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Foreword

WHEN ASKED to write this Foreword for Marian Small’s Teaching Mathematical 
Th inking: Tasks and Questions to Strengthen Practices and Processes, I was excited. 
It meant I would have an early opportunity to read the book. Many years ago, 
Marian and I worked together on a writing project for the National Council of 
Teachers of Mathematics, and I have followed Marian’s work ever since. Whether 
listening to a fi ve-minute Ignite talk or reading one of her books, I am always cap-
tivated. To have a new book—with this great title—my expectations were high. 
With movies and books, such anticipation can result in my being disappointed. 
Not so here.

In the United States, the Standards for Mathematical Practice describe profi -
ciencies we want all our students to gain. In Canada, process standards are articu-
lated, which have many similarities with the practice standards, although more 
attention is given to visualization, mental math, and estimation. I have heard many 
arguments against particular content goals but never disagreement with these 
practice and process standards. Yet several years aft er their release, many uncer-
tainties remain about what they actually mean and how they can be achieved.

In my work with teachers, I oft en hear questions such as Where can I fi nd 
problems that would require students to persevere? What does justifi cation look like 
in a second-grade classroom? What’s the diff erence between looking for structure and 
looking for regularity? Th is book off ers us the insights we need to more deeply 
understand the practice and process standards. It also helps us understand how to 
facilitate students’ development of these profi ciencies, that is, how to help them 
become mathematical thinkers. Th e book includes a chapter for each practice 
standard and then a fi nal chapter on visualization, mental math, and estimation. 
Th e last chapter should not be thought of as an add-on; visual thinking permeates 
the book, and mental math and estimation are highlighted throughout as 
appropriate.

Each chapter gives attention to how these standards work across three grade 
spans (K–2, 3–5, and 6–8), allowing the reader to more fully understand each 
standard as well as how its application develops over time. Tasks and problems—
along with variations, possible responses, follow-up questions, and examples of 
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student work—weave a vision of teaching for mathematical thinking. Chapters 
end with a thoughtful “look for” list to access student profi ciency, as well as a sum-
mary of key ideas for engaging students.

Readers of Marian’s earlier book, Good Questions: Great Ways to Diff erentiate 
Mathematics Instruction (2nd edition, 2012), will not be surprised by the quality of 
each chapter’s tasks and problems. Much of my career has focused on problem 
solving, and Marian’s work never ceases to provide me with new ideas. In this 
book, my favorite example of her ingenuity is a problem she suggests on page 110. 
She takes the familiar and worthwhile task of showing students a set of dots and 
asking about the diff erent ways to count them and transforms it, by making a sim-
ple twist. She poses, How would you arrange 8 dots to make it easy to quickly see it 
as 8? Th is is such a modest change, and yet it alters the way the students must 
think, requiring them to create their own visual representation rather than respond 
to one provided.

As important as the quality of the tasks we present is, we also need to support 
students’ productive struggle as well as further challenge their thinking. It is here 
that Marian’s discussions of how students might respond and what questions we 
might ask are invaluable, off ering teachers the tools needed to actualize these stan-
dards. Th ese sections of the book also further highlight important mathematical 
ideas.

Whether you are a new teacher or a seasoned educator, this book will enrich 
your ability to develop your students’ mathematical thinking. (I suspect you’ll fi nd 
that it develops your own mathematical thinking as well.) While you will gain 
much from reading it alone, you may want to fi nd a colleague to read it with you, 
or form a professional learning community. A collaborative investigation will fur-
ther enrich your consideration of these ideas.

I appreciate the way Marian Small has provided a clear understanding of each 
standard and of how they interrelate. I am grateful for her suggestions for follow-
up questions that will help us further probe students’ thinking. But my favorite 
part of this book is the rich tasks and problems she poses to help readers better 
support these practices and processes. I predict you will be intrigued by them as 
well and will want to engage in “mathematical play” as soon as you read them. 
Keep a pencil and paper nearby, and plan to return this book many times, over 
many years, and enjoy!

— Linda Dacey
Professor Emerita, Mathematics
Lesley University
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Preface

ORGANIZATION OF THE BOOK

Th is book begins with an Introduction that describes the history of the Mathemat-
ical Standards for Practice in the Common Core curriculum (Common Core State 
Standards Initiative, 2010) and the process standards addressed in Canadian cur-
ricula, followed by eight chapters that focus on each of the eight standards of prac-
tice and a ninth chapter that addresses the processes of visualization and mental 
math and estimation. I believe that inclusion of the Canadian process standards 
may provide additional support to U.S. teachers in their instructional planning.

Each chapter includes some general discussion about how to ensure that the 
particular standard or process being considered receives appropriate attention, as 
well as a discussion of what each standard of practice might look like in Grades 
K–2, Grades 3–5, and Grades 6–8. Many of the problems are rich enough to be 
valuable in more than one of these grade groups, and this is indicated when that 
is the case. Within the discussion of the problem, variations on how to use the 
problem for diff erent grade bands and expectations of ways in which students 
might respond are described.

Many examples of student work are provided, both to clarify the ideas being 
raised and to provide suggestions for how feedback might be off ered when the 
illustrated problems are used with other students.

ACKNOWLEDGMENTS

Th is book has been developed thanks to the continued confi dence shown in me 
by Teachers College Press. It was their suggestion that we create this book. Putting 
this material together has been rewarding because of the importance of helping 
teachers work out ways to highlight the standards of practice.

To support my many Canadian colleagues, I have chosen to include material 
focused on the processes of the mathematics curricula used in Canada that are not 
directly addressed by the Common Core Mathematical Standards of Practice.

Lastly, I thank a number of my consultant/coach colleagues who have helped 
me gather the student samples used in this work.
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Introduction

BACKGROUND

Most of us, when we think about math, think of what is generally considered con-
tent. We talk about working with fractions, or understanding place value, or solv-
ing equations. But in the background there have always been the fundamental 
mathematical practices and processes. Concepts such as reasoning, problem solv-
ing, recognizing structure, and modeling are not new to us.

One of the big changes instituted in the most recent curriculum revisions both 
in the United States and in Canada has been to bring these background processes 
to the foreground, not only to highlight their importance but also to help us see 
that if we focus explicitly on these processes, then content will be learned diff er-
ently and may in fact be learned more eff ectively.

Much of this change began with the 1989 National Council of Teachers of 
Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathe-
matics (NCTM, 1989). In this document, notions of math as problem solving, as 
communication, and as reasoning and mathematical connections were explicitly 
discussed.

In 2000, NCTM updated the standards in the Principles and Standards for 
School Mathematics (NCTM, 2000) and specifi cally mentioned the following pro-
cess standards:

• Problem solving
• Communication
• Representation
• Reasoning and proof
• Connections

These standards served as an underpinning for many state and provincial 
curricula.

More recently, the advent of the Common Core Standards in the United States 
has evolved these process standards into explicitly stated Standards for Mathematical 
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Practice. Canadian curricula still focus on process standards, although the names 
of the processes vary across the country.

Th e eight Standards for Mathematical Practice from the Common Core cur-
riculum are listed here. Th ey will be covered in detail in subsequent chapters.

COMMON CORE STANDARDS FOR MATHEMATICAL PRACTICE

1. Make sense of problems and persevere in solving them. (Related to the 
processes of problem solving and refl ecting [one of the Canadian process 
standards listed below])

2. Reason abstractly and quantitatively. (Related to the processes of 
reasoning and representation)

3. Construct viable arguments and critique the reasoning of others. 
(Related to the processes of reasoning and communication)

4. Model with mathematics. (Related to the process of representation)
5. Use appropriate tools strategically. (Related to the process of 

representation)
6. Attend to precision. (Related to the process of communication)
7. Look for and make use of structure. (Related to the process of 

connections)
8. Look for and express regularity in repeated reasoning. (Related to the 

process of connections)

Many rich mathematical activities involve more than one of these standards at 
the same time, as will be noted in the later chapters.

CANADIAN CURRICULA PROCESS STANDARDS

In diff erent provinces in Canada, these process standards are articulated in various 
curricula (Ministère de l’Éducation, Gouvernement du Québec, 2001; Ministry of 
Education Ontario, 2005; Western and Northern Canadian Protocol, 2006).

• Problem solving (or situational problem solving)
• Communication • Reasoning
• Representing • Connecting or Connections
• Refl ecting • Selecting tools and strategies
• Technology • Visualization
• Mental math and estimation

Th e processes of problem solving, reasoning, representing, and connecting are 
directly linked to the Common Core Standards for Mathematical Practice.
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Th e process of refl ecting is an integral part of Mathematical Practice Standard 
1, when students refl ect on solutions, although refl ecting could also include refl ec-
tion on strategies, connections, or other aspects of mathematical work as well.

Th e processes of visualization and mental math and estimation are less directly 
addressed in the Common Core Standards for Mathematical Practice. Visualiza-
tion is oft en embedded in problem solving (Practice Standard 1), constructing 
viable arguments (Practice Standard 3), and modeling (Practice Standard 4), but 
not necessarily. Mental math and estimation is oft en linked to looking for and 
making use of structure (Practice Standard 7), but not necessarily. Th erefore, I 
have included an additional chapter in this resource (Chapter 9) to focus specifi -
cally on the processes of visualization and mental math and estimation.

MISCONCEPTIONS ABOUT THE 
STANDARDS FOR MATHEMATICAL PRACTICE 
AND THE MATHEMATICAL PROCESSES

Because of overall concerns with the Common Core, but particularly because the 
Standards for Mathematical Practice and the mathematical processes are “sepa-
rated” from the other standards or outcomes/expectations in various curricula, 
many misconceptions can get in the way of using them as intended.

Some teachers believe that the intention is that all lessons must incorporate 
all standards for practice or all processes (Mateas, 2016). Th is is certainly not the 
case. Few, if any, lessons would include all of them, although many might include 
more than one. Although each standard and several processes are described sepa-
rately in the ensuing chapters, I oft en reference how diff erent standards can apply 
while working on the same problem. I also give a great deal of attention to when a 
particular standard or process might be appropriate.

Some believe it is possible to predetermine which standard or process will 
arise when students are confronted with a particular task. Although it is true that 
some tasks are more likely to elicit particular standards or processes than others, it 
is always up to the student what she or he brings to bear when working on a prob-
lem or in a mathematical situation.

Some teachers believe that the standards and processes are not taught; they 
just happen. Indeed, for some students, they will just happen. But there is defi nite 
benefi t in articulating explicitly what these standards and processes are. Th is can 
only help students become more aware of their thinking and extend their thinking 
in new situations.

Some teachers believe that the standards or processes are not taught at the same 
time content is taught. Th is is not likely in that the descriptions of how to apply a 
standard or process require mathematical content in which to be embedded.
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PROMOTING MATHEMATICAL THINKING

An overarching goal of teaching and making students aware of mathematical prac-
tices and processes has been to move students away from simply using algorithms 
for mathematical computation and to move them toward becoming mathematical 
thinkers. To this end, teachers have stepped back from simply telling students 
what to do and giving them practice at doing it. Instead they allow students to 
sometimes stumble as they move forward.

However, there is a fi ne line to be considered. I occasionally encounter teach-
ers who feel that they should never give students any assistance. In fact, it is 
important for teachers to be attuned to when struggle is productive and when 
students need encouragement and prompts to their thinking in order to move for-
ward. For this reason, I off er many descriptions in this resource of what questions 
to ask or what actions to take when students stumble.
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Making Sense of Problems and 
Persevering in Solving Th em
Mathematical Practice Standard 1

MP1. Make sense of problems and persevere in solving them.

Mathematically profi cient students start by explaining to themselves the meaning 
of the problem and looking for entry points to its solution. Th ey analyze givens, 
constraints, relationships, and goals. Th ey make conjectures about the form and the 
meaning of the solution and plan a solution pathway rather than simply jumping into a 
solution attempt. Th ey consider analogous problems, and try special cases and simpler 
forms of the original problem in order to gain insight into its solution. Th ey monitor 
and evaluate their progress and change course if necessary. Older students might, 
depending on the context of the problem, transform algebraic expressions or change 
the viewing window on their graphing calculator to get the information they need. 
Mathematically profi cient students can explain correspondences between equations, 
verbal descriptions, tables, and graphs or draw diagrams of important features and 
relationships, graph data, and search for regularity or trends. Younger students might 
rely on using concrete objects or pictures to help conceptualize and solve a problem. 
Mathematically profi cient students check their answers to problems using a diff erent 
method, and they continually ask themselves, “Does this make sense?” Th ey can 
understand the approaches of others to solving complex problems and identify 
correspondences between diff erent approaches.

THIS STANDARD builds on a long-standing belief that problem solving is a crit-
ical part of mathematics (Polya, 1957) and a belief that students must refl ect on 
their problem-solving behaviors. It suggests, in particular, that students must not 
only make sense of the problems they are solving, but they must also be persistent 
enough to arrive at a solution.

Students can be coached to adopt the problem-solving methodologies de-
scribed above and given suffi  cient opportunities to consciously use them so that 
selecting and applying these methodologies becomes second nature for them.
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WHAT IS A PROBLEM?

A problem is a puzzle. Th ere is no immediate certainty about how to proceed to 
solve it, although it may be obvious that it has to do with mathematics. Th at is why 
it is so important that, for example, not all problems in a multiplication unit are 
about multiplication; if they were, how to proceed would be much more immedi-
ately obvious and the problems might not really be problems.

Problems need not be word problems, but they could be. Examples of word 
problems and non–word problems will be included in this chapter. As well, exam-
ples of open-ended problems, problems with multiple answers, and problems with 
many possible approaches but only one solution will be included.

WHAT IS INVOLVED IN INTERPRETING A PROBLEM?

How students make sense of problems is a complex process. Students must recog-
nize that they fi rst have to make sense of what is being asked in order to eff ectively 
solve a problem. Th is involves the following:

• Determining the givens or what is known in a problem
• Recognizing constraints or restrictions that must be considered
• Looking for relationships among the givens
• Becoming aware of what is required in a solution

THE NEED FOR A PLAN

Because problems are puzzles, it is critical that students make plans for solving 
them. Learning how to make the plan should be a critical piece of mathematics 
instruction.

Many years ago, Polya (1957) suggested that there were four key steps in solv-
ing a problem:

Stage 1: Understand the problem
Stage 2: Make a plan
Stage 3: Carry out the plan
Stage 4: Look back

Stage 4 involves looking at whether an answer is reasonable or makes sense. Th e 
importance of this step must not be underemphasized.

Since then, there have been a number of variations on Polya’s (1957) listing of 
key steps. Zollman (2009) takes a graphic organizer approach. In Zollman’s orga-
nizer a center section asks what needs to be found. Th is is surrounded by four 
quadrants: what is already known, brainstorming on solution methods, solution 
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attempts, and a listing of explanations needed in a write-up. Th e diagram below is 
adapted from Zollman’s (2009) organizer:

What do I 
already know?

What strategies 
could I try?

What do I want 
to fi nd out?

Let me try out 
my strategies.

What explanations 
do I need to include?

For example, a problem might be: You buy 4 identical items that cost less than 
$20 each. You buy 8 identical items that cost more than $20 each. In total, you 
spend about $300. How much could each set of items have cost?

Working from my adaptation of Zollman’s (2009) organizer, a student might 
write:

I already know:
4 items cost the same and 

are less than $20 each.
8 cost the same and 

are more than $20 each.
I have to end up with 
a total of about $300.

I’ll try using 
$1 for the cheap items and 
$25 for the expensive ones.
If I am too low on my total, 

I’ll increase the values. 
If I am too high, I’ll go lower.

I need to know 
the prices for each 

of the 12 items.

4 x $1 = $4. 8 x $25 = $200.
$204 is the total, 

and that is not enough.
I changed $1 to $10 and $25 to $33.

4 x $10 = $40. 8 x $33 = $264.
My new total is $304.
Th at is close to $300.

I guessed 
to get my fi rst numbers, 

and then checked to see if they 
were too high or too low.

When I changed $1 to $10, 
my total increased by almost $40.

I knew I needed to get about 
$60 more from the 8 items, 

so I added $8 to each.
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In looking at what they already know when exploring a problem, students 
need to pay attention to all of the information that is either explicitly or implicitly 
given. For example, if a problem indicates that someone has seven nickels, the 
reader is explicitly told that there are seven nickels; but it is only implicitly that 
one knows that every nickel is worth 5¢.

Some teachers encourage students to underline or highlight the important 
information in a problem or circle the question to be answered. Th is approach 
probably assists some students, but it does not really help them notice the critical 
implicit information. As well, it is likely that diff erent students benefi t from diff er-
ent organizational strategies to make sure they have gathered the needed informa-
tion. Finding their own strategies—for example, copying over information as bul-
let points or illustrating the problem—might suit some students better than a 
single method expected of all students.

Once students have come to understand the problem, they are ready to begin 
solving it. Brainstorming ways to solve the problem might involve strategies listed 
in the next section.

WHAT STRATEGIES MIGHT STUDENTS USE TO SOLVE PROBLEMS?

For many years, mathematics programs have shared sets of problem-solving strat-
egies that apply to many problems. Although not all problems are solved with 
these strategies, some frequently used strategies are the following:

• Act it out • Use a model
• Draw a picture • Guess and test
• Look for a pattern • Use an open sentence
• Make a chart/table or graph • Solve a simpler problem
• Consider all possibilities • Consider extreme cases
• Make an organized list • Work backward
• Use logical reasoning • Change your point of view

(Small, 2017)

A number of these strategies relate to additional Mathematical Practice Stan-
dards and not just Standard 1. For example, drawing a picture and making a chart/
table or graph are examples of using tools strategically (Standard 5). Using an open 
sentence is an example of modeling with mathematics (Standard 4). Applying logi-
cal reasoning might be an example of reasoning abstractly and quantitatively 
(Standard 2). Students improve in their ability to use these strategies the more they 
apply them.
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WHAT DO WE NEED TO DO TO DEVELOP PERSEVERANCE 
IN PROBLEM SOLVING?

