. 

Bike Problem 

Chris rode her bike 10 miles. Kim rode her bike 2 miles. How many times more miles did Chris 
ride than Kim? 

10 miles  ÷ 2 miles = 10 miles = 5 , or Chris rode 5 times as many miles as Kim. 
2 miles 

The units in the bike problem are miles. By dividing miles by miles, we determined how many 
times more miles Chris rode than Kim. Notice that the units, miles, cancel out; the answer, 5, is 
not in miles, rather it is a scale factor representing the amount one would scale the number of 
miles Kim rode to equal the number of miles Chris rode. 



1
2

1
3

3
6

2
6 2

1
23 2 1÷ = ÷ = = ÷ =sixths

3 sixths
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Fraction Problem 

How many times greater is 1 
2
 than 1 

3? 
1 
2 

1 
3 

3 
6 

2 
6÷ = ÷ =  2 sixths 

3 sixths 1 
23 2  1= ÷ =  , or 1 

2  is 11 
2  times greater than 1 

3 . 

The units in the fraction problem are sixths. Dividing sixths by sixths results in how many 
times greater 3  is than 2 . Notice that the units cancel out; the answer is not in sixths. As with the 6 6 
Bike problem above, 11  is the amount one would scale 1  for it to equal 2 3

1 
2 .


The area model in Figure 12.15 helps to visualize the unit, sixths. Notice that each sixth rep­
resents the same area. The model also helps us understand that the answer will not be sixths, but 
in the number of times greater 3-sixths is than 2-sixths (3-sixths ÷ 2-sixths = 11 ). This means 2 
that 1

2  is 11
2 times greater than 1

3 . 

Figure 12.15 Illustrating the common denominator algorithm for the fraction problem 1 
2 ÷ 1 . 

3 

Earlier in this chapter (see Figure 12.2), we provided a visual model that showed that multiply­
ing a number by 1 

2  is the same as dividing the number by 2. This reciprocal relationship between 
1 
2  and 2 can be used to understand the invert-and-multiply procedure for the division of frac­

tions. Let us consider the following problem. 

Toby hiked 3 of a mile in 1  of an hour. 
4 3

Sam hiked 3 of a mile in 2  of an hour. 
4 3

How many miles did each one hike in one hour? 

The context of the problem and the fractions used are important elements that can help bring 
meaning to the invert-and-multiply procedure for dividing fractions that is based on the inverse 
relationship between multiplication and division. 

Tania (Figure 12.16) used the common denominator approach to dividing 4 3 yards of wire by 8 
1 
2 . In this example, Tania explicitly treated eighths as the unit for the calculation and did not lose 

sight of the context of the problem that involved finding the number of decorations. 
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Jim is making decorations. He has 4  yards of wire. Each decoration needs 2  of a yard of wire. How8 
many decorations can Jim make? 

Figure 12.16 Tania’s response. She calculated 35 ÷ 8 to determine that Jim could make 8 3  decorations. 4 
3 1

Toby’s Hike 

Since we are finding Toby’s unit rate (miles per hour), the problem can be conceptualized as 3 
4 

(the distance) divided by 1
3  (the time) or ( 3

4
 miles ÷ 1

3  hour). However, the fractions used in the 
problem allow us to see that the distance Toby will hike in one hour (unit rate) will be three times 
the distance that he can hike in one-third of an hour since 3(1  hours) = 1 hour. Therefore, the 3 
distance Toby will hike in one hour is 3  mile × 3 = 2 1  miles. 4 4 

Toby: 3 
4  of a mile ÷ 1

3  hour = 3 
4  mile × 3 = 9

4 = 2 1
4  miles in one hour 

The relationship between multiplication and division illustrated by this example is actually 
the invert-and-multiply algorithm for dividing fractions because 3  is the reciprocal of 1 . The 1 3 
double number line in Figure 12.17 shows the relationships between distance hiked and hours 
and illustrates the multiplication of 3  mile by 3. 4 

Sam’s Hike 

Sam’s hiking rate allows us to explore the invert-and-multiply algorithm for dividing by a non-
unit fraction. 