Perseverance (or grit) (Duckworth, Peterson, Matthews, & Kelly, 2007) does not 
always come automatically; it must be nurtured. And it can only be nurtured if 
students are asked to solve problems that are real problems, not immediate appli-
cations of what they have been shown. In addition, the problems need to be at an 
appropriate level, that is, within the students’ zone of proximal development. It is 
critical that students be able to solve the problem, given their current skill sets, if 
they persist. If, too oft en, perseverance does not lead to success, students are 
unlikely to persevere in future situations.

Another habit related to perseverance that students need to develop is the 
habit of looking for more than one answer, even aft er a fi rst one is found. Very 
oft en, students expect that there is only one answer and simply stop when they 
have found it. Th ey need to learn the habit of always wondering if there could be 
more answers and checking for them. Th is habit is learned when teachers regularly 
remind students to look for alternate solutions and frequently off er problems with 
many solutions.

EXAMPLES OF PROBLEMS THAT MIGHT BRING OUT 
MATHEMATICAL PRACTICE STANDARD 1

Grades K–8

Th e Counters Problem
◾ I have some counters.
◾ I split them up into 2 small piles and 2 large piles.
◾ Each small pile has the same number of counters.
◾ Each large pile has the same number as the total of the 2 small 

piles.

? How many counters might there be, in total, in the 4 piles? Find a 
number of possible totals.

What Kind of Plan Might a Student Make?

A student needs to realize that
• Th ere are a total of four piles.
• Two piles are big and two are small.
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• Th e big piles are equal in size and the small piles are equal in size.
• A big pile has twice as many counters as a small pile.

He or she needs to fi gure out diff erent possible total numbers of counters.
A plan might involve guess and test:

Small Pile = 2
Big Pile = 4 

Th e total is 12 counters.
Some students will quit once they achieve one solution and simply say that the 

answer is 12. It is up to the teacher to intervene and say:

• Does it have to be 12?
• What if your small pile had been a diff erent size?

Th en students might try a diff erent number, for example, 4 counters in a small 
pile:

Th e total this time is 24.

How Does a Teacher Push the Student to Go Farther?

Many students will now suggest they are done. Th ey would argue that since the 
answers were 12 and 24, they know that the total number of counters is an even 
number.

A teacher needs to prompt, for example:

• Could the total be 4? 4 is an even number. [By the way, it cannot.]
• Could it be 20? 20 is an even number. [Again, it cannot.]

Once students have more possibilities—for example, totals of 12, 24, 18, 60, 
30—a teacher needs to ask:

• What do all of these numbers have in common, besides being even?

It might be helpful to write some of the numbers in order: 12, 18, 24, 30, . . . . 
Th en students might notice that the answers go up by 6 each time.



Making Sense of Problems and Persevering in Solving Th em 11

Ideally students will use their own initiative to test a conjecture—that the total 
number of counters can be any number in the sequence 6, 12, 18, 24, 30, 36, 42, 
. . .—or they might need to be led to test that hypothesis. In the end, this turns out 
to be correct; the total number of counters is a multiple of 6. Th is conjecture could 
be posited and tested, which would be an application of Mathematical Practice 
Standard 3, constructing and critiquing arguments. Students should test a hypoth-
esis by using a strategy other than the one they began with. Th ey might see that 
the conjecture makes sense by thinking of the piles like this:

 Small Pile Small Pile Big Pile Big Pile

Th ey could see that each time there are essentially 6 groups of however many 
counters are in a small pile (1 group in the fi rst small pile, 1 in the second, 2 in the 
fi rst big pile, and 2 in the second big pile), so it makes sense the totals are numbers 
like 6, 12, 18, 24, . . . .

Note a few things about this problem. First, it might have been approached 
using a diff erent strategy (not guess and test), for example, making an organized 
list or creating a table or chart. Older students, as will be described below, might 
use an open sentence or logical reasoning.

Second, the problem is based on thinking of one number as groups of another, 
the heart of proportional reasoning, something we know is valuable for students 
(Dole, Clarke, Wright, & Hilton, 2010).

How Does Th is Problem Build Perseverance?

Th is problem helps build perseverance in several ways. First, it has many answers, 
and students are asked to provide several of them. Th at alone helps build persever-
ance since students cannot quit the minute they get something down on paper.

Th e fact that there are many answers also pushes students to look for relation-
ships. Th ey could ask, for example, What do these answers have in common? Th is 
seeking of relationships is at the heart of mathematics learning, and looking for 
relationships is exactly what we need students to persist at.

Solutions from Older Students

Students who are young are likely to test their answers by showing how those 
numbers are achieved. Some older students solving this same problem might 
notice that once one answer works, adding 1 more counter to each of the small 
piles and 2 more to each of the large piles has the eff ect of adding 6, and that new 
total will also work.
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Students who are in Grades 6–8 might apply Mathematical Practice Standard 
4 and make a model. Th ey might represent the small pile value as x and the larger 
pile value as 2x. Th e total number of counters is x + x + 2x + 2x = 6x. So the 
answers are, indeed, always multiples of 6.

Sums and Diff erences
◾ I add two numbers.
◾ I also subtract them.
◾ Th e sum is twice as much as the diff erence.

? What could the numbers be?

What could they NOT be?

What Kind of Plan Might a Student Make?

A student needs to realize that

• No numbers are given, but he or she has to fi nd them.
• She or he has to both add the numbers and subtract the numbers.
• It is the sum that is double the diff erence, not one number that is double 

the other.

Th e goal is to determine pairs of numbers that work, as well as pairs of num-
bers that do not work.

At this point, most students will just try some numbers. If a student is lucky 
and an early pair of numbers works, he or she is likely to persist and keep trying 
new numbers. But many students will give up aft er they try even two or three pairs 
of numbers that do not work. At this point, a teacher might intervene.

How Does a Teacher Push the Student Forward?

If a student has found a pair of numbers that meets the required condition, the 
teacher needs to say:

• Th at’s great that 2 and 6 work. What do you notice about those numbers?

When the student says that 6 is 4 more than 2, the teacher could ask:

• Why don’t you try another pair of numbers that are 4 apart and see if they 
work?

• What else is true about 2 and 6?
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If a student has been unsuccessful, a teacher might say:

• I noticed that when you chose 2 and 4, the sum was three times the diff erence. 
If you chose 1 and 4, would you be getting closer to twice the diff erence or 
farther away?

Th e student whose work is shown below has found a couple of pairs that work: 
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In this case, a teacher might ask:

• So how are the pairs 1 and 3 and 2 and 6 alike?
• Can you draw a picture to show why those pairs make sense?

If an older student has used only small numbers, a teacher might ask:

• What big numbers do you think might also work? Why do you think those 
might work?

• Would two numbers really close together work? Why or why not?

Note that this is another problem that supports the development of propor-
tional reasoning, since it encourages students to think of multiplicative relation-
ships between the numbers that result.

How Does Th is Problem Build Perseverance?

As did the previous problem, this problem has many solutions, which helps build 
perseverance. Th is problem allows students to use smaller numbers with which 
they may be more comfortable, which builds confi dence. And the problem can be 
started using guess and test, a very comfortable strategy for most students, al-
though they might also be led to use organized lists. Students can also use physical 
tools or draw diagrams to see what is going on.

How Will Th is Problem Be Diff erent at Diff erent Grade Levels?

A younger student would likely use small numbers. It might help if those younger 
students had counters to work with. A student in a higher grade might still use 
small numbers, but should be encouraged to look for some greater numbers that 
will also work. A middle-school student might be encouraged to use Mathematical 
Practice Standard 4, modeling the problem mathematically, and see what sorts of 
numbers work. Th at student might realize that if the numbers are a and b, then

a + b = 2(a – b)
so a + b = 2a – 2b
so 3b = a,
so one number must be triple the other

What is described above algebraically can also be shown to make sense visu-
ally. Each box in the diagram at the top of the next page is intended to hold the 
same number of counters. Number A is the number of counters in 3 of those boxes 
and number B is the number of counters in 1 of the boxes.
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A

B

Since all of the boxes hold the same number of counters, the sum of A and B is 4 
times the number in 1 box. Th e diff erence, which tells how much more A is than 
B, is the number in 2 boxes. And what is in 4 boxes is always double what is in 2 
boxes.

Grades K–2

Trading Coins
◾ I represent an amount of money with 8 coins.
◾ I represent the same amount with 22 coins.

? What coins might I have had each time?

What Kind of Plan Might a Student Make?

A student needs to realize that

• Th e two sets of coins represent the same amount.
• Th ere is an increase of 14 coins (implicit information).
• Th e coins to choose from are pennies, nickels, dimes, and quarters (in the 

United States) or nickels, dimes, quarters, loonies ($1 coins), and toonies 
($2 coins) (in Canada).

Th e goal is to list the sets of coins for each situation and to provide more than 
one possibility, if there is one.

To create a plan, some students might simply choose values and try to come 
up with diff erent numbers of coins to make up that value and hope an answer 
arises. For example, a student might choose a value like 50¢ and try to represent it 
diff erent ways, hoping that one way uses 8 coins and one uses 22 coins. Some-
times, this works. Unfortunately, this will oft en prove not to be a useful strategy; 
for example, it won’t work with 50¢. At this point, a teacher should probably ask 
students to talk to other students who might be trying a diff erent approach. Th is 
provides an opportunity for students to see each other as resources.
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Hopefully, a student will realize that the total value of the groups of coins does 
not really need to be determined. All a student needs to consider is how a coin 
trade increases the number of coins used to represent a value.

Here is one student’s thinking:

Th e student whose work is shown above tells us that she realized she had to 
trade more valuable coins for less valuable coins, which is good information to 
share in a solution, but she does not tell us anything about how she made the 
choices she did. It looks like she traded one $2 coin for 7 quarters and 5 nickels, an 
increase of 11 coins, and that she traded the other three $2 coins for six $1 coins, 
an increase of 3 more coins, but she does not tell us why she chose $12 to work 
with or how she fi gured out which coins to trade.

Similarly, the student whose work is shown on the next page traded quarters 
for dimes and nickels to get more coins, but doesn’t tell us how she chose the val-
ues she did. 
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How Does a Teacher Push the Student Forward?

A teacher should be pleased with each of these students’ work, but both stu-
dents need more instruction in or attention to what is required to communicate 
mathematically.

A student might have listed all the possible coin trades. For example:

1 nickel = 5 pennies (an increase of 4 coins)
1 dime = 10 pennies (an increase of 9 coins)
1 dime = 2 nickels (an increase of 1 coin)
1 quarter = 2 dimes and a nickel (an increase of 2 coins)
1 quarter = 5 nickels (an increase of 4 coins)
1 quarter = 1 dime and 3 nickels (an increase of 3 coins)
1 loonie ($1 coin) = 4 quarters (an increase of 3 coins)
1 loonie = 10 dimes (an increase of 9 coins)
1 loonie = 5 dimes and 10 nickels (an increase of 14 coins)
1 toonie ($2 coin) = 2 loonies (an increase of 1 coin)
and so forth

Th e teacher could then prompt with one or more additional questions, such as 
the following:

• Could you have had 8 nickels and traded one of those nickels for pennies? 
Why not?

• How many extra coins do you need to get?
• Does anything on your list help you get there?
• Do you have to get 14 more coins based on just a single trade?
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A student might check his or her work by determining the values of the coins 
in each situation or might test answers, instead, by matching up sub-amounts of 
equal values (e.g., quarters with quarters or a quarter with 2 dimes and a nickel) 
from each combination.

A teacher might ask students why a particular solution makes sense and hope 
they realize that if there are more coins, those coins have to be of lower value. Th is 
is a fundamental concept in the building of proportional reasoning.

How Does Th is Problem Build Perseverance?

Th is problem has many solutions, which helps build perseverance. It uses a familiar 
context, which builds confi dence and, therefore, perseverance. And the problem 
can be acted out using guess and test, a very comfortable strategy for most students.

While some students would need the coins in front of them in order to actu-
ally perform the trades, other students are likely to be able to be somewhat more 
abstract.

For Canadian students, noticing that a loonie (a $1 coin) could be traded for 
5 dimes and 10 nickels leads to a very simple answer. Start with 8 loonies and 
trade only one for 5 dimes and 10 nickels. Th at alone increases the total number of 
coins from 8 to 22.

But there are many other possible answers, for either U.S. or Canadian stu-
dents. For example, since 14 = 4 + 4 + 4 + 2, a student could look for a situation 
where there is an increase of 4 coins, to be used three times, and a situation where 
there is an increase of 2 coins, to be used once.

For example, if there had been 7 quarters and a dime (for a total of $1.85), a 
student might trade 3 quarters for 5 nickels each, increasing the number of coins 
by 12, and another quarter for 2 dimes and a nickel, increasing the coin count by 
2 more, for a total increase of 14, bringing the fi nal count to 22 coins.

Since 14 is seven 2s, students could also begin with 8 quarters and trade 7 of 
them for 2 dimes and 1 nickel each (adding 2 coins each time), leaving the other 
quarter alone.

Th ere are many additional answers, and students should be encouraged to 
look for many of them. Students could be encouraged to check some of the 
answers by totaling the monetary amounts.

x Variations. Th is problem is an example of a group of problems that could be cre-
ated involving coin or bill trades. For example, a student might be told that an 
amount could be represented with either 4 coins or 7 coins, or with either 2 bills or 
8 bills, and asked to determine possible amounts.
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Grades 3–5

Six, Nine, and Twenty
◾ Suppose a fast food chain sells chicken tenders only in boxes of 6, 9, 

and 20.

? What exact numbers of chicken tenders can you buy?

What are some exact numbers of chicken tenders you cannot buy?

Note: Th is problem is based on one in the video 43 McNuggets posted by Dr. James 
Grimes on YouTube (Grimes, 2012). It is also a good example of Mathematical 
Practice Standard 4, modeling with mathematics.

What Kind of Plan Might a Student Make?

A student needs to realize that

• Th e only operation that can be used is addition (or multiplication as 
repeated addition).

• Th e only numbers that can be added in are 6, 9, and 20, but not all of 
them have to be used.

• Th e only numbers being sought are whole numbers (implicit since if you 
add whole numbers, you get whole numbers).

Th e goal is to get all of the numbers that are possible and some numbers that 
are impossible.

Some students might start with numbers that are impossible, like 1, 2, 3, 4, 5, 
7, and 8. Others are more likely to start with numbers that work, since that ques-
tion was asked fi rst.

Some students will randomly choose numbers of 6s, 9s, and 20s to combine 
and others will be more systematic. Some will use counters and some will just add 
numbers. Ideally, this problem is useful to show students the power of being more 
systematic.

How Does a Teacher Push the Student Forward?

If a student does not even know where to start, a teacher might ask:

• Add two of the numbers that are there. What do you get? So does that 
number go on the list of what works or the list of what doesn’t?

• Do you think you could get 12? How?
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• Do you think you could get 15? How?
• How do you know you can get 18?
• If you get 18, what other numbers can you defi nitely get?

If a student has found a few numbers in the 20s that work, a teacher might ask:

• So you have 20, 21, and 26. Do any other numbers in the 20s work? Are there 
any you are pretty sure do not work?

Here is an example of the work of a trio of students who did get somewhere:

A teacher might respond to this solution by asking:

• How do you know that you can’t get 28 or 55? [Note: Th is could provide an 
opportunity to bring in Mathematical Practice Standard 3 if students had to 
construct their argument and deliver it to another student to critique.]
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• Why did you write the +6s next to the 20 + 6, 26 + 6, and so forth? What does 
that tell you? [Note: Th is brings in Mathematical Practice Standard 8, using 
and recognizing regularity in repeated reasoning.]

• Do you think that you could get REALLY BIG numbers?
• How are you going to test for ALL of the numbers?

How Does Th is Problem Build Perseverance?

Again, this problem has many solutions, which helps build perseverance. As well, 
the numbers students are adding are not intimidating.

If some of the 43 McNuggets video (Grimes, 2012) is shown in class (but not 
all of it), it is likely to make students want to persist to see why 43 is not possible.

Students might discover that there are many impossible numbers (e.g., 1, 2, 3, 
4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, . . .) with 43 being the greatest. But 
since all of the numbers from 44 to 49 are possible:

44 as 20 + 6 + 6 + 6 + 6,
45 as 9 + 9 + 9 + 9 + 9,
46 as 20 + 20 + 6,
47 as 20 + 9 + 9 + 9,
48 as 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6, and
49 as 20 + 20 + 9,

then any number greater than these is possible by simply adding 6 to each of the 
representations of 44–49 to get 50–55, 6 more to get 56–61, and so forth.

x Variations. Th is particular problem is actually only one in a larger set of problems 
called Frobenius problems, where the greatest number not possible by adding 
combinations of particular numbers is called for. Similar problems could be cre-
ated involving scores for various sports games where only certain numbers of 
points can be achieved.

Grades 6–8

Make a Design
◾ Suppose someone decides the 

yellow pattern block is worth 12 .

? What designs could you make that are worth 53 ?
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What Kind of Plan Might a Student Make?

A student might realize that

• It would be useful to fi gure out the values of all of the other blocks in the 
set based on the yellow being worth 12 .

• 5
3 is more than 12 , so the full design would have to be bigger than a yellow 
pattern block (implicit information).

• Knowing how many halves are in 53 could be useful.

Th e goal is to create a design worth 53 and justify the solution.
Some students might fi nd the value 53 uncomfortable. Th e teacher might en-

courage them to use a value like 34 or 64 fi rst, come up with a plan, and then move 
toward solving the original problem. Th is is an example of solving a simpler prob-
lem fi rst.

Going back to the original problem, a student might think:

Since it takes 6 triangles to make a hexagon, each triangle is worth 16 of  12 . Th at 
is 1

1
2 .

Th en, since it takes 2 triangles to make a rhombus, each rhombus must be worth 

1
2
2 , and since it takes 3 triangles to make a trapezoid, each trapezoid must be 

worth 1
3
2 .

Hopefully, a student will see the value of thinking of 1
2 as 1

6
2 and 5

3 as 1
20

2 and 
realize that she or he needs combinations of 1, 2, 3, and 6 to make 20. Th at would 
tell what blocks to use. Th is is an example of Mathematical Practice Standard 2, 
reasoning abstractly and quantitatively. Th e example at the top of the next page 
shows how a student built on this realization:
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So several possible solutions are ones involving: 20 triangles, 10 rhombi, 
3 hexagons and a rhombus, 6 trapezoids and a rhombus, and so forth.