The double number line labeled Sam (bottom) and Toby (top) in Figure 12.17 shows that 
1Sam takes twice the time to hike the same distance as Toby. That is, Sam hikes 3  mile in 2( )4 3 

of an hour while Toby hikes 3  mile in 1 of an hour. Therefore, Sam hikes half the distance in 4 3 
the same amount of time because his hiking speed (rate) is half of Toby’s hiking speed. If Toby 
hiked 2 1  miles in one hour, Sam must have hiked half that distance (24 

1 
812÷ =  miles). 

The following equation represents Sam’s distance as half of Toby’s distance in one hour of 
hiking. That is, 3  miles × 3 is the distance Toby hikes in 1 hour. The division of that distance by 4 
2 is the distance that Sam hikes in one hour, which is 1  of 2 1  miles or 11  miles. 2 4 8 

3 2 3 3 3 1mile ÷ hour = × =  ×3 2(  ) ÷ =1 miles in one hour 4 3 4 2 4 8 

The context, the fractions in the problem, and the representations shown in Figure 12.17 are 
examples of strategies that can help bring meaning to division and specifically to the invert-and-
multiply algorithm for dividing fractions. 

As we observed with the examples in Figures 12.2 and 12.17 and with using a context to bring 
meaning to a procedure, dividing by the fraction ab  is the same as multiplying by its reciprocal, 
b . Prior to being introduced to the invert-and-multiply algorithm, students should be given 
a 
plenty of opportunities to explore this relationship with a variety of problems in which they 
construct visual models and reason about division. 

1 
4 
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Ashley bought 6 pounds of candy. She put the candy into bags that each hold 3  of a pound of candy.4 
How many bags of candy did Ashley fill? 

There are 32 students in the 6th grade class. 

5  of the students are boys.
8 

How many boys are in the sixth grade class? 

1Figure 12.17 Sam takes twice the time (2( ) hour) to hike the same distance as Toby. Therefore, 
3 

Sam hikes half the distance (11 mile) as Toby in 1 hour. 8 

Selma used the invert-and-multiply procedure to solve the problem in Figure 12.18. 

Figure 12.18 Selma’s response. Selma multiplied 6 pounds of candy by the reciprocal of 3
4 . 

Abby’s and Troy’s incorrect application of algorithms in Figures 12.19 and 12.20 may be exam-
ples of premature reliance on procedures without conceptual understanding. 

Figure 12.19 Abby’s response. Abby divided 32 by the numerator and by the denominator of the frac-
tion given. 
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Two friends equally share 
8
3  of a ball of yarn. 

How much of the yarn does each friend get? 

3Figure 12.20 Troy’s response. Troy calculated 2 ÷  instead of 3 ÷2 .8 8 

Contrast Abby’s and Troy’s responses to Kelyn’s solution in Figure 12.21. Kelyn’s statement “How 
many 1 s are in four wholes?” and her visual model provide evidence that Kelyn understands the 4 
meaning of dividing four by one-fourth. 

Figure 12.21 Kelyn’s response. Kelyn interpreted the question as “How many 1
4 s are in 4 wholes?” 

Proficiency with multiplication and division of fractions requires both a conceptual under-
standing of the meaning of the operations and the ability to use efficient strategies flexibly. It 
appears that Kelyn is ready to move to a more efficient procedure because there is evidence that 
she can bring the meaning of division to the procedure. 

See Chapter 2, Visual Models, and the discussion associated with Figure 2.26 for ways to 
help Kelyn and others build on their understanding represented in their visual models. 

Examining Evidence in Student Solutions for Developing Understandings 

Considering the vital role that visual models and unit fraction understanding play in learning 
fraction concepts such as equivalence and magnitude and addition and subtraction, it will come as 
no surprise that the same holds true for the importance of visual models as transitional strategies 
in the teaching and learning of multiplication and division of fractions. 

Researchers indicate that teachers need knowledge of concrete models to help students’ transition 
from multiplication by whole numbers to multiplication by fractions. Teachers must give closer 
consideration to division of fractions (Taber, cited in Yetkiner & Capraro, 2009). 