How Does a Teacher Push the Student Forward?

But what if a student doesn’t come up with any ideas, or doesn’t even know how to 
start? A teacher might ask:

• Could you use 4 hexagons? Why not?
• Would 1 hexagon be enough?
• What value do you think the trapezoid would have?

And what if a student has come up with one or two solutions, but that’s all? 
A teacher might ask:

• Do you think you have all the possible solutions? Why not?
• How could you get another solution?
• I notice you have two solutions. How could you exchange blocks and get more 

solutions?
• I notice you have been adding to solve the problem, which certainly has 

worked. I wonder how you might have used dividing to help you. [Note:  
Figuring out that 53 ÷ 12 = 13

0 or 31
3 would have told a student he or she 

needed the equivalent of 31
3 hexagons, or 3 hexagons and a rhombus.]

Th is problem is valuable in and of itself in clarifying the meaning of fraction 
division as well as in practicing fraction operations. But it is also valuable when 
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seen as one example of a group of problems of this type: A ______ pattern block is 
worth ______. Create a variety of designs worth ______. Th e color of the pattern 
block that is given a value can vary, as can its worth or the worth of the design to 
be created. Values can be whole numbers, fractions, or decimals.

How Does Th is Problem Build Perseverance?

Again, this problem has many solutions, which helps build perseverance. As well, 
students always enjoy working with pattern blocks and are likely to persist simply 
because they fi nd it kinesthetically pleasing to work on the problem.

ASSESSING MATHEMATICAL PRACTICE STANDARD 1

In assessing student profi ciency with Mathematical Practice Standard 1, making 
sense of problems and persevering in solving them, there are a number of things 
to look for:

• Is the student recognizing what the givens are, whether implicit or 
explicit?

• Does the student notice if there are contradictory or missing givens?
• If the student makes assumptions, is she or he aware that those 

assumptions have been made?
• Does the student make a plan that makes sense given the nature of the 

problem?
• Does the student use a variety of strategies or does he or she always fall 

back on guess and test?
• Does the student show at least some independence in pursuing the 

problem?
• Does the student persevere for a reasonable amount of time or does she 

or he quit quickly?
• Does the student regularly check to see if his or her answer makes sense 

by either using an alternate strategy or applying logical reasoning?

SUMMARY

In order for students to engage in Mathematical Practice Standard 1:

• A teacher must present a problem that truly is a problem but is not too 
far beyond students’ existing knowledge.

• Oft en, the problem should have many solutions in order to encourage 
perseverance.
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• A teacher must encourage students to think about what information they 
know, whether it is explicit information or implicit information, and what 
they need to fi gure out.

• A teacher must talk about what conjectures are and encourage students to 
regularly make conjectures.

• A teacher must ask scaff olding, probing, and extending questions.
• Students must be encouraged to check their answers to ensure they make 

sense.
• Students must have opportunities to see other solutions and learn from 

them.

Good problems oft en span many grade levels and are simply approached dif-
ferently at diff erent levels.

Good problems oft en bring out other Mathematical Practice Standards beyond 
Standard 1.
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• CHAPTER 2 •

Reasoning Abstractly and Quantitatively
Mathematical Practice Standard 2

MP2. Reason abstractly and quantitatively.

Mathematically profi cient students make sense of quantities and their relationships 
in problem situations. Th ey bring two complementary abilities to bear on problems 
involving quantitative relationships: the ability to decontextualize—to abstract a given 
situation and represent it symbolically and manipulate the representing symbols as if 
they have a life of their own, without necessarily attending to their referents—and the 
ability to contextualize, to pause as needed during the manipulation process in order 
to probe into the referents for the symbols involved. Quantitative reasoning entails 
habits of creating a coherent representation of the problem at hand; considering the 
units involved; attending to the meaning of quantities, not just how to compute them; 
and knowing and fl exibly using diff erent properties of operations and objects.

ALTHOUGH some view mathematics as primarily about problem solving, others 
see reasoning as the heart of mathematics. Mathematical Practice Standard 2 
focuses on reasoning, clearly an important element of mathematics. But it also fo-
cuses on the connections between mathematics and real-world problems in its 
emphasis on decontextualizing and then recontextualizing.

WHEN WOULD THIS PRACTICE APPLY?

Th is mathematical practice standard applies in various types of situations. Some-
times students are confronted with contextual problems and need to work out a 
solution, oft en appealing to abstract mathematical strategies. But at other times, 
they need to resolve quantitative relationship situations that may or may not be 
contextual.

CONTEXTUAL SITUATIONS

In a contextual situation, students are presented with information about a real-life 
situation and use mathematics to help resolve a problem. In the very earliest grades, 
the situations likely involve counting, addition, or subtraction. The situations 



28 Teaching Mathematical Th inking: Tasks and Questions to Strengthen Practices and Processes

become more complex and might involve other operations or algebraic expres-
sions as students get older.

Rather than telling students how to resolve a particular type of problem, there 
is great benefi t in letting them try to fi gure things out for themselves. Here I pre-
sent examples of problems, showing how they would be decontextualized with 
mathematics and then recontextualized to explain their solutions. What decontex-
tualizing/recontextualizing means is that a situation that may not be presented in 
a mathematical format is “translated” into a mathematical format consistent with 
the situation. Th en mathematical tools are applied to lead to a solution described 
in terms of the original situation. In the simplest form of decontextualizing/recon-
textualizing, a student might be faced with a problem involving 3 bowls of 5 apples 
each; this is represented mathematically as 3 × 5. Mathematical strategies are 
employed to realize that 3 × 5 = 15. And then the 15 is described in terms of the 
situation, that is, there are 15 apples.

EXAMPLES OF PROBLEMS INVOLVING 
CONTEXTUAL SITUATIONS THAT MIGHT BRING OUT 
MATHEMATICAL PRACTICE STANDARD 2

Grades K–2

Shopping on a Budget
◾ Choose three prices, each $10 or less, for three small items you 

want to buy.

? Would it cost more to buy the most expensive item or both of the 
two cheaper items?

How much more or how much less?

One of the strengths of this open-ended problem is that it allows for multiple entry 
points, since students can choose whatever numbers they are comfortable with. But it 
also allows for a lot of computational practice, since students can be encouraged to 
try many diff erent combinations of prices. As well, it helps students come to the con-
clusion that when you combine small numbers, the result is still small, but combi-
nations of medium-sized numbers can get bigger than you might have fi rst thought.

To decontextualize the problem, students might choose three values to repre-
sent the prices, add the two smaller amounts, and then either subtract the result 
from the greatest amount or subtract the greatest amount from the sum of the two 
smaller amounts. (Th is is where students need to recontextualize to see which way 
to subtract.)
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For example, if the selected prices are $3, $4, and $8, the student needs to add 
3 + 4 = 7 and then needs to consider 8 – 7 = 1. Or the student might decontextual-
ize using 8 – 3 – 4 = 1. But if the prices are $3, $4, and $6, the student needs to 
subtract 6 from 7 (3 + 4), not the other way around.

Clearly, Mathematical Practice Standard 1 is also applied as students fi gure 
out what to do and persist in doing it, particularly if several possibilities are 
requested.

x Variations. A teacher can increase the challenge by asking what all of the possible 
results are and how each can be achieved. For example, a result of $0 could be 
achieved if the prices were $2, $4, and $6. A result of $1 could be achieved with 
prices of $3, $4, and $8. A result of $2 could be achieved with prices of $3, $4, and 
$9, and so forth. Although most students are likely to use whole number prices, 
students can also choose to use dollars and cents, if they wish.

Grades 3–5

Is It Possible?

? Is it possible to spend exactly $100 and buy only items that cost 
either $3 or $6?

Th is problem is an interesting one because not only is there a specifi c solution to a 
specifi c problem, but there is a bigger generalization lurking just below the sur-
face. Students can learn that if you add multiples of 3 (which combinations of 
3 and 6 are), the result will always be a multiple of 3. Th is is, in fact, an application 
of the distributive property of multiplication over addition and an application of 
Mathematical Practice Standard 7, recognizing and using structure.

In solving this problem, some students might decontextualize by writing the 
equation 3 × □ + 6 × ▲ = 100 and substitute diff erent numbers for the unknowns 
in an eff ort to resolve the problem. Th en students need to recontextualize, real-
izing that there cannot be a whole number answer to this problem since the value 
on the left  is a whole number multiple of 3, but 100 is not.

Or some students might try to fi gure out a multiple of 3 to add to a multiple of 
6 to reach a total near 100, adjusting when they don’t achieve exactly 100, until 
they realize it won’t happen.

x Variations. Th is problem can be generalized to something of the form, “Is it pos-
sible to spend exactly $______ and buy only items that cost $______ and $______,” 
using any three desired whole number values (or even decimal values later on).
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Grades 6–8

A Great Sale
◾ You buy an item on sale and save $12.
◾ Th e original price was between $20 and $100.

? What could the original cost and the percent off  have been?

What is good about this problem is that there are many answers, some fairly sim-
ple to allow easy entry, and some much more complicated, suited to students ready 
to handle them.

One student might choose a savings percentage of 50%. He or she would cal-
culate what $12 is 50% of by using the equation x2 = 12 or perhaps 0.5x = 12. Solv-
ing that equation yields the value x = 24. Th en students must recontextualize, 
realizing that 24 represents the dollar value of the original price when the dis-
count is 50%.

Yet another student might decide that the original price was $100 and recog-
nize that the savings is $12; this time the unknown will represent the percent and 
not a dollar value. Th is student’s equation might be 100x = 12. Th e solution, x = 

1
1
0
2
0 , tells that the discount is 12%. Deciding the units to use when the equation is 

solved is where the recontextualization occurs.

x Variations. Th is problem can be adapted by changing the amount saved and the 
original price range.

Text Messages

? How many text messages do you send in a year?

Th is problem emphasizes proportional reasoning and is certainly of interest to 
students. Two particularly valuable features of this problem are that (1) the strat-
egies used generalize to many other counting problems that require proportional 
reasoning and (2) students use both implicit and explicit givens to solve the 
problem.

Most students use information about how many text messages they send in a 
day and then generalize it to a year. Th ose students would take their number of 
messages per day, multiply that number by 365, and then interpret the result as the 
number of messages in a year.
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Other students would, instead, choose to be more precise. Th ey might divide 
up the year into weekdays and weekends, if they felt the messaging was very diff er-
ent in these two situations. Th ey might multiply one number by 5 (for weekdays), 
add another number multiplied by 2 (for weekends), and then multiply that total 
by 52. Or other students might divide the year into school-year months and out-
of-school months, again because they feel the numbers of daily messages are very 
diff erent in those situations. Regardless of the approach, deciding what numbers 
to multiply and/or add leads to a decontextualized calculation, which is then 
recontextualized in its interpretation.

NUMBER RELATIONSHIPS

Another place where this practice standard is useful is with problems involving 
number relationships. Although these problems do not involve real-life context, 
they focus on generalizations and require reasoning abstractly and quantitatively. 
Some examples are shown below.

EXAMPLES OF PROBLEMS INVOLVING 
NUMBER RELATIONSHIPS THAT MIGHT BRING OUT 
MATHEMATICAL PRACTICE STANDARD 2

Grades K–2

Which Numbers?
◾ Choose a number.
◾ Find the number that is 4 more than your fi rst number. Call this 

number A.
◾ Subtract 1 from your fi rst number.
◾ Find the number that is 6 more than this new number. Call this 

number B.

? How much greater is A than B or B than A?

Does it depend on the fi rst number you chose?

Students can choose a comfortable number to start with. For example, if a stu-
dent chooses 3, she or he might realize that A = 3 + 4. And B = 2 + 6. So 8 (num-
ber B) is 1 more than 7 (number A). But if the student starts with 6 instead, 
number A is 6 + 4 and number B is 5 + 6 and B is still 1 more than A. Students 
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could use Mathematical Practice Standard 3 and explore a conjecture that B will 
always be 1 more than A and investigate why.

Students might use concrete objects to represent the problem. Imagine a pan 
balance like this:

One can see that if the number of blocks in the big gray box is 1 more than the 
number in the spotted box, the balance could actually be thought of this way:

In this version it becomes clear that the right side is 1 more than the left  side. Th e 
decontextualization this time is thinking about a “random” box instead of a par-
ticular number.

How Many Dots?

? How could you fi gure out the number of dots above without 
actually counting them one at a time?

Th is is a specifi c example of a “dot problem.” Th ese types of problems are useful to 
call upon on a regular basis with students. Th ey help students see numbers as 
composed of other numbers in diff erent ways.



Reasoning Abstractly and Quantitatively 33

For example, in this case, the student might see 8 dots at the bottom to add to 
2 on the left  side, 2 on the right, and 2 more in the middle of the top. With this 
view, 8 + 2 + 2 + 2 = 14 tells the total number of dots. On the other hand, the stu-
dent might see 4 in the left most column, 3 in the second column, 3 in the third 
column, and 4 in the rightmost column, and that student’s total would be 4 + 3 + 
3 + 4 = 14, which is, of course, the same total.

Or a student might see three rows of 4 and 2 more dots in row 2, for a total of 
4 + 4 + 4 + 2 = 14, as well.

Older students might see 4 × 4 – 2, which is also 14.

x Variations. It is possible to create many of these sorts of problems by beginning 
with an array of any size and strategically removing dots. For example, a teacher 
might start with the following:

Removing dots could show any of these arrays, and more:
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Grades 3–5

Two Truths and a Lie

? Which of these is the lie? How do you know?

A. Th e number 68 can be represented with 32 base ten blocks.

B. Th e number 148 can be represented with 43 base ten blocks.

C. Th e number 502 can be represented with 142 base ten blocks.

Th is problem is a good one to give students practice with place value concepts. 
Initially, students might wonder what is going on. Isn’t 68 represented with 6 ten-
rods and 8 one-blocks since 68 = 6 × 10 + 8 (or 10 + 10 + 10 + 10 + 10 + 10 + 1 + 
1 + 1 + 1 + 1 + 1 + 1 + 1)? But that is only 14 blocks. But then students have to 
think harder: How else can you write 68 as the sum of tens and ones? Maybe 10 + 
10 + 10 + 10 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 
1 + 1. Th at’s 23 blocks. Th en they think again. It could be 4 ten-blocks (10 + 10 + 
10 + 10) and 28 one blocks (1 + 1 + 1 + . . . + 1 + 1). And that is 32 blocks.

So each time, the problem is about whether the number can be written as a 
combination of a certain number of hundreds, tens, and ones.

As shown below, this student discovered that statement B is the lie:

x Variations. As with other number relationship problems, this problem is only one 
example of many, since any whole number (or even decimal) can be represented in 
a number of ways.
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What Could It Be?
◾ You add three consecutive whole numbers (numbers in a row, 

such as 4, 5, and 6).

? Which of these answers are possible? Which are not? Why?

21  48  102  300  400

While students are likely to randomly select consecutive numbers to add and see 
what happens, hopefully they will have developed habits of mind based on Math-
ematical Practice Standard 1, making sense of problems and persevering in solving 
them, that will lead them to look for relationships in what they discover and to 
make conjectures.

A student might add 10 + 11 + 12 = 33, then 20 + 21 + 22 = 63, and hypothe-
size that the sum of three consecutive numbers has to be a number ending in 3, 
and thus conclude that none of the values listed are possible. Th is happens to be 
incorrect.

A teacher then needs to prompt, for example:

• What if you tried 14 + 15 + 16? Does that end in a 3?

Th e student whose work is shown below came up with a good solution, but 
it doesn’t quite tell us how she knows that 400 is impossible just because 399 is 
possible.

Ideally, students will start to notice that each of the numbers they get is the 
same as adding three of the middle number, for example, 10 + 11 + 12 = 11 + 11 + 
11, or 5 + 6 + 7 = 6 + 6 + 6.

Students could explore why this is the case. (Th is is an example of the asso-
ciative property of addition, combined with the zero property since, for example, 
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10 + 11 + 12 = 11 – 1 + 11 + 11 + 1, which is 11 + 11 + 11 + 0, and relates to Math-
ematical Practice Standard 7, recognizing and using structure.)

Th ey might even explore this type of problem visually, a diff erent way to de-
contextualize. For example, a student might represent 5 + 6 + 7 in this way:

Th is can quickly be seen to be the same as three 6s:

x Variations. Other problems could involve the sum of fi ve, seven, or nine consecu-
tive numbers (which are multiples of 5, 7, and 9, respectively).

Grades 6–8

Four Times
◾ Th e quotient of two fractions is 4 times as much as their product.

? What could the fractions be? Th ink of lots of possibilities.

In the sample shown on the next page, the student realized that the second frac-
tion he wanted to use was 12 , but did not really indicate why:
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Some students will choose to use algebra to either get the answer or prove why 
the number to multiply or divide by is 1

2 . For example, the student above might 
have noted that dc must be 4 times cd , so d2 = 4c2, and cd = 12 .

Another student might approach the problem numerically rather than alge-
braically. He or she might think:

If a number is divided by 12 , the quotient is the number of halves in the number 
(which is 2 times the number) and the product of that number multiplied by 12 is 
half of the number. Th at means twice a number is always 4 times half the num-
ber, so the second fraction should be 12 .

x Variations. Th is sort of problem can be generalized to, for example, the quotient 
is 9 times as much or 16 times as much or perhaps 94 as much as a product.
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ASSESSING MATHEMATICAL PRACTICE STANDARD 2

In assessing student profi ciency with Mathematical Practice Standard 2, reasoning 
abstractly and quantitatively, there are a number of things to look for:

• When there is a contextual situation, is the student’s mathematical 
representation of it appropriate?

• Does the student interpret the mathematical results of his or her 
computations in light of the contextual situation when there is a 
contextual situation?

• When the situation is a generalization involving number relationships, 
does the student use appropriate properties and meanings of operations 
and suffi  cient breadth and types of examples to draw the conclusions she 
or he does?