Figures 12.22 and 12.23 provide examples of students effectively using visual models in their 
responses to fraction division problems. Although the visual models are different from one another, 
notice that each model accurately represents the context stated in the problem and leads to a correct 
response. 
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Ashley bought 6 pounds of candy. She put the candy into bags that each hold 3  of a pound of candy.4 
How many bags of candy did Ashley fill? 

Two friends equally share 3  of a ball of yarn.8 

How much of the ball of yarn did each friend get? 

Ashley bought 6 pounds of candy. She put the candy into bags that each hold 3  of a pound of candy.4 
How many bags of candy did Ashley fill? 

1Figure 12.22 Corey used a number line partitioned into 24( )s to determine that 8 bags can be filled. 4 

Figure 12.23 Jonathan’s response. Jonathan partitioned 3 
8  of his model into 2 parts to represent 3 ÷28 . 

Mack (2001) suggests that one cannot assume that students’ prior experiences with models 
have prepared them to conceptualize more complex mathematical ideas such as multiplication 
and division of fractions, and students may require guidance to reconsider these understandings. 

Tracy’s and Gail’s responses in Figures 12.24 and 12.25 may exemplify this point. Each drew 
and interpreted a visual model in a way that may have been appropriate when considering other 
fraction concepts. However, Tracy and Gail did not use the models to solve the division problems 
given, as Kelyn did in Figure 12.21. 

Figure 12.24 Tracy’s response. Instead of determining how many 3 s are in 6 pounds, Tracy shaded 3 
4 4 

of each bag. 
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Figure 12.25 Gail’s response. Gail shaded 1  of four figures instead of finding how many 1 s are in 4. 4 4 

Even though Tracy’s and Gail’s models do not fully represent the problems they were solving, 
they can be used as starting points for instruction. Both Tracy and Gail: 

•	 correctly represented the number of wholes in their problems (although Tracy incor-
rectly labeled her wholes as bags not pounds) 

•	 partitioned the wholes into fourths, which could have allowed them each to solve their 
problems 

•	 shaded a fractional part of their wholes (e.g., Gail shaded 1  of each of her wholes) 4 

However, in both cases, the students did not interpret the problems as division (e.g., Tracy 
found 3 of each whole by shading 3 of each figure. She did not find the number of 3 s in 6). Clearly, 4 4 4 
instruction for Tracy and Gail should focus on the meaning of division and the ability to recog-
nize division in a problem situation involving fractions. However, instruction should capitalize on 
their abilities to represent the whole with a visual model and to partition into fourths. 

Researchers suggest that students should experience a variety of situations in which they need 
to recognize the appropriate fraction operation (Huinker, 2002). We have found that not only do 
some students struggle with recognizing when a context calls for a multiplicative solution, but 
students sometimes confuse the meaning and the procedures for multiplication and division of 
fractions (OGAP, 2005–2009). Figures 12.26 and 12.27 are examples of this confusion. 

Figure 12.26  Alejandro’s response. Alejandro used a visual model and described 1 × 1 , not 1 ÷ 1 . 2 4 2 4
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Ashley bought 6 pounds of candy. She put the candy into bags that each hold 3 
4

of a pound of candy. 

How many bags of candy did Ashley fill? 

Ashley bought 6 pounds of candy. She put the candy into bags that each hold 3 
4

of a pound of candy. 

How many bags of candy did Ashley fill? 

Figure 12.27 Claudia’s response. Claudia believes that the division sign indicates multiplication. 

Both pieces of evidence imply that Alejandro and Claudia may not be clear about the difference 
between multiplying and dividing by a fraction. One wonders if either student has a conceptual 
knowledge of the meaning of division as it relates to fractions. 

The solutions in Figures 12.28 and 12.29 show evidence of using additive strategies in multi-
plication and division problems. Maya used repeated addition until she reached 6 pounds. Dom 
used repeated subtraction until he used up the 6 pounds of candy. 

Figure 12.28 Maya’s response. Maya used repeated addition to determine that Ashley could fill 8 bags. 

Figure 12.29 Dom’s response. Dom used repeated subtraction to solve the problem. 