SUMMARY

In order for students to engage in Mathematical Practice Standard 2:

• Th ere is value in using both contextual problems and number relationship 
problems; both types can be symbolized with mathematics. Ideally, the 
problems should be generalizable.

• When students represent the mathematics of their solution, the 
representation can be numerical or algebraic, but it can also be visual.

• Whether students use numerical, algebraic, or visual representations, they 
should be queried frequently on what the symbols they use represent and 
what their result represents.
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• CHAPTER 3 •

Constructing and Critiquing Arguments
Mathematical Practice Standard 3

MP3. Construct viable arguments and critique the reasoning of others.

Mathematically profi cient students understand and use stated assumptions, 
defi nitions, and previously established results in constructing arguments. Th ey make 
conjectures and build a logical progression of statements to explore the truth of their 
conjectures. Th ey are able to analyze situations by breaking them into cases, and can 
recognize and use counterexamples. Th ey justify their conclusions, communicate them 
to others, and respond to the arguments of others. Th ey reason inductively about data, 
making plausible arguments that take into account the context from which the data 
arose. Mathematically profi cient students are also able to compare the eff ectiveness of 
two plausible arguments, distinguish correct logic or reasoning from that which is 
fl awed, and—if there is a fl aw in an argument—explain what it is. Elementary students 
can construct arguments using concrete referents such as objects, drawings, diagrams, 
and actions. Such arguments can make sense and be correct, even though they are not 
generalized or made formal until later grades. Later, students learn to determine 
domains to which an argument applies. Students at all grades can listen or read the 
arguments of others, decide whether they make sense, and ask useful questions to 
clarify or improve the arguments.

THIS STANDARD, somewhat like the previous one (Mathematical Practice 
Standard 2, reasoning abstractly and quantitatively), has at its heart the impor-
tance of reasoning in the world of mathematics.

WHAT MIGHT THE ARGUMENTS BE ABOUT?

One type of argument that a student might make is one that defends a solution to 
a specifi c problem by explaining how he or she solved it. But it might be even 
more worthwhile if the argument represented a class of problems or a bigger idea 
that students are learning about. Examples of those sorts of arguments at many 
grade levels are included in this chapter.
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WHAT FACTORS INTO A QUALITY ARGUMENT?

Th ere are a number of issues that should, over time, be brought to students’ atten-
tion as contributing to the quality of a good argument:

• Th e argument is not based on just a few unrelated examples.
• Th e argument is not circular. In other words, a student does not say, for 

example, that you can add two numbers in any order since the order does 
not matter, thus using the result to be proved as its explanation.

• Th e argument is oft en accompanied by strong visual support.
• Th e argument addresses the underlying meaning of the elements of the 

problem, and not just the surface features. For example, a good argument 
about why the sum of two evens is even does not just off er a lot of 
examples; it is more about what the term “even” means.

Th e ability to create a sound mathematical argument is learned over time. Dis-
cussing the characteristics of a good argument listed above (i.e., not based on un-
related examples, not circular, etc.), as these issues arise, is critical to helping 
students improve their reasoning skills.

For many adults and students, arguments that use fancier mathematical terms 
or symbols might appear to be stronger arguments, but this is not always the case. 
Sometimes very strong arguments are based on a picture and a few words accom-
panying it.

For many adults and students, tight organization is a critical part of an argu-
ment. As students get older, this might be more of an expectation, but it is cer-
tainly not required for younger students.

WHAT DO GOOD CRITIQUES OF ARGUMENTS SOUND LIKE?

As well as learning how to create arguments, students need opportunities to learn 
how to ask questions of other students’ arguments. Initially, some standard “talk 
moves” such as those listed below might help students start their critiques. Later, 
they will learn to create questions more specifi c to a situation.

For example, some good starters for a critique might be these:

• I agree with ______ because ______.
• I didn’t understand why you ______.
• I disagree with ______ because ______.
• I wonder why you ______.
• What if you had ______?
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EXAMPLES OF PROBLEMS THAT MIGHT BRING OUT 
MATHEMATICAL PRACTICE STANDARD 3

Grades K–2

All about Ten

? What do you think are the three most useful things to know about 
the number 10?

Why are these things most important to you?

For this problem, there is no right or wrong answer; it just asks for an opinion. But 
the answer is still something that could be viewed as an “argument” that could be 
off ered and critiqued. One student might argue that the three most important 
things to know about 10 are that

• 10 is the last number little kids learn to count to when they start 
counting.

• 10 comes aft er 9.
• 10 is the fi rst two-digit number.

Th is student might suggest that these are important features because the fi rst 
one shows that a lot of people see 10 as an important number or they would not 
have ended the counting at 10. And the other two are important because they give 
a good idea of where 10 is in the list of numbers and so give a feel for how big it is.

But other students should be encouraged to question this reasoning:

• How does knowing that 10 comes after 9 or that it is the fi rst two-digit 
number give you a sense of its size?

• Why does it matter that it’s the biggest number that little kids can say?

x Variations. Th is type of problem can be generalized to others where students are 
asked to explain why they think a particular property, number, or shape is important.

Moving on a Number Line
◾ Leah says that 3 and 7 are 5 apart since if you are on a number line 

and you start on 3, you touch 3, 4, 5, 6, and 7; that is 5 numbers.
◾ Emma says that 3 and 7 are 4 apart since if you start at 3 on a 

number line and jump 4 spaces, you get to 7.

? Do you agree with Leah or with Emma?
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Note that this situation addresses a common misconception among students 
(Leah’s suggestion); that fact alone makes this task particularly worthwhile to dis-
cuss. Ideally, both Leah and Emma would “act out” their explanations. Th en other 
students should be encouraged to ask questions to critique their arguments. For 
example, other students might ask:

• Aren’t they 3 apart since 4, 5, and 6 are between them?
• What do you mean when you say “apart”?
• But if you are already on 3, why do you count the 3, since you haven’t really 

moved?
• Can both answers be right?

Right or Wrong?
◾ Suppose 4 + 9 = □ + 7.
◾ Connor said that the answer is 13 since 4 + 9 = 13.

? What’s wrong with his argument, or is he right?

Connor’s approach is, in fact, a common error that students make. Students need 
to think about what it actually means to use an equal sign. Does it mean that the 
answer follows, which is what Connor thought, or does it mean that both sides of 
the equation represent the same value? Th ose are two very diff erent things.

Discussion of this argument might be managed by allowing students to vote 
on their positions on small whiteboards that they hold up; this ensures that each 
student makes a decision independently. Th en one student on either side of the 
argument could be asked to make a short presentation and try to win others over 
to his or her side. Ultimately, it is very important that students realize that Connor 
is incorrect, as the student whose work is shown below demonstrates:

x Variations. Similar problems might involve equations where the unknown is on 
the left , for example, 32 – □ = 52 – 30.
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Grades 3–5

Another debatable question is shown below. Th e debate here most likely lies in the 
use of the term “more likely.” Th e issue is what students have to do to be convinc-
ing. Do they really have to try every pair of possible numbers or just every pair up 
to 100? What else could they do?

So Many Evens
◾ Liz says that when you multiply two numbers, the answer is more 

likely to be even than odd.

? Do you agree or not? Why?

Th is conjecture is worth investigating for a number of reasons. First, it integrates a 
number of diff erent concepts, relating probability ideas to multiplication concepts. 
Second, it is foundational for other conjectures about factors and multiples that 
students might explore later, such as these:

• Are there more multiples of 3 that are multiples of 2 or multiples of 5?
• When you multiply a multiple of 3 by a multiple of 5, what can you be sure is 

true about your result?

In preparing an argument for the original problem, some students might sim-
ply use a few examples from which to draw a conclusion, whereas others might 
undertake a deeper analysis.

One student suggested the following:

Th is argument is incorrect, but many students might not even realize that, since it 
sounds reasonable.

A correct but not very convincing argument might be:

I tried 3 × 5, 4 × 6, 5 × 9, 4 × 10, and 6 × 8. Mostly I got even numbers, so the 
answer is probably going to be even.
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Other students might be asked to critique this argument by asking questions or 
making statements like these:

• But you just tried fi ve pairs. What if you had picked diff erent numbers?
• I wonder why you picked the numbers you did. Do you think that made a 

diff erence?
• What if you had used bigger numbers?

A more convincing argument might be one like this:

I looked at the multiplication table, and every second row was all even numbers 
and the other rows were half even. Th at means most of the products are even, so 
that makes it more likely that a product is even than odd.

But other students should still critique this argument by asking questions such as 
these:

• How do you know it was most?
• What if the numbers were bigger?

Perhaps even more convincing might be the following argument, where a stu-
dent argues why three-fourths of the answers are even and one-fourth are odd:

Students will eventually see that arguments based on sound deductive think-
ing are usually more satisfying than those based on induction.

Which Is More?
◾ Zayden says: 0.16 is more than 0.4 since 16 > 4.

? How would you reply to Zayden?

Th is argument deals, again, with a common misconception held by many students. 
Students tend to overgeneralize what they know about whole numbers and apply 
it, when it is inappropriate, in a decimal situation.
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Notice that this time the strategy is to present an argument and ask students to 
critique it. We want students to realize that the number 0.16 is, in fact, less than 
0.4.

Here are some possible arguments, not all as convincing as others:

• Argument A: 0.16 has only 1 tenth but 0.4 has 4 tenths, so 0.4 is more.
• Argument B: I drew pictures of both. You can see that 0.4 is more. 

• Argument C: I know that 0.4 is 4 tenths, but 1
4
0 = 1

4
0
0
0 .

0.16 = 1
1
0
6
0

1
4
0
0
0 > 1

1
0
6
0

• Argument D:  0.16 is a way to compare 16 to 100. 
16 is a really small part of 100. 
But 0.4 is a way to compare 4 to 10 and 4 is almost half of 10. 
So 0.4 must be more.

• Argument E: If you draw a number line, 0.4 is to the right of 0.16, so it 
is more.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Which argument do you fi nd most convincing?
Many students, and even adults, are attracted to Argument A because it is based 

on place value rules, but others might fi nd Argument B or D more convincing.
In looking at Argument E, a student might query:

• How did you know where to put 0.16? Th ere was no number for it on the 
number line.

Th e strategy of comparing arguments is valuable in many situations and at 
many grade levels.
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So Simple
◾ Keira made this conjecture:

To get a fraction between two fractions, just use a number 
between the numerators for the numerator and a number 
between the denominators for the denominator.

For example, between 23 and 85 is 54 , since 5 is between 2 and 8 
and 4 is between 3 and 5. 54 is just a little more than 1, but 85 is 
a lot more than 1 and 23 is less than 1, so 54 is in the middle.

? Do you agree that this strategy always works?

If so, why would that be? If not, why not?

Th is conjecture might be of interest to students because they really might wonder 
if it is true or not. It also suggests a generalization that might be valuable in future 
mathematical situations.

How might students argue this conjecture? Consider these possibilities:

• Argument A: I tried three pairs of fractions and it worked each time, so 
I believe it.

• Argument B: I tried it with two pairs of fractions less than 1, two pairs of 
fractions greater than 1, and two pairs where one was less than 1 and one 
was greater than 1. It worked each time, so I believe it.

• Argument C: First I tried fractions with common denominators, like 1
4
0 

and 1
6
0 , and it defi nitely worked for them since the middle of the bottom 

numbers was the same denominator and the middle of the top numbers 
was greater than the lower one and less than the higher one. Th en I tried 
some fractions with diff erent denominators and it seemed to work.

• Argument D: I don’t think it’s true. I used 1
8
5 and 23 . I know that 1

8
5 is less 

since 23 = 1
10

5 . For the number between 8 and 2, I used 7. For the number 
between 15 and 3, I used 8. So my new fraction was 78 . But 78 is bigger 
than both 1

8
5 and 23 , so you don’t get an in-between fraction.

Most students (and most adults) might have been persuaded by Argument B 
or maybe A or C—until they heard Argument D. Th is shows how important it is 
for many students to put forth arguments and demonstrates the importance of 
counterexamples.
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Grades 6–8

Big Percents
◾ A store employee noticed that an item’s price had been reduced by 

30% and realized it was a mistake.
◾ So she added 30% back to the reduced price.
◾ Avery said the price is the same as it used to be, but Zahra disagreed.

? With whom do you agree? Why?

While one student might agree with Avery, assuming that the price must be the 
same since the employee undid what had been done in the fi rst place, another might 
realize that Zahra is right. In the fi rst case, the 30% was applied to a greater num-
ber than in the second case, so, in fact, the second change was not a full “undoing.”

For example, if the original price had been $100, 30% of $100, or $30, would 
have been removed from the price. Th at would have made the reduced price $70. 
But 30% of $70 is only $21, so adding back 30% of the reduced price gives a fi nal 
price of only $91 ($70 + $21), not $100.

In Between
◾ You multiply two fractions:  ab and cd .
◾ Th e result is a LOT MORE than ab , but a BIT LESS than cd .

? What could the fractions be?

Why did those fractions work?

On the surface, this problem might seem very narrow, but it actually addresses a 
very big idea—that when you multiply by a very small fraction, you reduce the 
other number’s size signifi cantly; when you multiply by a number near 1, you don’t 
change the other number’s size signifi cantly; when you multiply by a fraction 
much greater than 1, you increase the other number’s size signifi cantly.

To begin the problem, a student might simply choose two fractions, for exam-
ple, 2

3 and 3
4 . She or he will soon discover the need for another path, since the 

desired result is not achieved. A teacher might have to prompt, for example:

• What fractions did you try?
• What about some bigger fractions?
• What about fractions near 0?
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Th e student whose work is shown below discovered that, for example, 1
9
0 × 13

0

will work. She found this aft er trying a number of other possibilities, although she 
does not indicate how she chose the numbers.

Another student, too, does not tell us where the numbers came from, but does 
a bit better job of verifying that she is correct:
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Th e important mathematics involves fi guring out why these answers work. 
Ideally, a student will realize that they work because the fi rst fraction is less than 1, 
but close to it, and the second is considerably more than 1.

x Variations. Alternative problems that are similar can easily be created. Two exam-
ples are these:

• You multiply two fractions and the result is a lot less than one of them 
and slightly more than the other.

• You divide two fractions and the result is slightly more than if you 
multiply them.

Solving Equations
◾ Lara says that the solution to

3
5 x – 2 = 2

7

is twice as much as the solution to

1
3
0 x – 1 = 1

7

since all the numbers in the fi rst equation are double all the 
numbers in the second one.

? Do you agree or disagree? Why?

Th is question is valuable because it underlies all work with solving equations alge-
braically. Students need to realize that the answer does not change if all values in 
an equation are divided by or multiplied by the same value. But it is not surprising 
that a student would think that halving all the elements of the equation will lead to 
an answer that is half the original answer. Discussing such misconceptions will 
help to eliminate them.

Some students will pursue an argument based on actually solving both equa-
tions and noting that the solutions are the same. A stronger argument would sug-
gest that if two amounts balance, then their doubles also balance. Students at all 
levels need to realize that the strongest arguments generally go back to what the 
mathematics is representing and not just what the solution to a particular problem 
happens to be.



50 Teaching Mathematical Th inking: Tasks and Questions to Strengthen Practices and Processes

ASSESSING MATHEMATICAL PRACTICE STANDARD 3

In assessing student profi ciency with Mathematical Practice Standard 3, construct-
ing and critiquing arguments, there are a number of things to look for:

• Is the student aware of and careful about the assumptions made?
• Are terms well defi ned?
• Does the student feel comfortable making conjectures?
• Does the student recognize that a single counterexample can disprove a 

generalization but even 10 examples do not prove a generalization?
• Does the student use both inductive and deductive thinking?
• Does the student notice fl aws in arguments?

SUMMARY

In order for students to engage in Mathematical Practice Standard 3:

• Teachers should encourage the regular creation of conjectures that can be 
tested.

• Teachers should regularly require explanation of thinking.
• Students must learn how to query other students’ work and their own 

work.
• Teachers could create situations where two diff erent students, whether 

real or mythical, have taken diff erent viewpoints on a situation and 
students in the class get to choose sides.

• Students should learn to question assumptions.
• Teachers might present false claims, most likely overgeneralizations of 

previously learned concepts, and have students respond.
• Teachers might regularly pose questions like this: Will it still be true if . . . ?
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• CHAPTER 4 •

Modeling with Mathematics
Mathematical Practice Standard 4

MP4. Model with mathematics.

Mathematically profi cient students can apply the mathematics they know to solve 
problems arising in everyday life, society, and the workplace. In early grades, this might 
be as simple as writing an addition equation to describe a situation. In middle grades, 
a student might apply proportional reasoning to plan a school event or analyze a 
problem in the community. By high school, a student might use geometry to solve a 
design problem or use a function to describe how one quantity of interest depends on 
another. Mathematically profi cient students who can apply what they know are 
comfortable making assumptions and approximations to simplify a complicated 
situation, realizing that these may need revision later. Th ey are able to identify 
important quantities in a practical situation and map their relationships using such 
tools as diagrams, two-way tables, graphs, fl owcharts, and formulas. Th ey can analyze 
those relationships mathematically to draw conclusions. Th ey routinely interpret their 
mathematical results in the context of the situation and refl ect on whether the results 
make sense, possibly improving the model if it has not served its purpose.

THIS STANDARD, even more than Mathematical Practice Standard 2, reasoning 
abstractly and quantitatively, where relating mathematics to the real world cer-
tainly does come up, links the practice of mathematics to its applications. Students 
explore the utility of mathematics as a tool for solving real-life problems. A math-
ematical model might be more exact—for example, an addition equation of the 
form 3 + 2 = □ to show the result of adding 3 of something to 2 of something—or 
might be an approximation—for example, where the formula for the perimeter of 
a rectangle is used for a shape close to, but not exactly, a rectangle.

ASSUMPTIONS

One of the big issues associated with this standard is the fact that when we repre-
sent real-world situations with mathematics, we are oft en making assumptions.
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A young student might be asked to determine the number of apples he would 
have if he had 2 apples and got 3 more. It seems relatively straightforward to model 
this as 2 + 3, but, in fact, a student has to make the assumption that the size of the 
apple is irrelevant when deciding to do this. As adults, we might think that this is 
not really an assumption since we asked how many, but this probably is an issue 
young students have to deal with.