While Maya’s and Dom’s solutions are correct, they are not efficient. That is, the use of repeated 
addition and repeated subtraction will limit students’ abilities to solve problems as the numbers 
increase in magnitude or complexity. Imagine Maya and Dom using these strategies if the ques-
tion included 120 pounds of candy instead of 6. Viewed in this light, Tania’s (Figure 12.16) and 
Selma’s (Figure 12.18) procedures are more efficient for solving fraction division problems. Stu-
dents who have not developed multiplicative strategies to solve multiplication and division prob-
lems are at a significant disadvantage when faced with these more complex ideas and numbers. 
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Partitive and Quotative Division 

A discussion of division of fractions would be incomplete without an examination of partitive 
and quotative division. Partitive and quotative division are recognized as two different conceptual 
models for division (Graeber & Tanenhaus, as cited in Oksuz & Middleton, 2007). 

Interpretation of a Fraction as Division (Partitive Division) 

The interpretation of a fraction as division of the numerator by the denominator builds on an 
understanding of division as sharing and is referred to as partitive division. For example, six peo-

1ple sharing three candy bars equally can be represented as the fraction 3 3 6= ÷ =  of a candy bar 6 2 
for each person. In Figure 12.30, the three candy bars are divided into six equal parts. Each person 
gets 1 of a candy bar. 2 

Figure 12.30 Six people sharing three candy bars equally. Each person gets 1  of a candy bar. 2 

Partitive division can also be represented by a fraction when the numerator is greater than the 
denominator. For example, six people sharing 20 pounds of coffee equally can be represented as 

1the fraction 20 = 20 ÷ 6 3=  pounds of coffee for each person. 6 3 

Notice in both these cases, the number of groups is known (e.g., six people) and the total amount 
to be shared is known (e.g., three candy bars; 20 pounds of coffee). However, the amount in each 
group is not known (the amount of a candy bar or the amount of coffee each person will receive). Par-
titive problem situations involve this relationship and can be represented by the following equation: 

Total ÷ number of groups = number in each group 

Study the student solutions in Figures 12.31 through 12.33 to the following partitive problem: 

A relay race is 7 miles long. There are eight people on the relay race team and each person will 
run an equal distance. What fraction of the race will each person run? 

Notice that the solutions in Figures 12.31 and 12.32 are built on unit fraction understanding. 
Kaitlyn’s solution shows evidence of understanding that each person will run 1  of each mile but 8 
does not extend that understanding to 7 miles. 

Figure 12.31 Kaitlyn’s response. Kaitlyn used a number line to determine the fraction of each mile 
each person will run. 

A relay race is 7 miles long. There are eight people on the relay race team and each person will run an 

equal distance. What fraction of the race will each person run? 
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Tyler’s response in Figure 12.32 shows evidence of an effective use of a number line to determine 
the fraction of a mile each person will run. 

Figure 12.32 Tyler’s response. Tyler used his understanding of division, and that division can be rep-
resented as a fraction. 

A relay race is 7 miles long. There are eight people on the relay race team and each person will run an 

equal distance. What fraction of the race will each person run? 

Unlike Kaitlyn, Jayden extended this understanding to 7 miles (7 miles × 1 mile for each mile 8 
1 7= 7( ) = ). His solution shows evidence of understanding the relationship between unit fractions 8 8 

and division: “for every mile they’ll each run 1 . So, if with 7 miles you multiply 1  by 7, which 8 8 
would equal 7 

8  of a mile for each person.” 
Tyler’s solution in Figure 12.33 shows evidence of understanding that division can be repre-

sented as fractions. 

Figure 12.33 Jayden’s response. Tyler used a number line to determine the fraction of a mile that each 
person will run and extended it to 7 miles. 

A relay race is 7 miles long. There are eight people on the relay race team and each person will run an 

equal distance. What fraction of the race will each person run? 

Partitive division can present unique challenges for students. In partitive division problems, 
students should consider two questions: 1) How much is one share? and 2) What part of the unit 
is that share? (Lamon, 1999). 