Older students might be asked to model problems with mathematics that re-
quire more sophisticated assumptions. For example, if the teacher suggests that 
one child has read 3 12 times as many pages as another and asks for possible values 
for each child, the problem solver must decide whether the answers can be only 
whole numbers or can also be rational numbers; oft en this is not stated. Or, if stu-
dents are asked to estimate the number of children in the school, they have to 
decide if their own classroom is representative and can be used as a factor to mul-
tiply by the number of classes, or not.

Th ere are actually many real-world problems based on making assumptions. 
For example, to estimate the weight of 1000 apples, students must make estimates 
about the size of a typical apple. Students who are very “precise” might be uncom-
fortable with this sort of problem because they might realize that the variability in 
weights of actual apples will guarantee that 1000 × the size of a typical apple will 
not yield a completely accurate answer. Teaching them to deal with the appropri-
ateness of making assumptions takes time and eff ort.

REASONABLENESS OF ANSWER

With Mathematical Practice Standard 2, reasoning abstractly and quantitatively, in 
the background, we realize that the result of solving a problem based on modeling 
a situation mathematically must be reconsidered in light of the context to see if it 
makes sense. It might mean altering the answer in a particular way, for example, 
changing a fraction to a whole number when dealing with a remainder situation in 
a context where only whole number answers make sense, but it might also mean 
revisiting assumptions that were made and re-evaluating those assumptions.
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EXAMPLES OF PROBLEMS THAT MIGHT BRING OUT 
MATHEMATICAL PRACTICE STANDARD 4

Grades K–2

Two Groups
◾ Th e 18 children in Sarah’s class were standing outside in two 

separate groups.

? If the groups were close in size, how many might have been in each 
group?

Young children might model this situation with an addition sentence—□ + ▲ = 
18—and look for numbers to replace the two unknowns. Th ey might initially 
begin with 9 + 9 = 18, and then would have to decide whether “close in size” 
allows for exactly the same size or not. Another consideration might include, for 
example, whether two numbers would be considered close or not by most people.

Whichever decision they make, students might then try to determine other 
solutions that they think meet the criteria of the problem, for example, 10 and 8 or 
possibly 11 and 7 (but perhaps they think 11 and 7 are not close enough).

x Variations. A problem like this can be generalized to situations where diff erent 
totals are decomposed into subgroups with given relationships.

Standing in Line
◾ Th ere are 23 students standing in line.
◾ Jack is in the middle.

? How many people are ahead of him?

Some students might use a number line or other tool to solve this problem. (Mak-
ing such a decision relates to Mathematical Practice Standard 5, using tools strate-
gically.) One student might choose a number line and then put counters at 1 and 
23, representing the beginning and the end of Jack’s line:

0 1 2 3 4 5 6 7 8 9 10 21 22 23 24 2516 17 18 19 2011 12 13 14 15

Notice that an assumption was made to put the left  counter at 1 and not 0, since 
the fi rst person is called 1, but this positioning had to be considered.
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Th e student moves the counter in from the left  at the same rate he or she 
moves the counter in from the right. Two of these steps are shown below: 

0 1 2 3 4 5 6 7 8 9 10 21 22 23 24 2516 17 18 19 2011 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 21 22 23 24 2516 17 18 19 2011 12 13 14 15

Eventually the counters meet at 12, so Jack must be at position 12, with 11 
people ahead of him and 11 people behind him.

A diff erent student might have selected a diff erent model, for example, think-
ing of 23 as almost 2 equal groups with 1 extra, that is, 23 = 2 × 11 + 1. Th e two 
equal piles would have represented the number of people ahead of Jack and the 
number behind Jack.

Paying for It

? How can you pay for an item that costs 75¢ 
with exactly 6 coins?

Th e student has to assume that any combination of six coins is allowed, not neces-
sarily six of the same kind of coin. Essentially, he or she has to realize that the task 
is to fi gure out how to add six numbers, each of which is either 1, 5, 10, or 25 (in 
the United States) or 5, 10, or 25 (in Canada), to get a total of 75.

A student might start with 75 = 25 + 25 + 25, and realize that only three num-
bers have been added, not six. She or he might eventually try 10 + 10 + 10 + 10 + 
10 + 25 and determine that fi ve dimes and a quarter is a possible solution.

Grades 3–5

Sharing Sandwiches
◾ Th ere are 6 students who have to share only 5 identical sandwiches.

? How much of a sandwich should each child get?
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In solving this problem, students have to make assumptions. For example:

• Is it okay for a child to get a lot of little pieces or does she or he have to 
get just one piece, or at least not any “slivers”?

• Were the sandwiches already cut in half? Does that matter?
• Does every student need to get the same number of small pieces?

Th e problem does not specifi cally state these things, so, as adults, we can 
assume that the problem solver has the freedom to make all of these decisions. 
However, students who are younger may need permission or may be encouraged 
to specifi cally address those issues in whatever way they think makes sense, while 
being prepared to justify their assumptions. (Mathematical Practice Standard 3, 
constructing and critiquing arguments, also applies here.) Th is is an instance where 
a misunderstanding of the overall intent of standards to push students to rely 
solely on their own thinking might lead a teacher to say, “You need to fi gure that 
out for yourselves.” In fact, however, letting students know that they have permis-
sion to make these decisions based on what makes sense for this problem can lib-
erate them to solve it.

While one student might be perfectly comfortable dividing each of the 5 sand-
wiches into 6 equal pieces and giving each child a piece of each sandwich (which 
is mathematically 5 × 16 = 5 ÷ 6), other students might feel that real children would 
not like so many little pieces and might cut the sandwiches diff erently. For exam-
ple, the picture below models that 5 ÷ 6 = 56 + 56 + 56 + 56 + 56 + 5 × 16 . Th is way, only 
one person gets little pieces.

Another student might decide it is fairer and more attractive for each person to 
get a large piece and some smaller pieces. So each student would receive a half sand-
wich and small pieces from equal division of the remaining 4 half sandwiches. Th is 
problem off ers students another example of how multiple answers can be correct.
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A Perfect Garden
◾ You have 22 feet of fencing and want to make a garden with an 

area of at least 20 square feet.
◾ You want the garden to be close to rectangular.
◾ You are going to fence it all around.

? What could its length and width be so you would have enough 
area and enough fencing?

Some more profi cient students might model this mathematically if they realize 
that they need dimensions l and w such that the sum of l and w is 11 or less and 
the product is 20 or more.

Other students might experiment with numbers that would meet these crite-
ria. Th ey would discover, for example, that 10 and 5 do not work since there is not 
enough fencing, but 6 and 5 do work. So the garden could be 6' × 5'. Or they might 
discover that 6 and 4 also work, although 6 and 3 do not.

Younger students might draw a rectangle and write numbers next to two sides 
of the rectangle and multiply them. Even when students come upon one answer 
that solves the problem, they might try other combinations to see what would give 
them the largest garden possible. Teachers may want to prompt for this additional 
investigation.

Ordering Pizza
◾ Because some students are away on a fi eld trip, a teacher has to 

estimate how many pizzas to order for hot lunch the next day.
◾ She does not have access to last week’s numbers, but she does 

know that there are 512 students in the school this week.

? How do you think she should decide how many pizzas to order?

Th ere is clearly a need for assumptions in this problem. Students have to make 
assumptions about how many students will eat pizza, how many slices each will 
eat, and how many slices are in a pizza.

One solution might go something like this:

In our class, only 4 people never eat pizza, and we have 21 people in our class, so 
that’s about 15 who don’t eat pizza. I will guess it’s the same for the whole school, 
so I will only order pizza for about 400 students. If each student ate 2 slices, that 
would be 800 slices. I am pretty sure that a pizza comes in 8 slices, so I would 
order 100 pizzas.
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Th is provides a great opportunity to bring in Mathematical Practice Standard 
3, constructing and critiquing arguments, since other students could query 
whether this student’s class was typical, whether 45 of 512 is 400 or a little more and 
whether the little more matters, whether pizzas really do come in 8 slices, and 
whether or not there should be a “cushion.”

Grades 6–8

Good Sales
◾ You buy a jacket at 40% off .
◾ You buy shoes at 20% off .
◾ You pay the same amount for both items.

? What do you know about the relationship between the two pre-
sale prices?

Th is problem is an excellent one for a lot of reasons. First of all, it can be solved 
numerically, algebraically, or visually, giving students real choice in accessing the 
problem (and bringing out Mathematical Practice Standard 5, using tools strategi-
cally). Of equal importance is that the problem emphasizes the big idea that per-
cent relationships are multiplicative, not additive, and therefore the relationship of 
the values must be a multiplicative one. As a side note, the problem also empha-
sizes that knowing a sale percentage implicitly, but not explicitly, gives the cost 
percentage.

Th e quickest model is probably an algebraic one. If the original jacket price is 
represented as x and the original shoe price as y, then 0.6x = 0.8y. As a conse-
quence, 6x = 8y and y = 3

4 x. Th e original shoe price had to be 3
4 of the original 

jacket price.
But visual models are also possible. One visual model is shown below, where 

the jacket price percentages are shown on one number line and the shoe price 
percentages on another:

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90

Jacket percent

Shoe percent

100
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In order to have the sale prices match, percentages on the two number lines are 
spaced so that 60% of the original jacket price lines up with 80% of the original 
shoe price. Th is then shows that 100% of the original shoe price matches 75% of 
the original jacket price.

Or a student could solve the problem numerically by trying diff erent possible 
jacket prices, determining the matching shoe price, and looking for relationships. 
It is the looking for relationships that is the tough part, since students must con-
sider lots of possible relationships.

For example, if an original $100 jacket price is assumed, then its sale price is 
$60, which is also the sale price of the shoes. To get the original price of the shoes, 
the student has to determine that $60 is 80%, or 45 , of $75. So the price of $75 for 
the shoes matches the price of $100 for the jacket. Many students at this point 
would simply conclude that the shoes cost $25 less than the jacket. Th ey would 
have to be encouraged to explore, for example, prices of $100 and $125 to see if 
they work, which they don’t. Th e students need to look for alternative relation-
ships (not just diff erence) between 75 and 100 that will make the problem work. 
Th e relationship that is critical, in the end, is that 75 is 34 of 100.

Th e student whose work is shown below solved a proportion to get one solu-
tion, but did not generalize. Th is shows the need for really focusing in on Mathe-
matical Practice Standard 8, using repeated reasoning.
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Th e student whose work is shown below came to a very interesting general-
ization, although it was based on relatively few examples:

Better Buy
◾ One gym charges $50 to join and $4 for each hour the member 

uses the gym.
◾ Another gym does not require membership and just charges $8 per 

hour.

? Which would be a better plan and when?

Th e situation described in this problem could certainly be modeled mathemati-
cally. Th e fi rst membership plan might be graphed using the equation c = 50 + 4h. 
Th e second might be graphed using the equation c = 8h. Th e student could see 
when each graph is higher than the other.
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It becomes clear that the fi rst plan is pricier unless you spend about 12 or 13 hours 
or more at the gym, in which case the second plan is the better buy.

x Variations. Th is is an example of the many problems in which students could use 
a linear system of equations to investigate two linear relationships between two 
variables.

Pasta All Around
◾ Th e owner of a pizza parlor wants to provide a bowl of spaghetti to 

every single person in Chicago, Illinois.

? How many packages of spaghetti noodles would he have to use?

How much would it cost?

To model this problem mathematically requires a lot of assumption making and 
information gathering. What size package? How much is in a bowl? Exactly how 
many people live in Chicago? Should people who are in hospitals and who can’t 
eat be counted? Should babies who don’t eat solid food yet be counted? Should 
people who don’t like spaghetti be counted? And if not, what numbers of people 
do I leave out? Is it cheap pasta or expensive pasta?
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Th is sort of problem is engaging for most students, but does involve a lot of 
mathematical decision making as students construct the mathematical model that 
they will use to answer the two questions: How many packages of spaghetti? And 
at what cost?

ASSESSING MATHEMATICAL PRACTICE STANDARD 4

In assessing student profi ciency with Mathematical Practice Standard 4, modeling 
with mathematics, there are a number of things to look for:

• Is the student using an appropriate model for the actual situation?
• Is the student suffi  ciently capable with the mathematics of the model to 

use it eff ectively?
• Does the student improve the model if results are examined and found to 

be somewhat unsatisfactory?
• Does the student recognize when assumptions need to be made?
• Does the student make appropriate assumptions?

SUMMARY

In order for students to engage in Mathematical Practice Standard 4:

• Teachers must provide contextual problems that can be modeled 
mathematically, ideally rich problems or at least problems that can be 
approached in a variety of ways.

• Students must learn to pay attention to and defend the assumptions they 
make.

• Students must consider their solution in light of the realities of the 
context and decide if either the solution needs to be tweaked or the 
assumptions need to be reconsidered.

• Teachers should regularly request justifi cation for a student’s choice of 
model.
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• CHAPTER 5 •

Using Tools Strategically
Mathematical Practice Standard 5

MP5. Use appropriate tools strategically.

Mathematically profi cient students consider the available tools when solving a 
mathematical problem. Th ese tools might include pencil and paper, concrete models, a 
ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical 
package, or dynamic geometry software. Profi cient students are suffi  ciently familiar 
with tools appropriate for their grade or course to make sound decisions about when 
each of these tools might be helpful, recognizing both the insight to be gained and 
their limitations. For example, mathematically profi cient high school students analyze 
graphs of functions and solutions generated using a graphing calculator. Th ey detect 
possible errors by strategically using estimation and other mathematical knowledge. 
When making mathematical models, they know that technology can enable them to 
visualize the results of varying assumptions, explore consequences, and compare 
predictions with data. Mathematically profi cient students at various grade levels are 
able to identify relevant external mathematical resources, such as digital content 
located on a website, and use them to pose or solve problems. Th ey are able to use 
technological tools to explore and deepen their understanding of concepts.

THIS STANDARD brings to the forefront the issue that the tools we use make a 
diff erence in mathematical situations. It is not always about whether a particular 
tool is a good one in general but whether it is useful in a particular situation.

As teachers, it is important to refrain from telling students what tool to use for 
a problem in order to give them experience in deciding—in their own opinion—
what tool they prefer to employ in a particular situation. Th ere is frequently not a 
single best tool for any given problem; it depends on student comfort and famil-
iarity with the tool and depends on the student’s interpretation of the mathemati-
cal situation.

For example, many students would prefer using a virtual manipulative, but 
others prefer concrete manipulatives. Many students prefer using a number line 
to do work with integers, but others prefer two-sided counters.
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In this chapter I provide examples of problems approached with concrete 
tools, pictorial tools, and technological tools.

CONCRETE TOOLS

Th ere are so many valuable concrete tools that it is hard to know where to begin in 
describing them. Certainly counters, pattern blocks, base ten blocks, and square 
tiles are included in the list.

Counters are useful, of course, because so much of the concept of number is 
built on counting.

Counters arranged in arrays are particularly useful for bringing out multiplication 
and division properties.

Pattern blocks are useful in both geometric and numeric situations.

For example, it is possible to use pattern blocks to explore symmetry, tessellations, 
composing and decomposing shapes, and angle sizes. But it is also possible to use 
pattern blocks to support proportional reasoning and, in particular, work with 
fractions.

Base ten blocks are useful for representation of whole numbers and decimals, 
as well as for support of all of the algorithms, or procedures, for computation with 
whole numbers and decimals.
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Square tiles are particularly useful. One valuable characteristic of square tiles 
is that they bridge number and measurement, because students can use them as 
concrete counters but can also push them together to make continuous shapes 
such as rectangles.

Students are likely to use rulers and protractors on a regular basis in the per-
formance of measurement tasks, but teachers might fi nd it benefi cial to have a 
variety of types of rulers available from which students can choose (e.g., only 
Imperial measurement, only metric, or both). Teachers might also want to con-
sider making both circular and semicircular protractors available.
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EXAMPLES OF PROBLEMS INVOLVING CONCRETE TOOLS THAT 
MIGHT BRING OUT MATHEMATICAL PRACTICE STANDARD 5

Grades K–2

Which Tool?
◾ You have to add 24 and 8.

? If you didn’t already know the answer, what tools would you 
choose to help you fi gure it out? Why?

Th is problem very directly involves students making a choice of tools, whether 
counters, ten-frames, base ten blocks, or whatever. While many students are likely 
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to choose counters, many others might choose number lines, linking cubes, or 
ten-frames.

x Variations. A similar approach could be applied to creation of problems involving 
diff erent computations or (at higher grade levels) the solution of rate, ratio, or 
percent situations, or problems involving creation of geometric constructions.

Twice as Many Tens as Ones
◾ A number can be broken up into a number of tens and a number 

of ones.
◾ Th ere are twice as many tens as ones.

? What could the number be?

What tools could you use to fi gure out the answer?

Although students might choose to use base ten blocks to represent the mathe-
matics presented in this problem, they might also use place value mats with coun-
ters or even links of ten cubes along with single cubes.

For example, students asked to represent 21 might use base ten blocks and 
choose 2 ten-rods and 1 one-block, or they might use a place value mat and show 
2 counters in the tens column and 1 counter in the ones column.

Students might use “standard” numbers like 21, 42, 63, or 84, but there are 
many other possibilities including 105 (10 tens and 5 ones), 126 (12 tens and 
6 ones), 210 (20 tens and 10 ones), and so forth.

Twenty Blocks
◾ You can use any combination of one or more base ten blocks: ones, 

tens, and hundreds.

? What numbers can you make using EXACTLY 20 blocks?

What do all of your numbers have in common?

Although this problem does not allow for a choice of tools, it does broaden stu-
dents’ understanding of what they can do with base ten blocks beyond very 
straightforward representations and calculations.

In using their blocks, students discover they can make many numbers, includ-
ing 20 (20 ones blocks), 29 (1 tens block and 19 ones blocks), 281 (1 hundreds 
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block, 18 tens blocks, and 1 ones block), 200 (20 tens blocks), 668 (6 hundreds 
blocks, 6 tens blocks, and 8 ones blocks), 776 (7 hundreds blocks, 7 tens blocks, 
and 6 ones blocks), 983 (9 hundreds blocks, 8 tens blocks, and 3 ones blocks), and 
2000 (20 hundreds blocks).

But what do all of the numbers have in common? It turns out that the sum of 
their digits is either 2, or 11, or 20. Th en students can explore why that makes 
sense.

Grades 3–5

Build a Triangle

Build a triangle with an area half blue.

In this problem, students might initially consider using square tiles but realize that 
it would be hard to make a “real” triangle, although they might construct some-
thing like this (where dark gray blocks represent blue tiles):

But they might also consider using pattern blocks. Students would have to 
fi gure out both how to make triangles with the blocks and how to ensure that half 
the triangle is blue (i.e., made up of rhombus blocks, which are blue in pattern 
block sets; shown here in dark gray). Th e second part of this process (ensuring 
half is blue) usually demands some use of equivalent fractions. Possible solutions 
include these:

x Variations. Other versions of this problem can be created by changing the frac-
tion one-half to other fractions.
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Half of a Rectangle
◾ You build a rectangle with side lengths that are whole numbers.
◾ You cut it in half, based on area.

? Could the new perimeter be half of the old one?

What fractions of the old perimeter could the new perimeter be?

In this case, students might use rulers or square tiles. Th ey also might use the table 
feature of a word processing program to create a table of values. If they use tiles, 
they will discover why the new perimeter is probably greater than one half of the 
old one.

Look at this example:

Although the area on the right is half of the area on the left , the perimeter is actu-
ally 1

10
2 , or 56 of the old one. Th at is because the top and bottom parts of the perim-

eter are not shrunk at all; only the side pieces are cut in half. Since the side pieces 
are small compared to the top and bottom, not much perimeter is lost.

Th e student whose work is shown below needs improvement on Mathematical 
Practice Standard 6, attending to precision.
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Grades 6–8

Mean and Median
◾ Th e mean of a set of fi ve numbers is double the median.

? What could the numbers be?

In working on this problem, students might decide to use linking cubes as a tool. 
Th ey might, for example, simply choose an even number (since it is a double) as 
the mean and make 5 identical stacks of cubes showing that number. Because the 
mean is the result of adding all of the data and dividing by 5, the total of the data 
set is represented by the total of 5 sets of the mean.

Th en the cubes can be redistributed, ensuring that the middle stack is half as 
tall as the selected mean, and making sure that the fi rst two stacks are no taller 
than the middle stack. No cubes have been added or removed, so the total number 
and the mean are unchanged, and the median is half of the mean, as required.

Th e solution shown above gives a data set of 2, 2, 3, 11, and 12. Th e median is 3 
and the mean is 6. Th ere are, of course, many other solutions.
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PICTORIAL TOOLS

One particularly valuable pictorial tool for students addressing mathematical 
problems is the number line. In Chapter 4, for example, I presented several situa-
tions where the number line was used—even though it was not required—to help 
solve problems. In one case the problem was for very young children and in 
another case the problem was for older children. Application of the number line 
is illustrated in some of the problems below.

EXAMPLES OF PROBLEMS INVOLVING PICTORIAL TOOLS THAT 
MIGHT BRING OUT MATHEMATICAL PRACTICE STANDARD 5

Grades 3–5

Adding Bunches
◾ You add a bunch of 8s to a number and you end up at 156.
◾ Th en you add a bunch of 12s to that same number, and you still 

end up at 156.

? What was the number, and what did you add each time?

A student might choose to begin at 156 on an open number line and move back-
ward in jumps of 12 and jumps of 8 until the two kinds of jumps arrive at the same 
place. For example:

132 156148140 144

Grades 6–8

Twelve Apart
◾ You start with the integer a.

? What integer b could you use so that a + b is 12 LESS than a – b?

Is there only one possibility?

Using a number line, a student would discover that if a + b is represented as a 
distance of b beyond a (i.e., to the right of a), and a – b as a distance of b to the 
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left  of a, it becomes obvious that the distance between the diff erence and the 
sum is 2b.

bb

a

But this assumes that b is positive. In fact, if the sum is less than the diff erence, as 
required in this problem, then b must be negative.

Note how the student whose work is shown below approached the problem:

Th e work shown above is also an example of application of Mathematical 
Practice Standard 7, recognizing and using structure.
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Fraction Division
◾ Notice these fraction rectangles:

1

1
2

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
2

1
8

1
8

1
8

1
8

1
6

1
6

1
5

1
5

1
5

1
5

1
5

1
4

1
4

1
3

1
3

1
3

1
8

1
8

1
8

1
8

1
6

1
6

1
6

1
6

1
4

1
4

? Create three or four fraction division questions that these fraction 
strips would help you solve.

Knowing that a ÷ b asks how many b’s are in a should help students invent ques-
tions like these:

• I need to perform the division 13 ÷ 16 . Th at means I need to fi gure out how 
many 16 ’s there are in 13 . Answer: 1

3 ÷ 16 = 2.
• How many 19 ’s do I need to make 23 ? Answer: 2

3 ÷ 19 = 6.
• How many pieces do I get if I cut 34 into pieces that are 38 in size? 

Answer: 3
4 ÷ 38 = 2.

• How many 58 ’s are in 34 ? Answer: 3
4 ÷ 58 = 11

5 .

TECHNOLOGY TOOLS

Th e world of technology is continuously evolving, so the tools that are named here 
today may change signifi cantly or be replaced by more powerful tools in the near 
future. Students should regularly consider use of the available technological tools 
and prepare themselves to adapt as new tools are developed. Current technology 
that can help students engage with mathematical practices and processes includes 
the following:

• Calculators
• Word processing soft ware packages, including drawing functions
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• Spreadsheet soft ware packages, especially when exploring repeated 
reasoning (related to Mathematical Practice Standard 8)

• Graphing soft ware
• Dynamic geometry soft ware, when constructing or measuring shapes
• Virtual manipulatives
• Th e Internet, as a resource to fi nd information that might be required to 

solve problems

EXAMPLES OF PROBLEMS INVOLVING TECHNOLOGY TOOLS THAT 
MIGHT BRING OUT MATHEMATICAL PRACTICE STANDARD 5

Grades 3–5

Putting Together Shapes

? If you put together a 6-sided shape with a 4-sided shape and 
neither is inside the other, how many sides might the combined 
shape have?

Although some students might choose to explore this question with concrete 
shapes, others would be very happy using virtual manipulatives or dynamic geom-
etry soft ware.

As shown below, virtual manipulatives can be valuable to help students dis-
cover that the combined shape could have 8 sides, but it might not:
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Grades 6–8

Population Growth

? If Canada’s growth rate were the same as China’s, what would be a 
good estimate for the Canadian population in 2050?

Th is problem illustrates a case where the Internet would serve as a valuable re-
source for gathering critical information as students design an approach for solv-
ing a problem. In addition to requiring use of technological tools, this problem 
also builds on Mathematical Practice Standard 4, modeling with mathematics.

ASSESSING MATHEMATICAL PRACTICE STANDARD 5

In assessing student profi ciency with Mathematical Practice Standard 5, using 
tools strategically, there are a number of things to look for:

• Is the student considering his or her tool choices?
• Is the student making an appropriate choice of tool?
• Is the student using the tool properly?
• Does the student look up information to help him or her solve 

mathematical problems?

SUMMARY

In order for students to engage in Mathematical Practice Standard 5:

• Teachers should provide many tools from which students might choose.
• Teachers should familiarize their students with the operations of these 

tools.
• Teachers should regularly ask students to justify their use of a particular 

tool.
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• CHAPTER 6 •

Attending to Precision
Mathematical Practice Standard 6

MP6. Attend to precision.

Mathematically profi cient students try to communicate precisely to others. Th ey try to 
use clear defi nitions in discussion with others and in their own reasoning. Th ey state 
the meaning of the symbols they choose, including using the equal sign consistently 
and appropriately. Th ey are careful about specifying units of measure, and labeling axes 
to clarify the correspondence with quantities in a problem. Th ey calculate accurately 
and effi  ciently, express numerical answers with a degree of precision appropriate for 
the problem context. In the elementary grades, students give carefully formulated 
explanations to each other. By the time they reach high school they have learned to 
examine claims and make explicit use of defi nitions.

THIS PRACTICE encourages precision in vocabulary, careful use of conventions, 
and clarity of explanations, as well as appropriate precision in calculations, but a 
degree of precision that is suited to the age of the student. Generally speaking, 
precision from students is modeled on precision from teachers. When teachers 
practice precision, so will students.

ESTIMATES VS. EXACT ANSWERS

Oft en, teachers tell students when they want an estimate or when they want an 
exact answer, but is it important that students regularly make their own decisions 
about whether an estimate or an exact answer is more appropriate.

Students might be asked, for example, whether they would use an exact answer 
or an estimate in each of these situations and to explain why they made the choice 
they did:

• How long it takes to drive to the mall
• How far away from a property line a house is when you are building a fence
• Th e distance from Los Angeles to New York
• Th e area of a living room in a house
• Th e reasonableness of the response of 4127 to the calculation 22 × 58.
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When an exact answer is used, students need to be as accurate as possible in 
attaining that value.

CALCULATION EFFICIENCY

Expecting calculation effi  ciency is appropriate, but only once calculations are un-
derstood. It is quite reasonable that younger students would use ineffi  cient strate-
gies that are meaningful to them initially, until more effi  cient strategies make sense 
to them.

It is also important to realize that the same procedure might be effi  cient in one 
situation but ineffi  cient in another. For example, the standard algorithm for sub-
traction might be quite effi  cient for subtracting 312 from 589, but less effi  cient for 
subtracting 1 from 300.

APPROPRIATE MEASUREMENT PRECISION

As students get a bit older, they need to learn about precision in measurement 
situations. If, for example, they are asked to determine the perimeter of a rectangle 
where the length was given as 4.1 m and the width as 3.22 m, students need to 
learn that the perimeter measure should be given to the nearest tenth of a meter, 
and not the nearest hundredth of a meter, since some of the measurements were 
given only in tenths of a meter.

APPROPRIATE USE OF RELATION SIGNS

Students need to learn the meaning and appropriate use of = signs, > signs, and 
> signs. Th e = sign is a particular issue.

Students need to learn that the equal sign is used to indicate that the value on 
the left  is equivalent to, or another name for, or has the same value as, the value on 
the right. So it makes sense to write 4 + 3 = 6 + 1 since the value of 4 + 3 is the 
same as the value of 6 + 1. It makes sense to write 24 = 36 since 24 is another name 
for 36 . Students need to learn that it is just as correct to write 4 + 3 = 7 as to write 
7 = 4 + 3.

When trying to indicate that 7 is worth less than 8 or 2x is worth more than x 
(if x is positive), students need to learn that they have a choice of writing either

7 < 8 or 8 > 7
2x > x or x < 2x

Reversability is important in mathematics.
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APPROPRIATE USE OF TERMINOLOGY

Th ere is value in students using simple and natural language to describe things, 
but the descriptions, especially as students get older, need to be correct. For exam-
ple, saying that a triangle is a shape with three points is actually incorrect because 
it is insuffi  ciently precise. Squares have three points and more. Shapes with sides 
that are not straight, but that have three vertices, are not triangles. Th ree points on 
the same line also do not form a triangle.

Th ere are many strategies for improving student use of vocabulary. One is the 
regular use of a Frayer model, where students indicate defi nitions, examples, non-
examples, and characteristics of various terms. Th e Frayer models created by dif-
ferent students or pairs of students can be compared to allow students to decide 
which defi nitions seem strongest and why. Th e example below illustrates a Frayer 
model for the term “rhombus.”

Definition Examples

Non-examples Characteristics

There are always four angles, 
and two are equal and the other 
two are equal. The two possibly 
unequal angles add to 180º.

A parallelogram with 
all equal sides.

rhombus

Students might also build other sorts of anchor charts describing what a particular 
term means.

Another strategy for building vocabulary is to provide a small set of words and 
ask students to use them in a sentence that makes sense. For example, a sentence 
that includes the words “rhombus,” “square,” and “angle” might be: A square is a 
special type of rhombus where all four angles are the same size.
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Using hall bulletin boards to hang up defi nitions that younger and older stu-
dents use might help students see growth in precision. But, most importantly, stu-
dents rely on their teachers to model for them the appropriate level of precision 
required.

Students could be asked to explain terms using both words and pictures. Th en 
students in the class might discuss which explanation they see as more powerful 
and why. Th e problem shown below is suitable for students in Grades 3–5. Th is 
type of problem can be easily adapted for other grades by substituting appropriate 
terms to be explained.

How Would You Explain . . .
◾ You want to explain what a prime number is or what a prism is.

? How would you explain it in words?

How would you show it in pictures?

Here and on the next two pages are some interesting examples of students’ re-
sponses to this problem, some stronger than others:
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APPROPRIATE USE OF SYMBOLS FOR VARIABLES

It is important for students to consider carefully whether they are using symbols 
properly for variables. For example, the equation x + x = 20 is very diff erent from 
the equation x + y = 20; in the fi rst case, the two values are identical, and in the 
second case, they might be identical but might not be. Even if students use sym-
bols rather than letters for unknowns, they should be careful. For example, rather 
than writing □ + □ = 20, they might write □ + ▲ = 20 if the values for the two 
numbers to add to 20 need not be equal.

When students use a variable, it is essential that they indicate what that vari-
able represents. Th at means that teachers need to regularly ask for this informa-
tion. For example, if a student solves a problem like Th e sum of three consecutive 
numbers is 51. What were the numbers? using the equation x + (x + 1) + (x + 2) = 51, 
he or she should be able to respond to each of these questions:

• Does x represent the sum? If not, what does it represent?
• What does x + 2 represent?
• What expression represents the sum of all three numbers?
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APPROPRIATE USE OF CONVENTIONS IN GRAPHS AND TABLES

Many times data are presented in graphs and tables in mathematical situations. 
Students need to learn how hard it is to interpret the data unless table rows and 
columns have proper headings and graphs have proper titles and axis labels.

APPROPRIATE USE OF UNITS

One of the important student learnings about measurement is that the same mea-
surement can be described in many ways. We can say “1 m” or we can say “100 
cm” or we can say “1000 mm.” For a variety of reasons, we might choose one rather 
than another in a particular situation.

Th is example makes it clear how very important it is to include a unit in a 
description. If the length of an object were labeled 1000, there would be no sense 
of its size without the unit accompanying the numerical value.

ASSESSING MATHEMATICAL PRACTICE STANDARD 6

In assessing student profi ciency with Mathematical Practice Standard 6, attending 
to precision, there are a number of things to look for:

• Is the student correctly defi ning and interpreting mathematical terms?
• Does the student recognize that the equal sign is used to describe a 

balance?
• Does the student appropriately label charts and graphs?
• Does the student calculate at an effi  ciency appropriate for his or her age 

or grade level?
• Does the student use precision appropriate to the problem or situation 

and his or her age or grade level?

SUMMARY

In order for students to engage in Mathematical Practice Standard 6:

• Teachers should regularly include discussions about the level of precision 
required, or not required, in a particular calculation or measurement 
situation.

• Teachers should encourage students to use the = sign, the > sign, and the 
< sign in correct and appropriate ways.

• Teachers should model appropriate levels of precision when using 
vocabulary, symbols, measurement units, graphs, or tables.
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• CHAPTER 7 •

Recognizing and Using Structure
Mathematical Practice Standard 7

MP7. Look for and make use of structure.

Mathematically profi cient students look closely to discern a pattern or structure. 
Young students, for example, might notice that three and seven more is the same 
amount as seven and three more, or they may sort a collection of shapes according 
to how many sides the shapes have. Later, students will see 7 × 8 equals the well 
remembered 7 × 5 + 7 × 3, in preparation for learning about the distributive property. 
In the expression x2 + 9x + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. 
Th ey recognize the signifi cance of an existing line in a geometric fi gure and can use the 
strategy of drawing an auxiliary line for solving problems. Th ey can also step back for 
an overview and shift perspective. Th ey can see complicated things, such as some 
algebraic expressions, as single objects or as being composed of several objects. For 
example, they can see 5 – 3(x – y)2 as 5 minus a positive number times a square and 
use that to realize that its value cannot be more than 5 for any real numbers x and y.

WHERE DO WE SEE STRUCTURE IN K–8 MATHEMATICS?

Structure comes up in a lot of places in mathematics instruction. In general, struc-
ture focuses on generalizations and relationships. For example, there is a structure 
to what we call fact families, and the same structure applies to any number pair:

Fact Family

2 + 4 = 6
4 + 2 = 6
6 – 4 = 2
6 – 2 = 4

Th ere is structure associated with number properties, such as the commuta-
tive property of addition or multiplication, the associative property of addition or 
multiplication, or the distributive property of multiplication over addition (or sub-
traction). Th ese properties lead to important computational strategies such as the 
following:
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Half and double: a × b = 2a × b2 , so 5 × 14 = 10 × 7
[Th is is based on the associative principle, since a × 2 × b2 is either 
a × b or (2 × a) × b2 .]

Shuffl  e addends: a + b = (a – c) + (b + c), so 13 + 28 = 11 + 30
[Th is, too, is based on the associative principle, since [(a – c) + c] + b 
is either (a – c) + (b + c) or a + b.]

Constant diff erence: a – b = (a + c) – (b + c), so 31 – 18 = 33 – 20
[Th is, too, is based on the associative principle, since (a + c) + (–c) + (–b) 
is either (a + c – c) + (–b), which is a – b, or (a + c) – (b + c), using the 
commutative property and the zero principle as well.]

Th e distributive property helps students realize that, for example, 30 + 40 = 
(3 + 4) tens, since 3 × 10 + 4 × 10 = 7 × 10. Similarly, 3 nickels + 4 nickels = 
7 nickels, so 15 + 20 = 35.