In Figure 12.34, Cameron finds both the fraction of a pizza (one share) and the fraction of the 
pizzas (the unit). 
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Five friends equally share 3 1  pizzas.2 

a) What fraction of a pizza does each friend get? 

  

 

 

Five friends equally share 3 1 
2 pizzas. 

a) What fraction of a pizza does each friend get? 

b) What fraction of all the pizzas does each friend get? 

Figure 12.34 Cameron’s response. Cameron determined that each person would get 7  of a pizza and 
101  of the pizzas. 5 

b) What fraction of all the pizzas does each friend get? 

In Figure 12.35, Brody does not correctly identify the size of one share and the fraction of all 
the pizzas that each friend receives. 

1Figure 12.35 Brody’s response. Brody concludes that each person would receive  of a pizza and 1 
5 5 

of the pizzas. 

1Brody’s model shows  of one pizza but is incomplete when considering the 3 1  pizzas. It is 5 2 
possible that he is wrestling with the conceptualization of a single pizza versus 3 1  pizzas. 2 

Quotative Division 

In quotative division, the total and the group size are known, but the number of groups is 
unknown. The question asked in this situation is: How many groups are there in all? All quota-
tive problem situations involve this relationship. Quotative problems can be represented by the 
following equation: 

Total ÷ number in each group = number of groups 

An example of quotative division is shown in Figure 12.36. 
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Jim is making decorations. He has 4 1  yards of wire. Each decoration needs 3  of a yard of wire. 4 4

a) How many full decorations can Jim make? 

b) Is the fraction left over a fraction of a decoration or a fraction of a yard of wire? 

Figure 12.36 Example of quotative division. 

There are 6 yards of cloth. 

Each pattern needs 2
3

 of a yard of cloth. 

How many patterns can you make? 

Quotative division can also pose challenges for students. More specifically, students sometimes 
have a difficult time identifying the unit in quotative division problems (Lamon, 1999). This 
difficulty can make it tricky for students to interpret a remainder. 

In Figure 12.37, Cheney correctly used a number line to determine the number of full 
decorations. However, the evidence in Cheney’s response indicates confusion with the remainder. 
The 2  left is not 2  of a yard, but 2  of a decoration. 3 3 3 

Figure 12.37 Cheney’s response. Cheney used a number line to determine the number of full decora-
tions but misinterpreted the remainder. 

In contrast, Abigail’s solution in Figure 12.38 suggests an understanding that 2  refers to the 
3 

fraction of a decoration that is left, and that there is 1  of a yard of wire remaining. 
2 

In the decoration problem, students had to make meaning of a remainder in terms of the prob-
lem context. Several studies from Silver and colleagues have shown that “students’ failure to solve 
division problems with remainders can be attributed, at least in part, to their failure to relate the 
computational results to the situation in the problem.” (Silver et al., 1993, p. 118) 
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Jim is making decorations. He has 4 
4
1  yards of wire. Each decoration needs 3

4
 of a yard of wire. 

a) How many full decorations can Jim make? 

b) Is the fraction left over a fraction of a decoration or a fraction of a yard of wire? 

  
 

  

Figure 12.38 Abigail’s response. Abigail uses a model to conclude that five full decorations can be made 
with 2  of a decoration and 1  of a yard of wire left over. 3 2 

From an instructional perspective it is important that the types of division problems that stu-
dents solve vary (Van de Walle, 2004). Students should encounter partitive problems, quotative 
problems, problems in which the remainders are fractions, problems in which remainders are 
whole numbers, problems with no remainders, and so on. Mixing problems in this way will help 
to ensure that students do not overgeneralize one way to think about division or one way to inter-
pret remainders. 

OGAP Fraction Progression and Multiplication and Division 

At the Fractional Strategies level, students’ solutions show evidence of understand-
ing the impact of multiplication and division as exemplified in Justina’s response 
in Figure 12.7. Solutions also show evidence of using efficient strategies or reasoning 

when solving multiplication and division problems, as exemplified in the solutions in Figures 
12.16, 12.18, and 12.33. 

Transitional Strategies involve the effective use of visual models to make sense of the operation 
(Figures 12.21 and 12.22). At this level there can be evidence of inefficient procedures, as 
exemplified in Maya’s solution in Figure 12.39. 