Th ere is structure in various tables with which students work. For example, 
using a hundred chart, students can see that adding the numbers on the two diag-
onals of any 2 × 2 square on the chart results in the same values.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Th is is because the structure of the chart ensures that the four values are

A A + 1

A + 10 A + 11

Adding the values on each diagonal results in 2A + 11.
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Th ere are similar—and even more—patterns in the addition table or the mul-
tiplication table. For example, adding the values on the diagonals of a 2 × 2 square 
in an addition table means using the terms:

A + B A + B + 1

A + 1 + B A + 1 + B + 1

Th is time, the sum of each of the two diagonals is 2A + 2B + 2.
Multiplying the values on the diagonals of a 2 × 2 square in a multiplication 

table involves using these terms:

A × B A × (B +1)

(A + 1) × B (A + 1) × (B + 1)

Th is time, the products of each of the two diagonals is A × B × (A +1) × (B + 1).
Another interesting structural pattern in the multiplication table is that if a 

term in one row is divided by a term directly below it (or above it) in another 
row, the value of that quotient remains the same all across the row. For example, 
each highlighted pair (one number above another) shows a fraction equivalent 
to 23 .

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 15 18 21 24 27 30

4 4 8 12 16 20 24 28 32 36 40

5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60

7 7 14 21 28 35 42 49 56 63 70

8 8 16 24 32 40 48 56 64 72 80

9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

Th ere are also structural patterns in the place value system. For example, the 
reason that the left most 5 in 5045 is 1000 times the value of the rightmost 5 is 
because of the structure of the place value system. Th e reason that 0.342 is 342 



86 Teaching Mathematical Th inking: Tasks and Questions to Strengthen Practices and Processes

thousandths as well as 34 hundredths + 2 thousandths is based on the structure of 
the place value system.

Th ere is structure in the way we set up the standard algorithms for addition, 
subtraction, multiplication, and division. Th is structure, of course, is rooted in the 
structure of the place value system.

HELPING STUDENTS SEE STRUCTURE

One of the ways to help students see structure is to use patterned practice, or 
strings. For example, asking students to continue this pattern:

4 × 100
4 × 10
4 × 1
4 × 0.1

helps explain multiplication of whole numbers by decimals.
Asking students to continue this pattern:

7 – 2
7 – 1
7 – 0
7 – (–1)

helps explain subtraction of negative integers.

EXAMPLES OF PROBLEMS THAT MIGHT BRING OUT 
MATHEMATICAL PRACTICE STANDARD 7

Grades K–2

What’s Left?
◾ You subtract a number from 10.
◾ What is left is more than what you subtracted.

? What is the most you could have subtracted?

In solving this problem, students might use Mathematical Practice Standard 8 and 
repeated reasoning to observe that numbers that you could have subtracted are 0, 
1, 2, 3, or 4, but no more. But it is structure that would have told the student that 
the number had to be less than halfway to 10; otherwise, what was left  would have 
been less than what was subtracted.
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No Regrouping
◾ Kyla says that you never have to regroup when you subtract.
◾ She says to just add enough to both numbers so that you don’t 

have to regroup.
◾ For example, she says that since 51 – 17 has the same result as 

54 – 20 (adding 3 to both numbers), she could solve 54 – 20 and 
not have to regroup.

? Is she right?

Notice that this is also an example of Mathematical Practice Standard 3, construct-
ing and critiquing arguments. Kyla is right because subtraction describes distance 
between. So the distance between two numbers does not change if you add the 
same amount to both:

21 22 23 24 2516 17 18 19 2015 26 27 28 29 30

Th e diagram above shows that 20 – 16 = 22 – 18 = 24 – 20.
Th e other piece of structure at play in here is that the digits of numbers form 

a pattern: 0, 1, 2, . . . , 9, 0, 1, 2 . . . , so regrouping normally is used when a digit of 
the smaller number is high. By adding, the digits cycle, and digit of the smaller 
number will eventually become low, so no regrouping will be needed.

Grades 3–5

How Do You Know?
◾ Alison noticed that when you add a number in the 2 row of the 

multiplication table to the number in the 5 row below it, you get 
the number in the 7 row below both of them.

? Why does that work?

Why might that be useful?

Adding rows in a multiplication table, as suggested above, is based on the distribu-
tive property of multiplication over addition:
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1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 15 18 21 24 27 30

4 4 8 12 16 20 24 28 32 36 40

5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60

7 7 14 21 28 35 42 49 56 63 70

8 8 16 24 32 40 48 56 64 72 80

9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

One student off ered the following explanation:
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Balance

◾ All the yellow boxes [shown light gray above] hold the same 
number of metal balls.

◾ All the red boxes [shown dark gray above] hold the same number 
of metal balls.

◾ All of the metal balls are identical.

? How many metal balls might be in each yellow box?

How many might be in each red box?

What is true about ALL possible answers?

In solving this problem, students defi nitely use the structure of the number sys-
tem. If a high school student were to represent this problem, he or she might write 
the equation 3x = 4y (where x represents the number of metal balls in a yellow box 
and y represents the number of metal balls in a red box). Working with that equa-
tion, it would become clear that y = 3

4
x , so that the number of balls in a red box 

must be 34 of the number in a yellow box.
But a much younger student can also solve this problem by reasoning. He or 

she might realize that the number in a red box must be less than the number in a 
yellow box, or there would be more weight on the right. He or she might realize 
that the number in a red box could not be half the number in a yellow box or the 
total would be the amount in 2 yellow boxes, not 3. He or she might then try val-
ues and notice that 3 × 4 = 4 × 3, so 4 in a yellow box and 3 in a red box work.

But since 4 balls in a yellow box and 3 balls in a red box work, so would dou-
ble those amounts (3 yellow boxes of 8 balls each and 4 red boxes of 6 balls each, 
for 3 × 8 = 4 × 6) or triple those amounts (3 × 12 = 4 × 9). Soon, it becomes clear 
that whatever multiple of 4 is used for a yellow box, that same multiple of 3 must 
be used for a red box.
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Th e student whose work is shown below realizes that there is more than one 
answer, but he still needs work on explaining why he went where he did (Mathe-
matical Practice Standard 3, constructing arguments) and on how to generalize:

Another student comes to a generalization, but needs work on precision, 
Mathematical Practice Standard 6, since the explanation does not indicate that the 
same multiple must be used both times:
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Finally, the student whose work is shown below indicates the required multi-
plicative relationship using ratio notation. She indicates that the ratio of the num-
ber of balls in a yellow box to the number in a red box is 4:3, even though she does 
not list any actual values:

A teacher might prompt the third student for the missing values by asking the 
following:

I understand the ratio idea. Can you tell me how that would give actual values?
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36 Blocks
◾ You multiply two 2-digit numbers by using base ten blocks 

arranged in an array.

For example, to show 14 × 23, you might use these 25 blocks to 
model 322 (200 + 110 + 12).

? What 2-digit numbers might you be multiplying if you need 36 
blocks to model the multiplication?

Structure underlies this problem, too. You might notice that because 14 is made up 
of 1 ten and 4 ones, there are 1 + 4 = 5 rows of blocks. Because 23 is made up of 
2 tens and 3 ones, there are 2 + 3 = 5 columns of blocks. Since there are 5 rows of 
5 columns, there are 5 × 5 = 25 blocks.

So to look for numbers that require 36 blocks, students might multiply two 
numbers that both have a sum of digits of 6 (e.g., 51 × 24), or they might choose a 
number with a sum of digits of 12 and multiply it by one with a sum of digits of 3 
(e.g., 66 × 12), or they might take a number with a sum of digits of 4 and multiply 
it by a number with a sum of digits of 9 (e.g., 22 × 54).

Grades 6–8

All Fives
◾ You have the algebraic expression 5x – 10x2 + 15x.

? How do you know that the resulting value will be a multiple of 5, 
no matter what whole number you substitute for x into the 
expression?

In responding to this question, students must realize that multiplying a whole 
number by 5, 10, or 15 results in a multiple of 5; this means it can be represented 
as groups of 5. Adding or subtracting groups of 5 also results in groups of 5.



Recognizing and Using Structure 93

x Variations. Similar problems could be created using other algebraic expressions. 
For example, when substituting a whole number into 4x – 8x2 + 12, the result must 
be a multiple of 4.

Th e Tip
◾ You often add 15% to the price of a meal in a restaurant for a tip.

? What percent of what you pay (including the tip) is the tip?

Many students will assume that the answer is obvious, that the tip is 15% of the 
full price, but that is not the case. Suppose B represents the cost of the meal with-
out the tip and A represents the cost of the meal with the tip. Th en A = 115% of B.

If the number A is 115% of the number B, then AB = 11
1
0

5
0 . Th at means that BA , or 

the meal’s price (without tip) in relation to the total amount paid (tip included) is 
1
1

0
1

0
5 . Th at turns out to be 0.86956 . . . , or 87%. So 87% of what you paid is the cost 

of the meal without the tip. Th at leaves only 13% for the tip.
Th e interesting question is why a 15% tip does not turn out to be 15% of the 

fi nal cost. Th is is an important discussion. It is because the tip amount is 15% of a 
smaller amount, so the actual fi nal percent for the tip is less than 15% of a larger 
amount.

Pattern Rules

? How do you know that the pattern rule for each of these patterns 
will involve the expression 3n?

4, 7, 10, 13, 16, . . .

12, 15, 18, 21, . . .

2, 5, 8, 11, . . .

Students might realize that every pattern that increases in a constant way by the 
value of 3 has the same structure as 3, 6, 9, 12, .  .  .  , but might be shift ed up or 
down by a given amount. For example, the last pattern is the 3, 6, 9, 12, . . . pattern 
shift ed down by 1, so the rule must be 3n – 1; the second pattern is the 3, 6, 9, 12, 
. . . pattern shift ed up by 9, so its rule must be 3n + 9.
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Th e Handshake Problem
◾ In a group of 100 people, each pair will shake hands once.

? How many handshakes will occur?

Th is problem, too, builds on structure. A student might use Mathematical Practice 
Standard 4 and appeal to a mathematical model.

He or she might think of a circle with 100 dots, each dot representing one 
person. Each person on that circle steps forward and shakes 99 hands. So since 
this happens 100 times, there are 9900 handshakes. BUT if that happened, each 
pair of people shook hands twice, once when the fi rst person stepped forward and 
once when the second person stepped forward. So there were really only half as 
many handshakes as 9900, that is, 9900 ÷ 2 = 4950 handshakes.

Th is solution is based on structure, since the model pertains no matter how 
many people might be involved in the problem.

ASSESSING MATHEMATICAL PRACTICE STANDARD 7

In assessing student profi ciency with Mathematical Practice Standard 7, recogniz-
ing and using structure, there are a number of things to look for:

• Does the student observe generalizations that are appropriate for his or 
her grade level (e.g., that evens + evens = evens, or that adding the 
numerators and denominators of equivalent fractions results in an 
equivalent fraction, or that if you save x% on a sale, you pay (100 – x)%)?

• Does the student not only look for patterns but also look at why the 
patterns make sense?

SUMMARY

In order for students to engage in Mathematical Practice Standard 7:

• Teachers should provide problems that lead to generalizations.
• Teachers should oft en be asking, Does that happen all the time or just with 

these numbers?
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• CHAPTER 8 •

Recognizing and Using Regularity 
in Repeated Reasoning

Mathematical Practice Standard 8

MP8. Look for and express regularity in repeated reasoning.

Mathematically profi cient students notice if calculations are repeated, and look both 
for general methods and for shortcuts. Upper elementary students might notice when 
dividing 25 by 11 that they are repeating the same calculations over and over again, 
and conclude they have a repeating decimal. By paying attention to the calculation of 
slope as they repeatedly check whether points are on the line through (1,2) with slope 
3, middle school students might abstract the equation y – 2

x – 1 = 3. Noticing the regularity 
in the way terms cancel when expanding (x – 1)(x + 1), (x – 1)(x2 + x + 1), and (x – 1)
(x3 + x2 + x + 1) might lead them to the general formula for the sum of a geometric 
series. As they work to solve a problem, mathematically profi cient students maintain 
oversight of the process, while attending to the details. Th ey continually evaluate the 
reasonableness of their intermediate results.

WHERE MIGHT REPEATED REASONING OCCUR?

Repeated reasoning occurs in mathematical situations for younger students as well 
as in situations more appropriate for older students.

For example, very young students recognize that every time you add 1, you say 
the next number. Slightly older students observe that when you add a 2-digit num-
ber to its “reverse” number, for example, 32 to 23 or 92 to 29, you usually get a 
palindrome (a number that reads the same forward as backward), but not always, 
since 91 + 19 = 110.

Young students notice the patterns in how we say numbers; this helps them 
deal with numbers they have never met before. For example, they know that the 
number aft er 429 must be 430 since that is the pattern they learned.

Older students notice that on a fraction tower, all of the equivalents to 12 have 
a numerator half the size of the denominator:
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Some 3rd-grade students noticed the following when they did some subtrac-
tions:
 41 52 85
 – 28 – 17 – 28
 20 – 7 40 – 5 60 – 3
Th ey observed:

You can subtract the tens the normal way. You can subtract the ones “upside 
down” and subtract that value from the tens. You get the right answer that way. 
Th ey then wondered if this always works.

Th is is certainly a case of students using repeated reasoning to make a conjecture. 
It turns out that they were correct.

Older students might notice that every 3rd multiple of 4 is also a multiple of 3 
(4, 8, 12, 16, 20, 24, 28, 32, 36, . . .) or that every term in the pattern 8, 11, 14, 17, 



Recognizing and Using Regularity in Repeated Reasoning 97

20, . . . is exactly 2 more than a multiple of 3. Or they might observe that whenever 
they substitute whole number values for x in the expression 3x – 9x 2, they get mul-
tiples of 3. Th ey can explore the whys of the underlying mathematics by using 
Mathematical Practice Standard 7, recognizing and using structure.

EXAMPLES OF PROBLEMS THAT MIGHT BRING OUT 
MATHEMATICAL PRACTICE STANDARD 8

Grades K–2

Forward and Back
◾ You are on the number 5 on this path.

1 2 3 4 5 6 7 8 9 10 11 12

◾ You move SOME steps forward.
◾ Th en you move SOME steps back.
◾ You repeat both moves, with exactly the same numbers of steps as 

the fi rst time.
◾ You land on 9.

? How many steps forward might you have gone and how many 
steps back?

Although older students might analyze the problem to fi gure out what could hap-
pen, younger students are likely to guess and test. Initially, most students will sim-
ply move 4 forward and may need reminding that they have to go back. At some 
point, students might then move 5 forward and go 1 back; this would land them at 
9, but they have forgotten the need for repeating the moves.

Th e student whose work is shown at the top of the next page has managed to 
get to 9 but has misapplied the rules in yet a diff erent way:
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Th is individual has taken the same total number of steps in each set of forward 
and backward moves, but the two forward moves diff er from each other and the 
two backward moves diff er from each other.

Aft er more trials, students might realize that you could go forward 3 and back 
1 each time (landing on 8, then 7, then 10, then 9) or forward 4 and back 2 each 
time (landing on 9, 7, 11, 9), and so forth.

Older students might utilize Mathematical Practice Standard 7, recognizing and 
using structure, to see that if it takes 2 identical moves to move 4, each move must 
have the eff ect of moving forward 2, and that if a forward minus backward move 
is 2, all that matters is that the forward move is 2 more than the backward move.
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Reversing Digits
◾ You choose a two-digit number.
◾ You reverse the order of the digits.
◾ You subtract the smaller number from the greater one.
◾ Th e answer is 36.

? What could the pair of numbers be?

What is true about all of the possible results?

As students explore what happens when you subtract the reverse of a two-digit 
number from the original number, they might observe that the result is always a 
multiple of 9. For example:
 83 54 72 61
 – 38 – 45 – 27 – 16
 45 9 45 45

And the multiple of 9 that it is happens to be the diff erence between the two 
digits. So if the diff erence is 36, which is 4 × 9, the diff erence between the digits is 
4. In this case, possible numbers are 51 – 15, 62 – 26, 73 – 37, 84 – 48, or 95 – 59.

Grades 3–5

Square Numbers
◾ Josh decided to add consecutive sequences of odd numbers. He 

noticed that

 1 + 3 = 4

 1 + 3 + 5 = 9

 1 + 3 + 5 + 7 = 16

 1 + 3 + 5 + 7 + 9 = 25
◾ He decided that the answer is always a square number.
◾ He predicts that this will always be true.

? Do you agree or disagree? How can you be sure?

First of all, students need to notice that the results of the additions are all square 
numbers; many students don’t look for generalizations, but Josh, above, did. Most 
students will try one or maybe two more examples and might be convinced.

But the interesting question is, How can you be sure? At this point, students are 
likely to bring in other Mathematical Practice Standards (e.g., Standard 1, making 
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sense of problems and persevering in solving them). Th ey might use visual tools to 
help see why Josh’s prediction could be true. Th e diagram below should help make 
the reason clear:

Left Over
◾ You have some counters.
◾ When you create groups of 3, there is 1 counter left over.
◾ When you create groups of 4, there are 3 counters left over.

? How many counters might you have?

What do you notice about the relationship between the possible 
answers?

Students exploring this problem might notice that the number of counters could 
be 7, 19, 31, 43, 55, 67, . . . . Th ey might then realize that perhaps if you keep add-
ing 12, you get other answers.

It turns out that they are correct. Again, the interesting question becomes, 
Why? Th is brings up Mathematical Practice Standard 7, recognizing and using 
structure, because it is structure that tells us why adding 12 works. Notice that 12 
is a common multiple of 3 and 4, and therefore adding a group of 12 has no impact 
on the remainders when creating groups of 3 and 4. Since the number 7 works, so 
will 19 (there are more groups of 3 and 4 but no change in the remainders).

Perimeter vs. Area
◾ Compare the values (in inches and square inches) of the perimeter 

and area of each of these rectangles:

4 × 2  8 × 2  11 × 2  17 × 2  23 × 2

? How do the perimeter and area values compare?

Why does that make sense?
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Trying the suggested examples, students should see that whenever the dimensions 
of a rectangle are a × 2, the perimeter value, in inches, is always 4 more than the 
area value in square inches.

Students might use Mathematical Practice Standard 2, reasoning abstractly 
and quantitatively, to represent this situation algebraically and see that the perim-
eter is 2a + 4 and the area is 2a.