The evidence at the Early Fractional Strategy level includes partial solutions to problems (Figure 
12.31) or visual models with errors that interfere with arriving at a correct solution. 

Figure 12.39 Maya’s solution. While the solution is correct (“each person will run 7 of a mile”), the 8 
strategy of “dealing out” and building up is inefficient. 

A relay race is 7 miles long. There are 8 people on the relay race team and each person will run an equal 
distance. What fraction of the race will each person run? 
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Case Study—Pre-assess and Incorporate Findings into Subsequent 
Lessons 
Before beginning a unit on multiplication of fractions, Mr. Bart, a fifth 
grade teacher, wanted to gather some information about his students’ ideas 

related to multiplication of a whole number by a fraction. He decided to administer the for-
mative assessment question shown in Figure 12.40, and use the student evidence from this 
item to inform his unit planning. Study the question in Figure 12.40. Why do you think 
Mr. Bart decided to administer this question before his students had any formal instruction 
on the multiplication of fractions? 

Figure 12.40 Formative assessment question 

Josh spends 3  of his salary on rent each month. His monthly salary is $2,400.00. How much does
8 

Josh spend each month? 

You probably noticed a few things about this question. First, it involves multiplication 
of a whole number by a fraction. Second, the whole number is evenly divisible by 8 which 
makes the problem accessible to more students. Lastly, the problem can be solved in several 
ways including the use of unit fraction reasoning or visual models. Mr. Bart also choose this 
problem because it involved a situation that provides students a helpful context in which to 
situate their solutions. 

After completing the OGAP Sort Mr. Bart recorded the evidence in the OGAP Evidence 
Collection Sheet in Figure 12.41. What do you notice about the results? 

Mr. Bart analyzed the student solutions. He noticed that a few students effectively used a 
visual model to solve the problem as exemplified in Harper’s solution in Figure 12.42. Some 
students used the incorrect operation as exemplified in Maria’s solution in Figure 12.43. 
Most of the students only found 1  of the salary as shown in Elijah’s solution in Figure 12.44. 8 
Study each of these solutions. Given this evidence, identify several potential first instruc-
tional steps. 

Figure 12.41 OGAP Evidence Collection Sheet. 
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Josh spends 3
8

 of his salary on rent each month. He has a monthly salary of $2,400. How much 

does Josh spend on rent each month? 

Josh spends 3
8

 of his salary on rent each month. He has a monthly salary of $2,400. How much 

does Josh spend on rent each month? 

Figure 12.42 Harper finds 1  of $2,400 and then uses an area model to determine 3  of $2,400 8 8
is $900. 

Figure 12.43  The evidence indicates that Maria interpreted 3  incorrectly as 2.66 and then 
8

divided $2,400 by 2.66 with errors. 

Josh spends 3  of his salary on rent each month. He has a monthly salary of $2,400. How much
8 

does Josh spend on rent each month? 

Figure 12.44  Elijah’s found 1  of $2,400 not 3
8  of $2,400. 8 
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After studying the evidence collection sheet Mr. Bart considered the three OGAP plan-
ning questions that follow: 

1. What are developing understandings that can be built upon? All but a few students 
1found of $2,400 and many used visual models. Some students effectively used 8 

visual models to find 3  of $2,400. 8 
12. What issues her concern were in the student work? Most students only found of8 

$2,400 and a few students used the incorrect operation. 
3. What are potential next instructional steps for the whole class, small groups, or individual 

students? Incorporate these findings into the next couple of lessons by building on unit 
fraction understanding and visual models and using contexts to bring meaning to solu-
tions. 

Mr. Bart began the next class by bringing in a pan of brownies cut into twelve equal pieces. 
1 1 2 3 5He asked the class to consider then discuss the number of brownies in 1 , , , , ,  of the 3 6 4 3 4 6 

pan of brownies. 
After this activity, Mr. Bart introduced the four problems shown in Figure 12.45 to the 

class and gave them time to work on them with a partner or small group. He reminded stu-
dents that they needed to justify their answers with equations, visual models, and or words. 
What do you notice about the sequence of problems? 

Figure 12.45 Four problems Mr. Bart introduced. 

1. There are 32 students in Mark’s class. One-fourth of the students in Mark’s class have 
blue eyes. How many students have blue eyes in Mark’s class? 

2. There are 30 students in Anna’s class. Two-thirds of the students in Anna’s class have blue 
eyes. How many students have blue eyes in Ashley’s class? 

3. Max has $84.00. He decides to open a saving account and put 3  of his money into it? What
4 

fraction of the $84.00 will he keep for spending? How much money will he put in a savings 
bank? 

4. Three-hundred sixty people attended an outdoor concert. Five-ninths of the people sat 
on blankets. How many people sat on blankets? 

Mr. Bart then pulled the class together for a discussion, displaying carefully chosen stu-
dent solutions for each question and asking students to make sense of those solutions to see 
different ways each problem could be solved. The main goal of this discussion was to engage 
his students in thinking about how the different solutions are mathematically connected. 

Mr. Bart purposefully sequenced the opening activity and problems to engage all stu-
dents regardless of the level of their response on the pre-assessment question. The opening 
activity provided a concrete model on which to reason about their answers. All the prob-
lems he chose for this activity involved multiplying a whole number by a fraction. The first 
question utilizes a unit fraction while questions 2, 3, and 4 use non-unit fractions. 

At the end of this lesson Mr. Bart had his students solve the exit question shown in Fig-
ure 12.46. Why do you think Mr. Bart choose this problem? 
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Figure 12.46 Mr. Bart’s exit question 

Three-fifths of the students in Danville walk to school. There are 350 students in Danville. 

Three-fourths of the students in Westport walk to school. There are 320 students in Westport. 

In which school do the most students walk to school? Show your work. 

You probably noticed that the fraction of students who walk to school in Danville is less 
than the fractional amount who walk to school in Westmore. You probably also noticed that 
the number of students in Danville is less than the number of students in Westport. Mr. Bart 
was interested to see how his students apply their unit fraction reasoning to each situation 
without initially being influenced by the values in the problem. In this way he was looking 
to see if they could apply their understanding of multiplication of a fraction by a whole 
number to a new and slightly more challenging situation. 

This case study illustrates how formative assessment questions can be used as a pre-assess-
ment, before beginning a topic, and the evidence used to inform the planning of subsequent 
lessons. Ongoing use of exit questions that ask students to apply their understanding to new 
contexts and situations is another important feature of the OGAP formative assessment 
system. 

Chapter Summary 

This chapter focused on research related to multiplying and dividing fractions. In particular, we 
examined: 

•	 the need to build procedural fluency through conceptual understanding, not through 
instruction focused solely on rote application of algorithms 

•	 the importance of contextual problems in building understanding of multiplication and 
division of fractions 

•	 the use of visual models and partitioning to help build multiplication and division con-
cepts 

•	 the difficulties students encounter as they contemplate the impact of multiplication and 
division involving fractions on the magnitude of a product or quotient 

•	 the need for students to interact with a variety of situations and contexts that include both 
partitive and quotative division requiring different interpretations of remainders. 

Looking Back 

1. Mr. Way gave his class a pre-assessment prior to the upcoming unit on multiplication 
and division of fractions. He is concerned about Claudia’s response to the division prob-
lem in Figure 12.27. Help Mr. Way by answering the following questions. 
a. What are some possible explanations for Claudia’s apparent belief that “the division 

sign means to multiply”? 
b. What are some questions, lessons, or activities that Mr. Way could use to help Claudia 

develop an understanding of the similarities and differences between multiplication 
of fractions and division of fractions? 

2. The strategy shown in Figure 12.22 is representative of Corey’s solutions for fraction divi-
sion problems. Corey’s teacher, Mrs. Rousseau, would like Corey to use her understanding 
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of models to develop a more efficient approach for division of fraction problems. Examine 
Corey’s response in Figure 12.22 and answer the questions that follow. 
a. Based on the evidence, what concepts related to division of fractions does Corey 

appear to understand? 
b. How could Mrs. Rousseau use the developing understandings you identifed in ques-

tion and her facility with models to help Corey develop an efcient approach for solv-
ing division of fractions problems? 