42 Apart
◾ Th e numerator and denominator of a fraction equivalent to 25 are 

42 apart.

? What is that equivalent fraction?

As students create equivalent fractions for 2
5 , specifi cally 1

4
0 , 1

6
5 , 2

8
0 , and so forth, 

they should observe that the diff erences between numerator and denominator are 
3 (for 25 ), then 6, then 9, then 12, . . . . Students should notice that these numbers 
increase by 3, but that the diff erences are also all multiples of 3. Students could 
conclude that since 42 is the 14th multiple of 3 (beginning at 1 × 3), then the frac-
tion is

14 × 2
14 × 5, which is 28

70 .

Th is observation could turn into an example of the use of Mathematical Prac-
tice Standard 7, recognizing and using structure, since this is, in fact, an example 
of the use of the distributive principle of multiplication over addition. Th is is be-
cause in the fraction

n × a
n × b

the diff erence between numerator and denominator is n × b – n × a = n(b – a).

Grades 6–8

y = mx + m
◾ You graph lines of the form y = mx + m for many diff erent values 

of m.

? What do you notice about the lines?

Why do you think that happened?
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As students do a few graphs—for example, y = x + 1, y = 2x + 2, and y = 3x +3—
they might notice that all three lines go through (–1,0).

–4 –3 –2 –1

–3

–2

–1

0

1

2

0 1 2 3 4

3

x

y

y = x + 1y = 2x + 2y = 3x + 3

Students might conjecture, using Mathematical Practice Standard 1, making 
sense of problems and persevering in solving them, that all such lines go through 
(–1,0). Students might realize that, indeed, if x = –1, then y = –m + m = 0, so the 
conjecture is true.

Greatest Common Factor
◾ You graph y = GCF(3,x) for diff erent whole number values of x.
◾ You do the same for these equations:

y = GCF(2,x)  y = GCF(5,x)  y = GCF(7,x)

◾ Next you graph y = GCF(4,x) for diff erent whole number values 
of x.

? What can you conclude?

Th e fi ve graphs requested are shown on the next two pages:
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y = GCF(3,x)
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y = GCF(7,x)
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Students should notice that in the fi rst four cases, there are “mountains” at the 
multiples of the value a in the equation y = GCF(a,x). But in the last example there 
are two “sizes” of mountains. So students need to then explore what is diff erent 
between the fi rst four cases and the last.

Ideally, they will realize that when the value of a is a prime number, the graphs 
will all have the fi rst look, with the mountains at values of x that are multiples of a. 
But when a is not a prime, there are possible factors other than the number itself, 
so there are diff erent sizes of mountains.



Recognizing and Using Regularity in Repeated Reasoning 105

ASSESSING MATHEMATICAL PRACTICE STANDARD 8

In assessing student profi ciency with Mathematical Practice Standard 8, recogniz-
ing and using regularity in repeated reasoning, there are a number of things to 
look for:

• Does the student look for shortcuts for moving from one situation to a 
similar one?

• Is the student systematic enough to allow him or her to notice patterns or 
regularities?

• Does the student notice similarities in related situations, formulate 
conjectures, and test them?

SUMMARY

In order for students to engage in Mathematical Practice Standard 8:

• Teachers should provide problems that lead to generalizations.
• Teachers should oft en be asking, What is happening over and over? What do 

those values have in common?
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• CHAPTER 9 •

Using Visualization and 
Performing Mental Math and Estimation

IN ADDITION to the eight practice standards that U.S. teachers attend to, many 
Canadian teachers also focus on two additional processes: visualization, and men-
tal math and estimation. U.S. teachers could also benefi t from encouraging these 
processes.

VISUALIZATION

Visualization involves students visualizing a situation to help them make better 
mathematical sense of that situation. Although it may seem obvious that visualiza-
tion is valuable in geometry, it is equally valuable in other content strands, whether 
number, pattern and algebra, measurement, or data. Visualization might also be 
viewed as internalized modeling.

In Number

For example, young students use visualization when subitizing, to decide the 
amount being shown when the amounts are small. (Subitizing involves the ability 
to simply see the amount without counting.) Somewhat older students visualize 
3 × 4 by imagining an array:

v v v v
v v v v
v v v v

In this way, they can see why 3 × 4 = 4 × 3 by turning the image mentally 90° or by 
indicating that they see 3 sets of 4 when looking at rows, but 4 sets of 3 when look-
ing at columns in the same picture.

Older students might visualize the concept of least common multiple, for 
example, in this case of 4 and 6, by looking for the fi rst time when a train of 4s 
matches a train of 6s.
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= 4

= 6

In Pattern and Algebra

Young students might visualize a pattern like 2, 4, 6, 8, .  .  . as groups of 1 child’s 
eyes, 2 children’s eyes, 3 children’s eyes, and so forth. Th ey could visualize equa-
tions as pan balance situations. For example, 4 + □ = 8 is about visualizing what 
to add to a group of 4 to balance 8.

Older children might visualize a pattern like 3, 8, 13, 18, 23, 28, . . . as shown 
below in order to help them see what the 30th term of that pattern is.

Notice that the 1st term, 3, is the number of squares in the 1st row; the 2nd term, 
8, is the number of squares in the fi rst 2 rows; the 3rd term, 13, is the number of 
squares in the fi rst 3 rows; the 4th term, 18, is the number of squares in the fi rst 4 
rows, etc.

Th us it becomes pretty clear that the 5th term is 5 rows of 5, less the 2 squares 
missing in the fi rst row, so the 30th term will be 30 × 5 – 2.

Older students can solve equations by visualizing using algebra tiles. For 
example, they might visualize 2x + 12 = 4x + 5 like this:
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Because the 2x + 5 on the left  matches the 2x + 5 on the right, it is only comparing 
7 to 2x that matters. Th e only way the relationship can be true is if each x bar is 
worth 3 12 .

In Measurement

Young students visualize measurements like 10 inches in terms of familiar bench-
marks, such as a ruler of 12 inches.

Somewhat older students visualize perimeter as the “unwinding” of the sides 
of a shape into a continuous line segment. For example, the perimeter of this 
square is unwound to be the line segment shown:

Older students visualize the volume of a prism in terms of the product of its 
base and height by visualizing the prism as layers of the base.

In Data and Probability

Students of all ages view data visually when they read and interpret various types 
of graphs.
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EXAMPLES OF PROBLEMS THAT MIGHT BRING OUT 
THE PROCESS OF VISUALIZATION

Grades K–2

8 Dots

? How would you arrange 8 dots to make it easy to quickly see it 
as 8?

Asking students to think about what makes an amount easy to see versus less easy 
to see focuses them on the power of visualization.

It is likely that students will arrange the 8 
in two groups of 4, or perhaps a 5 and a 3 on a 
ten-frame.  

18 and 82

? How could you make it easy to see that 18 and 82 together make 
100?

It is likely that students will visualize 18 and 82 making 100 by thinking of a 
hundred-chart. For example:

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100
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But perhaps students will consider a base ten block arrangement or some 
other visual tool. What is important is that they begin to see useful number “part-
ners,” as in the case of 18 and 82 partnering to make 100.

Th e Clock

? Which gives a better sense of what time it is—the clock on the left 
or the one on the right? Why?

Th is question focuses students on how much more information the hour hand 
provides than the minute hand.

A student should observe that the clock on the left  shows a time of around 
1 o’clock or 2 o’clock or somewhere between the two, whereas the clock on the 
right indicates that it is about 5 minutes or 6 minutes aft er the hour, but provides 
no idea of what part of the day is being represented.

Grades 3–5

Number Line Jumps
◾ Each jump below represents a whole number amount.

0  

? What could the fi nal value at the right be?

A student responding to the question above will recognize multiplication by 6 as 
the result of 6 identical actions. Th is is a good way to visualize multiplication.

Hopefully, the student will realize that the value at the right end of the set of 
jumps could be any whole number multiple of 6 other than 0 (e.g., 6 or 12 or 60 or 
30 or 600).
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Perimeter and Length
◾ A rectangle has a perimeter 3 times its length.

? What could its dimensions be?

Although this problem could be solved either numerically or algebraically using 
the formula for perimeter, it can also be solved visually.

For example, a student could visualize the length as a set of linking cubes:

Th en the perimeter would be made up of three sets of the length, since that’s what 
3 times the length means:

Th e three sets of cubes could be rearranged like this, forming an 8 × 4 rect-
angle in the interior:

Th e perimeter is 8 + 4 + 8 + 4 = 24 units, which is 3 × 8 units.
Notice that one set of cubes formed the top, one set formed the bottom, and 

half of the third set formed each side of the rectangle.
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Perimeter and Area
◾ One rectangle has half the area, but almost the same perimeter, as 

the rectangle it is half of.

? What could the rectangles look like?

A student might visualize that if you keep most of the perimeter of a rectangle 
when you cut it in half, the rectangle must be fairly thin.

For example, when you cut this square in half, you seem to lose a fair bit of the 
perimeter:

But when you cut a skinnier rectangle in half, you lose very little perimeter if 
you cut it to be even skinnier:

Grades 6–8

Fraction Division
◾ One way to view fraction division is to think of unit rate.
◾ Consider this expression: 1

3 ÷ 25

? If you can complete 13 of a job in 25 of an hour, how much can you 
do in an hour?

A student might use visualization to see how to solve this problem.
For example, the picture below indicates that you can do 1

3 of a job in 25 of 
an hour:

1
3 job
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It is easy to see that in each fi ft h of an hour, you can complete 13 ÷ 2 = 16 of the job. 
So in a whole hour, you can complete 56 of the job: 56 is 13 × 52 = 13 ÷ 25 .

Area of a Circle

? How does this picture help you see that the area of a circle is less, 
but not a lot less, than 4 times the square of the radius?

Students can observe that the area of the circle is less than the area of the sur-
rounding square. Th e side length of the square is 2r, where r is the radius of the 
circle, so its area is 4r2. Just a quick glance suggests that the circle might be about 
3
4 of the full area, so about 3r2.

Percent

? How can you visualize 90% of 60?

Ideally, students think of 90% of something as almost all of the something.
Some students might estimate and show a set of 60 items and say 90% is most 

of them, for example, about 55.

Other students might visualize a clock and realize that 10% of an hour, which 
is 60 minutes, is 6 minutes, so 90% is 54 minutes.
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Still others might visualize a number line that is 60 units long, divide it into 10 
equal sections, and keep 9 of them.

0 6 12 18 24 30 36 42 48 54 60

MENTAL MATH AND ESTIMATION

Mental math is about becoming fl uent enough with numbers that paper and pen-
cil algorithms are not required, nor are calculators. Rather, students can use a vari-
ety of strategies to fl exibly calculate mentally. Mental math is regarded as a process 
because it is seen as a way of thinking that crosses grade levels.

Getting students to use this process requires, of course, asking them to do so, 
that is, asking them to calculate mentally and asking them to estimate. But stu-
dents need to learn to do this, and asking the right kinds of questions is important 
to make that learning happen.

EXAMPLES OF PROBLEMS THAT MIGHT BRING OUT 
THE PROCESS OF MENTAL MATH AND ESTIMATION

Grades K–2

Easy for Me

? Which sum or sums are easy for you to fi gure out in your head? 
Why?

16 + 4  80 + 4  67 + 1  47 + 62

Students might have diff erent opinions on this question. Some might fi nd all of the 
questions easy.

Others might fi nd only the fi rst one easy because they get nervous with greater 
values in a problem.
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Some students might think that the second sum is easy since it’s just another 
way to say 84.

Some might fi nd the third one easy since the answer is just the next number.
And some might think that the fourth sum is easy because the digits in the 

ones column total less than 10 (no regrouping necessary).

Move It Around
◾ Alanna said that to add 87 and 48, a good idea is to change the 

question to 85 + 50.

? Does this give the same answer? Why or why not?

How else might you change 87 + 48 to make it easy to fi gure out in 
your head?

Th is question is useful because it is a valuable application of the associative prop-
erty of addition. Th e sum 87 + 48 is actually (85 + 2) + 48, which has the same 
answer as 85 + (48 + 2).

Students might explain this without actually referring to the property, by sug-
gesting something like this: If you had a pile of 87 and a pile of 48, you could move 2 
from the 87 pile over to the 48 pile and you would still have the same amount.

Another useful mental strategy is to think of 87 + 48 as 90 + 45, or perhaps 
100 + 35.

About 400
◾ You add two numbers that are fairly close together, and the answer 

is just a little more than 400.

? What could the numbers be?

Th is estimating question has a bit of proportional reasoning to it; the student 
needs to realize that the two numbers must be close to half of 400, with at least one 
a bit more than 200. So the numbers might be 200 and 201 or 199 and 203, or a 
similar pairing.
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Grades 3–5

Half and Double

? When might it be useful to multiply two numbers by taking half of 
one and doubling the other?

If you were multiplying an even number by 5, you might want to take half of that 
even number and multiply by 10 instead, since it’s easy to multiply by 10.

Or if you were multiplying an even number by 50, you might want to take half 
of that even number and multiply by 100 instead, since it’s easy to multiply by 100.

Dividing in Your Head

? Which of these calculations would you fi nd easy to do in your head? 
Why those?

142 ÷ 5  297 ÷ 3  1248 ÷ 4   1448 ÷ 8

Some students will fi nd all of these calculations easy; for others, only some of 
them will be easy.

Th e fi rst division might be easy if it were transformed into 284 ÷ 10, with a 
result of 28.4. It is easier now because dividing by 10 does not require many steps. 
Th e values are the same since the amount each person gets if 142 is shared by 5 is 
the same as the amount each person gets if twice as much, 284, is shared by 10.

Th e second might be easy for a student who thinks of 297 as 300 – 3. Th ere are 
100 groups of 3 in 300, so there is one less group of 3 in 297.

Th e third might be easy for a student who thinks of 1248 as 1200 + 48. Each 
part can easily be divided by 4 to get 300 + 12, so the result is 312.

Th e fourth might be easy for someone who thinks to repeatedly take half, that 
is, 1448 ÷ 8 = 724 ÷ 4 = 362 ÷ 2, which is 181.

About 13
4

◾ You have added two fractions. Both are proper fractions.
◾ Th eir sum is just a little less than 13

4 .

? What could the fractions be?
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Students should be able to address this question using mental math. For example, 
a student might realize that 13

4 = 1 + 3
4 . So a sum like 1

9
0 + 3

4 would be a bit less 
than 1 + 34 ; it fi ts the bill since 1

9
0 and 34 are both proper fractions.

Alternatively, a student could think of 13
4 as 7

4 , which is equivalent to 1
8
4 . 

A number that is a bit less than 18
4 is 19

4 . Two proper fractions that sum to 19
4 are 

8
9 and 69 , so they would work as answers to the problem.

Grades 6–8

Calculating Percents

? Which of these calculations would be easy to do in your head? 
Explain why.

90% of 180  5% of 412  99% of 412  15% of 380

Some students might decide that all of these calculations are easy to do in their 
head.

For example, the fi rst calculation could be done by subtracting 10% of 180 (or 
18) from 180, which gives 162.

Th e second might be considered easy if it is transformed from 5% of 412 to 
10% of 206, or 20.6.

Th e third might be considered easy if it is viewed as 1% of 412 less than 412, 
or 412 – 4.12, or 407.88.

Th e fourth might be considered easy if 15% is calculated as 10% plus another 
half of that. So 15% of 380 would be 38 + 19 = 57.

Dividing Rationals
◾ You divide two rational numbers and the quotient is about –31

3 .

? What could the rational numbers be?

Students should be able to recognize that one number must be positive and one 
negative. Th ey should also realize that the absolute value of one of the amounts 
should be a bit more than 3 times the absolute value of the other amount. So, for 
example, the answer could be –10 and 3, or it could be 5 and – 32 , or it could be –5 
and 53 .
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Square Roots

? What would be your estimates (without using a calculator) for 
each of these square roots? Why?

√20  √178  √389  √1200

Students should be able to estimate all of these. For example, the fi rst is proba-
bly about halfway between 4 and 5, the second is maybe 13.2 or 13.3 since 
13 × 13 = 169, the third about 19 since 20 × 20 = 400, and the last about 35 since 
30 × 30 = 900 and 40 × 40 = 1600.

ASSESSING VISUALIZATION AND 
MENTAL MATH AND ESTIMATION

In assessing student profi ciency with visualization and mental math and estima-
tion, there are a number of things to look for:

• Does the student regularly use manipulatives or sketch a picture to show 
the broad strokes of a problem?

• Can the student interpret a visual of a mathematical situation eff ectively?
• Does the student relate a complex calculation to ones that are simpler to 

do mentally?
• Does the student regularly use estimation to check the reasonableness of 

his or her computational solutions?
• Does the student know when estimation is suffi  cient and when it is not?

SUMMARY

In order for students to engage in visualization and mental math and estimation:

• Teachers should regularly encourage students to draw pictures to 
represent problems. Th ese pictures need not be—and perhaps should 
not be—accurate pictures of the objects being represented, but simply 
mathematical representations of them.

• Teachers should not only ask students to use estimation and mental math 
but also provide opportunities for students to consider which calculations 
really are easy to do with mental math. Teachers should also ask for 
estimation, without necessarily using the word “estimate,” for example, 
asking for two numbers that have a product that is “about” a certain 
amount.
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Conclusion

THE EXAMPLES in this book are just that—examples. Th ere are so many more 
possibilities for bringing out the important mathematical processes. My message is 
that it is problems that explicitly evoke standards of practice that are the ones that 
may make the most diff erence in helping students think like young mathemati-
cians. It is also helpful for students if teachers incorporate terms such as “model” 
and “structure” and “mathematical tools” appropriately in their instruction so that 
students understand when and how they are engaging in these practices.

Even though each problem appeared in only one chapter, it is oft en the case 
that a number of practices might be associated with a single problem (as was fre-
quently indicated). Instilling these practices in students is not so much about 
meeting a checklist of how many practices are being covered in a particular day; it 
is more a matter of focusing teaching on these kinds of problems. Th e rest will 
then take care of itself.
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