3. Despite the fact that Ms. Altrui’s class can use models effectively to solve equivalence, 
magnitude, addition, and subtraction problems, the group is struggling with using 
models to solve more complex multiplication and division of fraction problems. Help 
Ms. Altrui by studying Tracy’s solution in Figure 12.24 and answering the questions that 
follow. 
a. What context does Tracy’s model appear to represent? 
b. How could Tracy’s model be modifed or reinterpreted to answer the question posed 

in the problem? 
c. Identify questions, activities, or lessons that Ms. Altrui could use to help her class extend 

their models of equivalence, magnitude, and addition and subtraction problems to 
include efective models for multiplication and division. 

4. Although Alejandro can solve both multiplication and division of fraction problems, 
he tends to confuse the two operations. He often misinterprets problems requiring a 
division strategy and solves them using multiplication. Figure 12.26 is an example of his 
confusion. 
a. How could Alejandro’s model be altered or reinterpreted to answer the question 

?÷ =1 
4 

1 
2 

b. How might you help Alejandro to conceptualize the similarities and diferences 
between division by a fraction and multiplication by a fraction? 

5. One of Selma’s typical responses to division of fraction problems is shown in Figure 
12.18. Mr. Latham, Selma’s teacher, wants to be sure that Selma possesses the needed 
conceptual understanding of division of fractions to go along with her algorithmic 
knowledge. 
a. Based on the evidence in her response, what does Selma appear to understand about 

division of fractions? 
b. What questions might Mr. Latham ask Selma to help him to determine her concep-

tual understanding of division of fractions? 

6. Mr. Alberti is preparing for an upcoming lesson on partitive division. As part of the 
lesson, he plans to use the following problem. Mr. Alberti is contemplating a model that 
clearly shows the answers to both parts of the question. 

Five friends equally share 31  pizzas. 2 

a. What fraction of a pizza does each friend get? 
b. What fraction of all the pizzas does each friend get? 
c. Draw a model clearly showing that each friend gets 7  of a pizza and 1  of the pizzas. 12 5 
d. Explain how you might connect the model you drew for part (a) to the mathematical 

calculations 3 12 ÷ 5 and 1 ÷ 5. 

7. Cheney’s solution to a quotative division problem is shown in Figure 12.37. 
a. What do the numbers on the top of Cheney’s number line represent? 
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b. What do the numbers on the bottom of Cheney’s number line represent? 
c. What instructional strategies might you use to help Cheney understand that the 

fraction 2  represents 2 of a decoration, not 2  of a yard? 3 3 3 
d. How might you show how this problem results in both 1  a yard and 2  of a decoration 2 3 

left over? 

Instructional Link: Your Turn 

Use the questions in Table 12.1 to help you think about how your instruction and mathematics 
programs provide students the opportunity to develop understandings of fraction multiplication 
and division. 

Table 12.1 Strategies to Support Development of Concepts Related to Multiplication and Division of 
Fractions 

Do you (or does your program): Yes/No 

1. Provide opportunities for students to develop conceptual understanding of 
multiplication and division of fractions before introducing formal algorithms? 

2. Provide opportunities for students to create and interact with visual models 
to help them transition from multiplication and division by whole numbers to 
multiplication and division by fractions? 

3. Build on students’ prior experiences with models? 
4. Provide opportunities for students to consider why both multiplication and division 

can “make smaller” and “make larger”? 
5. Provide a variety of situations in which students are asked to recognize the 

appropriate fraction operation? 
6. Provide students with contexts to reason multiplicatively without relying on 

additive strategies? 
7. Provide opportunities at the appropriate time for students to develop computational 

procedures that are efficient, accurate, and result in correct answers? 
8. Provide opportunities for students to translate mathematical ideas between real-

world situations, manipulatives, pictures, spoken symbols, and written symbols? 
9. Provide opportunities for students to solve fraction problems involving both 

partitive and quotative division? 

What gaps in your instruction or mathematics program did you identify? 
How might you address these gaps? 
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